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About the Course

Welcome to Advanced Calculus! In this course, you will learn Analysis, that
is the theory of differentiation and integration of functions. However, you will
also learn something more fundamental than Analysis. You will learn what is
a mathematical proof. You may have seen some proofs earlier, but here, you will
learn how to write your own proofs. You will also learn how to understand someone
else’s proof, find a flaw in a proof, fix a deficient proof if possible and discard it if
not. In other words you will learn the trade of mathematical exploration.

Mathematical reasoning takes time. In Calculus, you expected to read a prob-
lem and immediately know how to proceed. Here you may expect some frustration
and you should plan to spend a lot of time thinking before you write down anything.
Analysis was not discovered overnight. It took centuries for the correct approach to
emerge. You will have to go through an accelerated process of rediscovery. Twenty
hours of work a week outside class is not an unusual average for this course.

The course is run in the following way. In these notes, you will find Definitions,
Theorems, and Examples. I will explain the definitions. At home, on your own,
you will try to prove the theorems and the statements in the examples. You will
use no books and no help from anyone. It will be just you, the pencil and the
paper. Every statement you make must be justified. In your arguments, you may
use any result which precedes in the notes the item you are proving. You may use
these results even if they have not yet been proven. However, you may not use
results from other sources. Then, in class, I will call for volunteers to present their
solutions at the board. Every correct proof is worth one point. If more than one
person volunteer for an item, the one with the fewest points is called to the board,
ties to be broken by lot. Your grade will be determined by the number of points
you have accumulated during the term.

You have to understand the proofs presented by others. Some of the ideas
may be useful to you later. You must question your peers when you think a faulty
argument is given or something is not entirely clear to you. If you don’t, I most
probably will. When you are presenting, you must make sure your arguments are
clear to everyone in the class. If your proof is faulty, or you are unable to defend
it, the item will go to the next volunteer, you will receive no credit, and you may
not go up to the board again that day. We will work on the honor system, where
you will follow the rules of the game, and I will not check on you.
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CHAPTER 1

Introduction

1. Mathematical Proof

What is a proof? To explain, let us consider an example.

Theorem 1.1. There is no rational number r which is a square root of 2.

This theorem was already known to the ancient Greeks. It was very important
to them since they were particularly interested in geometry, and, as follows from
the Theorem of Pythagoras, a segment of length

√
2 can be constructed as the

hypotenuse of a right triangle with both sides of length 1.
Before we prove this theorem, in fact before we prove any theorem, we must

understand its statement. To understand its statement, we must understand each
of the terms used. For instance: what is a rational number? For this we need a
definition.

Definition 1.1. A number r is rational if it can be represented as the ratio of
two integers:

r =
n

m
(1.1)

where m 6= 0.

Of course, in this definition, we are using other terms that need to be defined,
such as number, ratio, integer. We will not dwell on this point, and instead assume
for now that these have been defined previously. However, already one point is clear.
If we wish to be absolutely rigorous, we must begin from some given assumptions.
We will call these axioms. They do not require proof. We will discuss this point
further later. For the time being, let us assume that we have a system of numbers
where the usual operations of arithmetic are defined.

Next we need to define what we mean by a square root of 2.

Definition 1.2. Let y be a number. The number x is a square root of y if
x2 = y.

Again, we assume that the meaning of x2 is understood. Note that we have
said a square root, and not the square root. Indeed if x 6= 0 is a square root of
y, then −x is another one. Note that then, one of the two numbers x and −x is
positive. Now, we may give the proof of Theorem 1.1.

Proof. The proof is by contradiction. Suppose that x is a square root of 2,
and that x is rational. Clearly, x 6= 0, hence we may assume that x > 0. Then,
x2 = 2, and there are integers n, m 6= 0, such that

x =
n

m
.(1.2)
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6 1. INTRODUCTION

Of course there are many such pairs n, and m. In fact, if n and m is any such pair,
then 2n and 2m is another pair. Also, there is one pair in which n > 0. Among
all these pairs, with n > 0, pick one for which n is the smallest positive integer
possible, i.e., x = n/m, n > 0, and if x = k/l then n 6 k. We have:( n

m

)2

= 2,(1.3)

or equivalently

n2 = 2m2.(1.4)

Thus, 2 divides n2 = n · n. It follows that 2 divides n, i.e. n is even. We may
therefore write n = 2k and thus

n2 = 4k2 = 2m2,(1.5)

or equivalently

2k2 = m2.(1.6)

Now, 2 divides m2, hence m is even. Write m = 2l. We obtain

x =
n

m
=

2k
2l

=
k

l
.(1.7)

But k is positive and clearly k < n, a contradiction. Thus no such x exists, and
the theorem is proved.

A close examination of this proof will be instructive. The first observation is
that the proof is by contradiction. We assumed that the statement to be proved
is false, and we reached an absurdity. Here the statement to be proved was that
there is no rational x for which x2 = 2, so we assumed there is one such x. The
absurdity was that we could certainly take x = n/m, with n > 0 and as small as
possible, but we deduced x = k/l with 0 < k < n. Next, we see that each step
follows from the previous one, and possibly some additional information. Take for
example, the argument immediately following (1.4). If 2 divides n2 then 2 divides
n. This seemingly obvious fact requires justification. We will not do this here; it
is done in algebra, and relies on the unique factorization by primes of the integers.
It is extremely important to identify the information which you import into your
proof from outside. Usually, this is done by quoting a known theorem. Remember
that before you quote a theorem, you must check its hypotheses.

Read this proof again and again during the term. Try to find its weak points,
those points which could use more justification. Try to improve it. Try to imagine
how it was discovered.

2. Set Theory and Notation

In this section, we briefly recall some notation and a few facts from set theory.
If A is a set of objects and x is an element of A, we will write x ∈ A. If B is another
set and every element of B is an element of A, we say that B is a subset of A, and
we write B ⊂ A. In other words, B ⊂ A if and only if x ∈ B implies that x ∈ A.
This is how one usually checks if B ⊂ A, i.e., pick an arbitrary element x ∈ B and
show that x ∈ A. The meaning of arbitrary here is simply that the only fact we
know about x is that x ∈ B. Note also that we have used the words if and only if,
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which mean that the two statements are equivalent. We will abbreviate if and only
if by iff. For example, if A and B are two sets, then A = B iff A ⊂ B and B ⊂ A.

This is usually the way one checks that two sets A and B are equal: A ⊂ B and
B ⊂ A. Again, we are learning early an important lesson: break a proof into smaller
parts. In these notes, you will find that I have tried to break the development of
the material into the proof of a great many small facts. However, in the more
difficult problems, you might want to continue this process further on your own,
i.e., decompose the harder problems into a number of smaller problems. Try to
take the proof of Theorem 1.1 and break it into the proof of several facts. Think
about how you could have guessed that these were intermediate steps in proving
Theorem 1.1.

We will also use the symbol ∀ to mean for every, and the symbol ∃ to mean
there is. Finally we will use ∅ to denote the empty set, the set with no elements,

Let A and B be sets, their intersection, which is denoted by A∩B, is the set of
all elements which belong to both A and B. Thus, x ∈ A ∩B iff x ∈ A and x ∈ B.
If A ∩ B = ∅ we say that A and B are disjoint. Similarly, their union, denoted
A ∪ B, is the set of all elements which belong to either A or B (or both), so that
x ∈ A ∪B iff x ∈ A or x ∈ B.

Theorem 1.2. Let A, B, and C be sets. Then

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C).(1.8)

Theorem 1.3. Let A, B, and C be sets. Then

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).(1.9)

If A is a subset of X, then the complement of A in X is the set X \ A which
consists of all the elements of X which do not belong to A, i.e. x ∈ X \A iff x ∈ X
and x 6∈ A. If X is understood, then the complement is also denoted Ac. The
notation X \A is occasionally used also when A is not a subset of X. However, in
this case X \A is not called the complement of A in X.

Let X and Y be sets. The set of all pairs (x, y) with x ∈ X and y ∈ Y is called
the Cartesian product of X and Y , and is written X × Y . A subset f of X × Y
is a function, if for each x ∈ X there is a unique y ∈ Y such that (x, y) ∈ f . The
last statement includes two conditions, existence and uniqueness. These are often
treated separately. Thus f ⊂ X × Y is a function iff:

(i) ∀x ∈ X, ∃y ∈ Y , such that (x, y) ∈ f ;
(ii) If (x, y1) ∈ f , and (x, y2) ∈ f , then y1 = y2.

To simplify the notation, we will write y = f(x) instead of (x, y) ∈ f . If f ⊂ X×Y
is a function, we write f : X → Y . We call X the domain of f , and say that f
maps X to Y . The set of y ∈ Y such that ∃x ∈ X for which y = f(x) is called the
range of f , and will be written as Ran(f).

Let f : X → Y . If A ⊂ X, we define the function f |A : A → Y , called the
restriction of f to A by setting (f |A)(x) = f(x) for every x ∈ A. We define the set
f(A) ⊂ Y by

f(A) = {y ∈ Y : ∃x ∈ A, f(x) = y}
= {f(x) : x ∈ A}.

(1.10)

In other words f(A) = Ran(f |A).
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Theorem 1.4. Let f : X → Y , and A,B ⊂ X, then

f(A ∪B) = f(A) ∪ f(B).(1.11)

Theorem 1.5. Let f : X → Y , and A,B ⊂ X, then

f(A ∩B) ⊂ f(A) ∩ f(B).(1.12)

Example 1.1. Equality does not always hold in (1.12).

If A ⊂ Y , we define the pre-image of A under f , denoted f−1(A) ⊂ X, by:

f−1(A) = {x ∈ X : f(x) ∈ A}.(1.13)

Theorem 1.6. Let f : X → Y , and A,B ⊂ Y , then

f−1(A ∪B) = f−1(A) ∪ f−1(B).(1.14)

Theorem 1.7. Let f : X → Y , and A,B ⊂ Y , then

f−1(A ∩B) = f−1(A) ∩ f−1(B).(1.15)

A function f : X → Y is onto (or surjective) if Ran(f) = Y . A function
f : X → Y is one-to-one (or injective) if f(x1) = f(x2) implies that x1 = x2. If f
is both one-to-one and onto, we say that f is bijective. Then there exists a unique
function g such that g(f(x)) = x for all x ∈ X, and f(g(y)) = y for all y ∈ Y . The
function g is denoted f−1, and is called the inverse of f .

Example 1.2. Let f : X → Y be bijective, and let f−1 be its inverse. Then
∀y ∈ Y :

f−1({y}) = {f−1(y)}(1.16)

Caution: part of the problem here is to explain the notation. In particular,
the notation is abused in the sense that f−1 on the left-hand side has a different
meaning than on the right-hand side.

3. Induction

Induction is an essential tool if we wish to write rigorous proof using repetitions
of an argument an unknown number of times. In a more elementary course, a
combination of words such as ‘and so on’ could probably be used. Here, this will
not be acceptable. We will denote by N the set of natural numbers, i.e. the counting
numbers 1, 2, 3, . . . , and by Z the integers, i.e., the natural numbers, their negatives,
and zero.

Axiom 1 (Well-Ordering Axiom). Let ∅ 6= S ⊂ N. Then S contains a smallest
element.

As the name indicates, we will take this as an axiom. No proof need be given.
However, we will prove the Principle of Mathematical Induction.

Theorem 1.8 (The Principle of Mathematical Induction). Suppose that S ⊂
N satisfies the following two conditions:

(i) 1 ∈ S.
(ii) If n ∈ S then n+ 1 ∈ S.

Then S = N.
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We will denote by P (n) a statement about integers. You may want to think
of P (n) as a function from Z to {0, 1} (0 represents false, 1 represents true.) P (n)
might be the statement: n is odd ; or the statement: the number of primes less than
or equal to n is less then n/ log(n).

Theorem 1.9. Let P (n) be a statement depending on an integer n, and let
n0 ∈ Z. Suppose that

(i) P (n0) is true;
(ii) If n > n0 and P (n) is true, then P (n+ 1) is true.

Then P (n) is true for all n ∈ Z such that n > n0.

This last result is what we usually refer to as Mathematical Induction. Here is
an application.

Example 1.3. Let n ∈ N, then
n∑
k=1

(2k − 1) = n2(1.17)

See Theorem 2.13, and Equation (2.6) for a precise definition of the summa-
tion’s

∑
notation.

4. The Real Number System

In a course on the foundations of mathematics, one would construct first the
natural numbers N, then the integers Z, then the rational numbers Q, and then
finally the real numbers R. However, this is not a course on the foundations of
mathematics, and we will not labor on these constructions. Instead, we will assume
that we are given the set of real numbers R with all the properties we need. These
will be stated as axioms. Of course, you probably already have some intuition as
to what real numbers are, and these axioms are not meant to substitute for that
intuition. However, when writing your proofs, you should make sure that all your
statements follow from these axioms, and their consequences proved so far only.

The set of real numbers R is characterized as being a complete ordered field.
Thus, the axioms for the real numbers are divided into three sets. The first set
of axioms, the field axioms, are purely algebraic. The second set of axioms are
the order axioms. It is extremely important to note that Q satisfies the axioms
in the first two sets. Thus Q is an ordered field. Nevertheless, if one wishes to
do analysis, the rational numbers are totally inadequate. Another ordered field is
given in the appendix. The last axiom required in order to study analysis is the
Least Upper Bound Axiom. An ordered field which satisfies this last axiom is said
to be complete. I suggest that at first, you try to understand, or rather recognize,
the first two sets of axioms.

Axiom 2 (Field Axioms). For each pair x, y ∈ R, there is an element denoted
x+y ∈ R, called the sum of x and y, such that the following properties are satisfied:

(i) (x+ y) + z = x+ (y + z) for all x, y, z ∈ R.
(ii) x+ y = y + x for all x, y ∈ R.

(iii) There exists an element 0 ∈ R, called zero, such that x+0 = x for all x ∈ R.
(iv) For each x ∈ R there is an element denoted −x ∈ R such that x+ (−x) = 0.
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Furthermore, for each pair x, y ∈ R, there is an element denoted xy ∈ R, and called
the product of x and y, such that the following properties are satisfied:

(v) (xy)z = x(yz) for all x, y, z ∈ R.
(vi) xy = yx for all x, y ∈ R.

(vii) There exists a non-zero element 1 ∈ R such that 1 · x = x for all x ∈ R.
(viii) For all non-zero x ∈ R, there is an element denoted x−1 ∈ R such that

xx−1 = 1.
(ix) For all x, y, z ∈ R, (x+ y)z = xz + yz.

Any set which satisfies the above field axioms is called a field. Using these, it
is possible to prove that all the usual rules of arithmetic hold.

Example 1.4. Let X = {x} be a set containing one element x, and define the
operations + and · in the only possible way. Is X a field?

Example 1.5. Let X = {0, 1}, and define the addition and multiplication
operations according to the following tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Prove that X is a field.

Axiom 3 (Ordering Axioms). There is a subset P ⊂ R, called the set of posi-
tive numbers, such that:

(x) 0 6∈ P .
(xi) Let 0 6= x ∈ R. If x 6∈ P then −x ∈ P , and if x ∈ P then −x 6∈ P .

(xii) If x, y ∈ P , then xy, x+ y ∈ P .

A field with a subset P satisfying the ordering axioms is called an ordered field.
Let N = −P = {x ∈ R : − x ∈ P} denote the negative numbers. Then (x) and
(xi) simply say that R = P ∪ {0} ∪N , and these three sets are disjoint. We define
x < y to mean y− x ∈ P . Thus P = {x ∈ R : 0 < x}. The usual rules for handling
inequalities follow.

Theorem 1.10. Let x, y, z ∈ R. If x < y and y < z then x < z.

Theorem 1.11. Let x, y, z ∈ R. If x < y and 0 < z then xz < yz.

We will also use x > y to mean y < x.

Theorem 1.12.

0 < 1(1.18)

Theorem 1.13. Let x, y, z ∈ R, then

(i) If x < y then x+ z < y + z.
(ii) If x > 0 then x−1 > 0.

(iii) If x, y > 0 and x < y then y−1 < x−1.

We also define x 6 y to mean that either x < y or x = y.

Theorem 1.14. If x 6 y and y 6 x then x = y.
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Theorem 1.15. Suppose that x, y ∈ R and x < y, then there is z ∈ R such
that x < z < y.

Note that since we will only use the axioms for an ordered field, this holds also
in the rational numbers Q.

Definition 1.3. Let S ⊂ R. We say that S is bounded above if there exists a
number b ∈ R such that x 6 b for all x ∈ S. The number b is then called an upper
bound for S. A number c is called a least upper bound for S if it has the following
two properties:

(i) c is an upper bound for S;
(ii) if b is an upper bound for S, then c 6 b.

Theorem 1.16. If a least upper bound for S exists then it is unique, i.e., if c1
and c2 are both least upper bounds for S then c1 = c2.

Thus we can speak of the least upper bound of a set S.

Definition 1.4. A set S is bounded below if there exists a number b ∈ R such
that b 6 x for all x ∈ S. The number b is then called a lower bound for S. A
number c is called a greatest lower bound for S if it has the following properties:

(i) c is a lower bound for S;
(ii) if b is a lower bound for S, then b 6 c.

Theorem 1.17. S is bounded above iff −S = {x ∈ R : − x ∈ S} is bounded
below.

Theorem 1.18. c is the least upper bound of S iff −c is the greatest lower
bound of −S.

We now state the Least Upper Bound Axiom.

Axiom 4 (Least Upper Bound Axiom). Let ∅ 6= S ⊂ R be bounded above.
Then S has a least upper bound.

We list a few consequences of this axiom.

Theorem 1.19. Let ∅ 6= S ⊂ R be bounded below. Then S has a greatest lower
bound.

Theorem 1.20. Let x ∈ R, then there exists an integer n ∈ Z such that n > x.

Example 1.6. Let x ∈ R satisfy

0 6 x <
1
n
,(1.19)

for all integers n > 0. Then x = 0.

Theorem 1.21. Let y > 0. Then there exists a real number x > 0 such that
x2 = y.

In particular, in contrast with Theorem 1.1, the number 2 has a real square
root.

Theorem 1.22. Show that the set Q of rational numbers is an ordered field,
but not a complete ordered field.
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Note that if y > 0, and x is a square root of y, then also −x is a square root of
y, since

(−x)2 = (−1)2x2 = y.(1.20)

Thus, if y > 0 it has exactly one non-negative square root x.

Definition 1.5. Let y > 0, we define the square root of y to be the non-
negative number x > 0 such that x2 = y, and we denote it by x =

√
y.

This is somewhat in disagreement with our previous definition of square roots,
but we will no longer use definition 1.2, hence no problems should arise from this.

Example 1.7. Let a > 0, and b > 0, then
√
ab =

√
a
√
b.

Definition 1.6. Let x ∈ R. We define its absolute value |x| by:

|x| =
{
x if x > 0,
−x if x < 0.

(1.21)

Theorem 1.23. Let x ∈ R, then
√
x2 = |x|.

Theorem 1.24. Let x, y ∈ R, then |xy| = |x||y|.

Theorem 1.25. Let x, y ∈ R then

|x+ y| 6 |x|+ |y|.(1.22)

This last inequality is called the triangle inequality. It is used widely.

Theorem 1.26. Let x, y ∈ R then

|x− y| > |x| − |y|.(1.23)

Theorem 1.27. Let x, y ∈ R then

|x− y| >
∣∣∣∣|x| − |y|∣∣∣∣.(1.24)

Appendix

In this appendix, we sketch the construction of an ordered field F which does
not satisfy the Least Upper Bound Axiom, and in which Theorem 1.20 does not
hold.

We will use the set of polynomials with real coefficients:

R[t] =

{
p : R→ R : p(t) =

n∑
k=0

akt
k; ak ∈ R

}
.(1.25)

Note that a function f : R → R is zero iff it assigns zero to all real t ∈ R. Thus, a
polynomial is zero iff all its coefficients are zero. If p ∈ R[t], and p 6= 0, we call the
coefficient of the highest power of t the leading coefficient.

Let F be the set of rational functions with real coefficients. More precisely, let

F = {p/q : p, q ∈ R[t]; q 6= 0},(1.26)

A rational function can be written in many ways as the ratio of two polynomials.
However, we can always arrange that all common factors have been canceled, and
that in the denominator q, the leading coefficient is positive. This can be achieved
by multiplying numerator and denominator by (−1) without changing the function
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r = p/q. We define addition and multiplication in F as usual for functions. It is
easy to see that the sum and the product of two functions in F is again in F. It is
also not difficult to check that F is a field. We will not carry out all these steps here.
They are, although tedious, quite straightforward. We only note that F contains a
copy of Z, in fact a copy of R, namely the constant functions.

Define P ⊂ F to be the set of non-zero rational functions p/q such that the
leading coefficient of pq is positive. The set P is the set of all non-zero rational
functions which can be written as a ratio p/q where the leading coefficients of both
p and q are positive. Now it is clear that 0 6∈ P . Also, one can check that all the
axioms for P are satisfied. Thus F is an ordered field.

However, Theorem 1.20 does not hold in F. In fact, consider the function
t ∈ R[t]. This is the function which assigns to each real number x ∈ R the real
number x ∈ R. Now, if n ∈ Z, then t − n has leading coefficient 1, hence lies in
P . Thus n < t. Since this is true for every n ∈ Z, we have found an element t ∈ F
which is larger than every integer n.

Ordered fields in which Theorem 1.20 does not hold are called non-Archimedean
ordered fields. In such a field, there are ‘infinitely large’ elements. We have con-
structed here a non-Archimedean ordered field F. In F, the elements t, t2, etc, are
infinitely large. Of course the Least Upper Bound axiom does not holds in F.

Example 1.8. Find a non-empty bounded subset S ⊂ F which does not have
a least upper bound?



14 1. INTRODUCTION



CHAPTER 2

Sequences

1. Limits of Sequences

Definition 2.1. A sequence of real numbers, is a function x : N→ R.

When no confusion can arise, we will usually abbreviate this simply as a se-
quence. If x : N → R is a sequence, we write, in keeping with tradition, xn in-
stead of x(n), and we will use the notation {xn}∞n=1 for the sequence x, where
xn = x(n) ∈ R. Note that there is a distinction between the sequence {xn}∞n=1 and
the subset {xn : n ∈ N} ⊂ R.

Definition 2.2. Let {xn}∞n=1 be a sequence, and let L ∈ R. We say that the
sequence {xn}∞n=1 converges to L, if for every ε > 0, there is an integer N ∈ N such
that for all integers n > N , there holds:

|xn − L| < ε.(2.1)

Theorem 2.1. Suppose that {xn}∞n=1 converges to L1, and also converges to
L2. Then L1 = L2.

Thus the number L in Definition 2.2 is unique, and we may speak of the limit
L of the sequence, if it exists.

Example 2.1. Let c ∈ R, and for each n ∈ N let xn = c. Then {xn}∞n=1

converges to c.

Example 2.2. Let xn = 1/n for each n ∈ N. Then {xn}∞n=1 converges to 0.

Definition 2.3. Let {xn}∞n=1 be a sequence. We say that {xn}∞n=1 converges
if there is an L ∈ R such that {xn}∞n=1 converges to L. If a sequence does not
converge, we say that it diverges.

Example 2.3. Let xn = (−1)n. Then {xn}∞n=1 diverges.

Theorem 2.2. Let {xn}∞n=1 be a sequence which converges. Then {xn : n ∈
N} ⊂ R is bounded above and below.

In order to compute, we need theorems which allow us to perform simple arith-
metic operations with limits. Let {xn}∞n=1 and {yn}∞n=1 be sequences. We define
their sum as the sequence {xn + yn}∞n=1, i.e. the function (x + y) : N → R which
assigns to each n ∈ N the number xn + yn ∈ R. Similarly, we define their product
as the sequence {xnyn}∞n=1.

Theorem 2.3. Suppose that {xn}∞n=1 converges to L, and {yn}∞n=1 converges
to M . Then {xn + yn}∞n=1 converges to L+M .

15
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Theorem 2.4. Suppose that {xn}∞n=1 converges to L, and {yn}∞n=1 converges
to M . Then {xnyn}∞n=1 converges to LM .

Theorem 2.5. Suppose that {xn}∞n=1 converges to L, and let c ∈ R. Then
{cxn}∞n=1 converges to cL.

Theorem 2.6. Suppose that {xn}∞n=1 converges to L, and {yn}∞n=1 converges
to M . Then {xn − yn}∞n=1 converges to L−M .

Theorem 2.7. Suppose that xn 6= 0 for each n ∈ N, that {xn}∞n=1 converges
to L, and that L 6= 0. Define yn = x−1

n . Then {yn}∞n=1 converges to L−1.

Example 2.4. Let

xn =
3n2 − 1
n2 + n

.(2.2)

Then {xn}∞n=1 converges to 3.

Theorem 2.8. Let {xn}∞n=1, {yn}∞n=1, and {zn}∞n=1 be sequences, and let n0 ∈
N. Suppose that xn 6 yn 6 zn for all n > n0, and that limn→∞ xn = limn→∞ zn =
L. Then {yn}∞n=1 converges to L.

We will denote Nm = {n ∈ Z : n > m}.

Theorem 2.9 (Recursion). Let m ∈ Z, let g : Nm × R → R, and let a ∈ R.
Then, there is a unique function f : Nm → R such that

(i) f(m) = a;
(ii) f(n+ 1) = g(n, f(n)), for every n ∈ Nm.

Theorem 2.10. There exists a unique function f : N0 → N0 such that f(0) =
1, and such that f(n+ 1) = (n+ 1)f(n) for each n ∈ N0.

Definition 2.4. Denote f(n) = n!, where f : N0 → N0 is the function given in
Theorem 2.10. If k, n ∈ N0, we define the binomial coefficients by(

n

k

)
=


n!

k!(n− k)!
if k 6 n

0 if k > n.
(2.3)

Theorem 2.11. Let k, n ∈ N, and k 6 n. Then(
n

k

)
=
(

n

n− k

)
(2.4) (

n

k − 1

)
+
(
n

k

)
=
(
n+ 1
k

)
.(2.5)

Theorem 2.12. Let a ∈ R. Then, there is a unique function f : N → R such
that f(0) = 1, and f(n+ 1) = a f(n).

The function f given by Theorem 2.12 is called the power function, and we
denote it as f(n) = an.

Theorem 2.13 (Summation). Let x : Nm → R, and let k > m, then there is a
unique function f : Nk → R such that f(k) = xk, and f(n + 1) = f(n) + xn+1 for
each n ∈ Nk.
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We denote:

f(n) =
n∑
j=k

xj ,(2.6)

where f is the function given in Theorem 2.13.

Theorem 2.14. Let a, b ∈ R, and let n ∈ N. Then

(a+ b)n =
n∑
k=0

(
n

k

)
akbn−k(2.7)

Example 2.5. Let c ∈ R, and suppose c > 0. Define

xn =
1

(1 + c)n
.(2.8)

Then the sequence {xn}∞n=1 converges to 0.

Example 2.6. Let c ∈ R, and suppose |c| < 1. Define

xn = cn.(2.9)

Then the sequence {xn}∞n=1 converges to 0.

Example 2.7. Let a ∈ R, and suppose a 6= 1. Then
n∑
k=0

ak =
1− an+1

1− a
.(2.10)

Example 2.8. Let a ∈ R, and suppose |a| < 1. Define

xn =
n∑
k=0

ak.(2.11)

Then the sequence {xn}∞n=1 converges to 1/(1− a).

Definition 2.5. Let S ⊂ R, and let f : S → R have the following property:

if a, b ∈ S, and a < b, then f(a) < f(b).

Then we say that f is increasing. Similarly, if f has the following property:

if a, b ∈ S, and a < b, then f(a) > f(b),

then we say that f is decreasing.

Definition 2.6. Let {xn}∞n=1 be a sequence, and let g : N→ N be an increasing
sequence of natural numbers. Then the sequence {xg(n)}∞n=1 is called a subsequence
of the sequence {xn}∞n=1.

We often write g(j) = nj , and thus, we also often write the subsequence
{xg(n)}∞n=1 as {xnj

}∞j=1.

Theorem 2.15. Suppose that the sequence {xn}∞n=1 converges to L, and let
{xnj}∞j=1 be a subsequence of {xn}∞n=1. Then {xnj}∞j=1 converges to L.

Example 2.9. The converse of the previous theorem is false, i.e., there is a
sequence {xn}∞n=1 which diverges, but which has a subsequence {xnj}∞j=1 which
converges.



18 2. SEQUENCES

When the sequence {xn}∞n=1 converges to L, we will write:

lim
n→∞

xn = L.(2.12)

2. Cauchy Sequences

Definition 2.7. A sequence {xn}∞n=1 is non-decreasing if xn 6 xn+1 for each
n ∈ N. Similarly, a sequence {xn}∞n=1 is non-increasing if xn > xn+1 for each
n ∈ N.

Definition 2.8. A sequence {xn}∞n=1 is bounded above if the set {xn : n ∈ N}
is bounded above. A sequence {xn}∞n=1 is bounded below if the set {xn : n ∈ N} is
bounded below. A sequence is bounded if it is bounded above and bounded below.

Theorem 2.16. Let {xn}∞n=1 be an non-decreasing sequence which is bounded
above. Let L ∈ R be the least upper bound of the set {xn : n ∈ N}. Then {xn}∞n=1

converges to L.

Theorem 2.17. Let {xn}∞n=1 be a non-increasing sequence which is bounded
below. Let L ∈ R be the greatest lower bound of {xn : n ∈ N}. Then {xn}∞n=1

converges to L.

Definition 2.9. Let {xn}∞n=1 be a sequence. We say that {xn}∞n=1 is a Cauchy
sequence if the following holds:

For each ε > 0, there is N ∈ N, such that for all integers n,m > N ,
it holds |xn − xm| < ε.

Theorem 2.18. Suppose that {xn}∞n=1 converges to L. Then {xn}∞n=1 is a
Cauchy sequence.

The natural question is then: Does every Cauchy sequence converge? The rest
of this section is devoted to the proof of this fact.

Theorem 2.19. Let {xn}∞n=1 be a Cauchy sequence, and let {xnj}∞j=1 be a
subsequence of {xn}∞n=1. Suppose that {xnj}∞j=1 converges to L. Then {xn}∞n=1

converges to L.

Theorem 2.20. Let {xn}∞n=1 be a Cauchy sequence. Then {xn}∞n=1 is bounded.

Let S ⊂ R be bounded above. We will denote its least upper bound by supS.
Let S be bounded below. We will denote its greatest lower bound by inf S. Note
that if S ⊂ R is bounded above, and S′ ⊂ S, then S′ is also bounded above. Thus if
{xn}∞n=1 is bounded above, then for every n ∈ N the sets {xk : k > n} are bounded
above.

Theorem 2.21. Suppose ∅ 6= T ⊂ S ⊂ R. Then:

supT 6 supS(2.13)

inf T > inf S.(2.14)

Theorem 2.22. Suppose {xn}∞n=1 is bounded. Define

yn = sup{xk : k > n}.(2.15)

Then the sequence {yn}∞n=1 converges.
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Definition 2.10. The limit of the sequence {yn}∞n=1 defined in Theorem 2.22
is called the limit superior of {xn}∞n=1 and is denoted lim supn→∞ xn.

Thus, if {xn}∞n=1 is bounded,

lim sup
n→∞

xn = lim
n→∞

(sup{xk : k > n}) .(2.16)

Theorem 2.23. Suppose {xn}∞n=1 is bounded. Define

yn = inf{xk : k > n}.(2.17)

Then the sequence {yn}∞n=1 converges.

Definition 2.11. The limit of the sequence {yn}∞n=1 defined in Theorem 2.23
is called the limit inferior of {xn}∞n=1 and is denoted lim infn→∞ xn.

Thus, the limit inferior of a bounded sequence {xn}∞n=1 is:

lim inf
n→∞

xn = lim
n→∞

(inf{xk : k > n}) .(2.18)

Theorem 2.24. Let {xn}∞n=1 be bounded, and let L = lim supn→∞ xn. Then
there exists a subsequence {xnj

}∞j=1 which converges to L.

Theorem 2.25. If {xn}∞n=1 is bounded, it has a convergent subsequence.

Theorem 2.26. Let {xn}∞n=1 be a Cauchy sequence, and let L be its limit su-
perior. Then {xn}∞n=1 converges to L.

Theorem 2.27. A sequence {xn}∞n=1 converges iff it is a Cauchy sequence.

Theorem 2.28. Let {xn}∞n=1 be a Cauchy sequence, and let L be its limit in-
ferior. Then {xn}∞n=1 converges to L.

Theorem 2.29. Let {xn}∞n=1 be a bounded sequence. Then {xn}∞n=1 converges
if and only if

lim sup
n→∞

xn = lim inf
n→∞

xn.(2.19)
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CHAPTER 3

Series

1. Infinite Series

Let {xn}∞n=1 be a sequence of real numbers. We will not define what is the
series:

∞∑
n=1

xn.(3.1)

This is reminiscent of axiomatic geometry where points and lines are not defined,
only the relationship between them is defined. Here instead, we will define the
terms the series converges, the series diverges, the sum of the series. Of course,
one would like to think of (3.1) as an infinite sum. However, not every series has
a sum, and at this point it is recommended that you try to forget everything you
know about series.

Theorem 3.1. Let {xn}∞n=1, and {yn}∞n=1 be sequences, and let m ∈ N. Then:
m∑
n=1

(xn + yn) =
m∑
n=1

xn +
m∑
n=1

yn.(3.2)

Theorem 3.2. Let {xn}∞n=1 be a sequence, let c ∈ R, and let m ∈ N. Then:
m∑
n=1

cxn = c

m∑
n=1

xn.(3.3)

Theorem 3.3. Let {xn}∞n=1, and {yn}∞n=1 be sequences, and let m ∈ N. Then:(
m∑
n=1

xn

)(
m∑
n=1

yn

)
=

m∑
n=1

(
m∑
k=1

xnyk

)
=

m∑
k=1

(
m∑
n=1

xnyk

)
.(3.4)

Theorem 3.4. Let {xn}∞n=1, and {yn}∞n=1 be sequences, let m ∈ N, and sup-
pose that xn 6 yn for each n ∈ N such that n 6 m. Then:

m∑
n=1

xn 6
m∑
n=1

yn.(3.5)

Theorem 3.5. Let {xn}∞n=1 and {yn}∞n=1 be sequences, and suppose that xn 6
yn for each n ∈ N such that n 6 m. If

m∑
n=1

xn =
m∑
n=1

yn,(3.6)

then xn = yn for each n ∈ N such that n 6 m.

21
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Definition 3.1. Let {xn}∞n=1 be a sequence, and consider the series (3.1). We
define the sequence of partial sums {sm}∞m=1 of the series (3.1) by:

sm =
m∑
n=1

xn,(3.7)

for m ∈ N. We say that the series (3.1) converges if the sequence of partial sums
{sm}∞m=1 converges. In this case, we define the sum of the series as the limit of the
sequence {sm}∞m=1, and we write:

∞∑
n=1

xn = lim
m→∞

sm.(3.8)

If the series (3.1) does not converge, we say that it diverges. Similarly, if m ∈ Z,
and x : Nm → R, then we define the partial sums of the series

∑∞
n=m xn by:

sk =
k∑

n=m

xn,(3.9)

and define its sum by:
∞∑
n=m

xn = lim
k→∞

sk,(3.10)

provided the series converges, i.e., provided the limit on the right-hand side of (3.10)
exists.

Example 3.1. Let −1 < a < 1, then
∞∑
n=0

an =
1

1− a
.(3.11)

Example 3.2.
∞∑
n=1

1
n(n+ 1)

= 1.(3.12)

Theorem 3.6. Suppose that both series
∑∞
n=1 xn and

∑∞
n=1 yn converge. Then∑∞

n=1(xn + yn) converges, and

∞∑
n=1

(xn + yn) =
∞∑
n=1

xn +
∞∑
n=1

yn.(3.13)

Theorem 3.7. Suppose that the series
∑∞
n=1 xn converges, and let c ∈ R.

Then the series
∑∞
n=1 cxn converges, and

∞∑
n=1

cxn = c

∞∑
n=1

xn.(3.14)

Theorem 3.8. If the series
∑∞
n=1 xn converges, then limn→∞ xn = 0.

Example 3.3. Show that the series
∑∞
n=1(−1)n does not converge.



2. SERIES WITH NONNEGATIVE TERMS 23

Theorem 3.9. Let m ∈ N. Then, the series
∑∞
n=1 xn converges iff the series∑∞

n=m+1 xn converges. Furthermore, in this case, we have:
∞∑
n=1

xn =
m∑
n=1

xn +
∞∑

n=m+1

xn(3.15)

Theorem 3.10. The series
∑∞
n=1 xn converges iff the following criterion is

satisfied:

For each ε > 0, there is N ∈ N such that if m > k > N , then:∣∣∣∣∣
m∑
n=k

xn

∣∣∣∣∣ < ε.(3.16)

Theorem 3.11. Suppose that the series
∑∞
n=1 xn converges, and let ym =∑∞

n=m xn. Then limm→∞ ym = 0.

2. Series with Nonnegative Terms

Theorem 3.12. Let N ∈ N and suppose that xn > 0 for all n > N . Then, the
series

∑∞
n=1 xn converges iff the sequence of partial sums is bounded.

Theorem 3.13. Let N ∈ N, and suppose that 0 6 xn 6 yn for all n > N . If
the series

∑∞
n=1 yn converges, then the series

∑∞
n=1 xn converges, and

m∑
n=N

xn 6

m∑
n=N

yn.(3.17)

If the series
∑∞
n=1 xn diverges, then the series

∑∞
n=1 yn diverges.

Example 3.4. Does the series
∑∞
n=1 1/n2 converge?

Theorem 3.14. Suppose that xn > 0 for all n ∈ N, and suppose also that

lim sup
n→∞

xn+1

xn
< 1.(3.18)

Then the series
∑∞
n=1 xn converges.

Theorem 3.15. Suppose that xn > 0 for all n ∈ N, and suppose also that

lim inf
n→∞

xn+1

xn
> 1.(3.19)

Then the series
∑∞
n=1 xn diverges.

Theorem 3.16. Let x > 0, then there is y > 0 such that yn = x.

We call the number y given by Theorem 3.16 the (nonnegative) n-th root of x,
and write y = x1/n.

Theorem 3.17. Let xn > 0, and suppose that:

lim sup
n→∞

(
xn
)1/n

< 1.(3.20)

Then the series
∑∞
n=1 xn converges.
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Theorem 3.18. Let xn > 0, and suppose that:

lim sup
n→∞

(
xn
)1/n

> 1.(3.21)

Then the series
∑∞
n=1 xn diverges.

Theorem 3.19 (Cauchy). Suppose {xn}∞n=1 is a non-increasing sequence of
nonnegative real numbers, and define

yn = 2nx2n .(3.22)

If the series
∑∞
n=1 xn converges, then the series

∑∞
n=1 yn converges.

Example 3.5. Prove that the series
∑∞
n=1 1/n diverges.

3. Absolute Convergence

Definition 3.2. The series
∑∞
n=1 xn is said to converge absolutely if the se-

ries
∑∞
n=1 |xn| converges. If the series

∑∞
n=1 xn converges, but does not converge

absolutely, then we say that it converges conditionally.

Theorem 3.20. If the series
∑∞
n=1 xn converges absolutely, then it converges.

Example 3.6. Show that the series
∞∑
n=1

(−1)n

n2
(3.23)

converges.

Theorem 3.21. Let {sn}∞n=1 be the sequence of partial sums of the series {xn}∞n=1

and set s0 = 0. Let {yn}∞n=1 be a sequence. Then, we have for any k,m ∈ N such
that k < m

m∑
j=k

xjyj = smym − sk−1yk +
m−1∑
j=k

sj
(
yj − yj+1

)
(3.24)

Theorem 3.22. Suppose that {yn}∞n=1 is a non-increasing sequence of nonneg-
ative real numbers which converges to 0, and suppose that the sequence of partial
sums of {xn}∞n=1 is bounded. Then, the series

∑∞
n=1 xnyn converges.

Theorem 3.23 (Leibnitz). Let {xn}∞n=1 be a non-increasing sequence of non-
negative real numbers, and suppose that limn→∞ xn = 0. Then, then series

∞∑
n=1

(−1)nxn(3.25)

converges.

Example 3.7. Show that the series
∞∑
n=1

(−1)n

n
(3.26)

converges conditionally.

Definition 3.3. Let g : N → N be one-to-one and onto. Let {xn}∞n=1 and
{yn}∞n=1 be sequences such that yn = xg(n). Then, we say that

∑∞
n=1 yn is a

rearrangement of
∑∞
n=1 xn.
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Theorem 3.24. Suppose that
∑∞
n=1 xn converges absolutely, and let

∑∞
n=1 yn

be a rearrangement of
∑∞
n=1 xn. Then

∑∞
n=1 yn converges, and

∞∑
n=1

yn =
∞∑
n=1

xn.(3.27)

Example 3.8. Suppose the series
∑∞
n=1 xn converges conditionally. Then there

is a rearrangement
∑∞
n=1 yn of

∑∞
n=1 xn such that

∑∞
n=1 yn diverges.

Example 3.9. Suppose that the series
∑∞
n=1 xn converges conditionally, and

let s ∈ R. Then, there is a rearrangement
∑∞
n=1 yn of

∑∞
n=1 xn such that

∞∑
n=1

yn = s.(3.28)

Theorem 3.25. Suppose that the series
∑∞
n=0 xn converges absolutely, and

that the series
∑∞
n=0 yn converges. Define for each n ∈ N:

zn =
n∑
k=0

xkyn−k.(3.29)

Then, the series
∑∞
n=0 zn converges, and:

∞∑
n=0

zn =

( ∞∑
n=0

xn

)( ∞∑
n=0

yn

)
.(3.30)
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CHAPTER 4

Functions and Continuity

1. Open and Closed Sets of R

Definition 4.1. Let D ⊂ R, and a ∈ R. We say that a is a limit point of
D if there exists a sequence {xn}∞n=1 such that xn ∈ D for every n ∈ N, and
limn→∞ xn = a. The set of all limit points of D is denoted D.

Example 4.1. Let D ⊂ R, then D ⊂ D. However, it may be that D 6= D.

Definition 4.2. A set D ⊂ R is closed if D = D. A set D ⊂ R is open if R\D
is closed.

Theorem 4.1. Let D ⊂ R. Then D is closed.

Definition 4.3. Let a < b, I = {x ∈ R : a < x < b}, and J = {x ∈ R : a 6
x 6 b}. I is called an open interval, and is denoted (a, b). J is called a closed
interval, and is denoted [a, b].

Theorem 4.2. Let D ⊂ R. Then D is open if and only if the following state-
ment holds: for every x ∈ D, there exists an ε > 0 such that (x− ε, x+ ε) ⊂ D.

Example 4.2. Every open interval is open. Every closed interval is closed.

Example 4.3. A set may be neither open nor closed.

Theorem 4.3. If a set D ⊂ R is both open and closed, then either D = R or
D = ∅.

Definition 4.4. Let D ⊂ R. We define the boundary of D by

∂D = D ∩ (R \D).(4.1)

Let D ⊂ R. We define the interior of D by:

intD = D \ ∂D.(4.2)

Theorem 4.4. Let D ⊂ R, then x ∈ intD if and only if there is ε > 0 such
that (x− ε, x+ ε) ⊂ D.

Theorem 4.5. Let D ⊂ R, then D is open if and only if D = intD.

Definition 4.5. Let D ⊂ R. A set U ⊂ D is relatively open in D, if there
exists an open set V ⊂ R such that V ∩D = U .

Example 4.4. A subset U ⊂ D may be relatively open in D but not open.
However, if D is open and U is relatively open in D, then U is open.

Let {Uα : α ∈ A} be a family of sets. The set A is the index set, and it can
be finite or infinite. If A = N for instance, we have a sequence of sets, but we may

27
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want to consider even more general situations. We define the union
⋃
α∈A Uα to be

the set of all elements x which belong to at least one Uα. Thus, x ∈
⋃
α∈A Uα iff

∃α ∈ A such that x ∈ Uα. Similarly, we define the intersection
⋂
α∈A Uα to be the

set of all elements x which belong to all the Uα. Thus, x ∈
⋂
α∈A Uα iff ∀α ∈ A we

have x ∈ Uα.

Theorem 4.6. Let {Uj : 0 6 j 6 n} be a finite family of open subsets of R.
Then

⋂n
j=0 Uj is open.

Example 4.5. The intersection of a collection of open sets may not be open.

Theorem 4.7. Let {Uα : α ∈ A} be a family of open subsets of R. Then⋃
α∈A Uα is open.

Theorem 4.8. The union of a finite number of closed sets is closed. The in-
tersection of an arbitrary collection of closed sets is closed.

Definition 4.6. A set K ⊂ R is compact if every sequence in K has a subse-
quence which converges to an element of K.

Theorem 4.9. Let K ⊂ R be compact. Then K is closed and bounded.

Theorem 4.10. Let K ⊂ R be closed and bounded. Then K is compact.

2. Limit and Continuity

Definition 4.7. Let D ⊂ R, f : D → R, a ∈ D, and L ∈ R. We say that L is
the limit of f at a if the following condition holds:

If xn ∈ D, and lim
n→∞

xn = a, then lim
n→∞

f(xn) = L.

Remark. In other words, we require that for any sequence {xn}∞n=1 of elements
in D which converges to a, the sequence {f(xn)}∞n=0 converges to L. When L is
the limit of the function f at a, we write

lim
x→a

f(x) = L.(4.3)

Theorem 4.11. Let D ⊂ R, f : D → R, a ∈ D, and L,M ∈ R. Suppose that
both limx→a f(x) = L, and limx→a f(x) = M . Then L = M .

Hence, if f : D → R has a limit at a ∈ D, then that limit is unique. Thus, we
may speak of the limit of the function f at a. Next, we give an equivalent condition
for L to be the limit of f at a.

Example 4.6. Let a, c ∈ R, and let f : R → R be the function which sends
x ∈ R to c. Then

lim
x→a

f(x) = c.(4.4)

Example 4.7. Let f : R→ R be the function which sends x ∈ R to x, and let
a ∈ R. Then

lim
x→a

f(x) = a.(4.5)



2. LIMIT AND CONTINUITY 29

Theorem 4.12. Let D ⊂ R, f, g : D → R, a ∈ D, L,M ∈ R. Suppose that
limx→a f(x) = L, and limx→a g(x) = M .

lim
x→a

(
f(x) + g(x)

)
= L+M,(4.6)

lim
x→a

(
f(x)g(x)

)
= LM.(4.7)

Example 4.8. Let D ⊂ R, a ∈ D, c ∈ R, and f : D → R. Suppose that
limx→a f(x) = L. Then limx→a cf(x) = cL.

Theorem 4.13. Let D ⊂ R, a ∈ D, f, g : D → R, L,M ∈ R. Suppose
limx→a f(x) = L, limx→a g(x) = M , M 6= 0, and that for every x ∈ D, g(x) 6= 0.
Then

lim
x→a

f(x)
g(x)

=
L

M
.(4.8)

Definition 4.8. Let ak ∈ R, for k = 0, 1, . . . , n. A function p : R → R which
can be written as

f(x) =
n∑
k=0

akx
k(4.9)

is called a polynomial. The set of all polynomials is denoted by R[x]. Let p, q ∈ R[x],
q 6= 0, and let D ⊂ R be the set of all x ∈ R such that q(x) 6= 0. The function
r : D → R, given by

r(x) =
p(x)
q(x)

(4.10)

is called a rational function.

Theorem 4.14. Let p ∈ R[x], and let a ∈ R. Then

lim
x→a

p(x) = p(a).(4.11)

Theorem 4.15. Let r : D → R be a rational function, and let a ∈ D. Then

lim
x→a

r(x) = r(a).(4.12)

Definition 4.9. Let D ⊂ R, f : D → R, and a ∈ D. We say that f is
continuous at a if

lim
x→a

f(x) = f(a).(4.13)

We say that f is continuous on D if for each a ∈ D, f is continuous at a.

Example 4.9. Let r : D → R be a rational function, then r is continuous on
D.

Theorem 4.16. Let D ⊂ R, and let f, g : D → R. Suppose that f, g are con-
tinuous at a ∈ D. Then f + g and fg are continuous at a.

Theorem 4.17. Let D ⊂ R, f : D → R, a ∈ D, and L ∈ R. The function f
has the limit L at a if and only if the following condition holds:

For every ε > 0, there is a δ > 0 such that if x ∈ D and |x− a| < δ,
then |f(x)− L| < ε.

Theorem 4.18. Let D ⊂ R, f : D → R, a ∈ D, and L ∈ R. Then f has the
limit L at a if and only if the following condition holds:
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For every open set W ⊂ R, such that L ∈ W , there is an open set
U ∈ R such that a ∈ U and f(U ∩D) ⊂W .

Theorem 4.19. Let D ⊂ R, f : D → R. Then f is continuous on D if and
only if the following condition holds:

For every open set V ⊂ R, the set f−1(V ) is relatively open in D.

Theorem 4.20. Let f : D → R be a continuous function, and suppose that D
is compact. Then f(D) is compact.

Definition 4.10. A function f : D → R is said to be bounded above if f(D) is
bounded above. For such a function, we will write:

sup
D
f = sup f(D).(4.14)

The function f is said to be bounded below if f(D) is bounded below. For such a
function, we will write:

inf
D
f = inf f(D).(4.15)

It is said to be bounded if it is bounded above and below.

Example 4.10. There is a function f : D → R bounded above for which there
is no x ∈ D such that f(x) = supD f .

Theorem 4.21. Let D be compact, and let f : D → R be a continuous function.
Then there is x ∈ D such that f(x) = supD f .

Theorem 4.22. Let D be compact, and let f : D → R be a continuous function.
Then there is x ∈ D such that f(x) = infD f .

Theorem 4.23. Let a, b ∈ R, a < b, let f : [a, b] → R be continuous, and
suppose that

f(a) 6 0 6 f(b).(4.16)

Then there is x ∈ [a, b] such that f(x) = 0.

3. Uniform Continuity and Uniform Convergence

Definition 4.11. Let D ⊂ R, and let f : D → R. We say that f is uniformly
continuous on D is for every ε > 0, there exists a δ > 0 such that for all x, y ∈ D
which satisfy |x− y| < δ there holds |f(x)− f(y)| < ε.

Theorem 4.24. Let D ⊂ R be bounded, and let f : D → R be uniformly con-
tinuous. Then f is bounded.

Example 4.11. Give a domain D ⊂ R and a function f : D → R which is
continuous on D but not uniformly continuous.

Theorem 4.25. Let D be compact, and let f : D → R be continuous. Then f
is uniformly continuous.

Definition 4.12. Let D ⊂ R. A sequence of functions {fn}∞n=1 on D is a map
from N into the set of functions RD = {f : D → R}. If for each n ∈ N the function
fn is continuous on D, we say that {fn}∞n=1 is a sequence of continuous functions
on D. Let {fn}∞n=1 be a sequence of functions on D, and let f : D → R. We say
that {fn}∞n=1 converges to f if for each x ∈ D the sequence of numbers {fn(x)}∞n=1

converges to f(x).
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Example 4.12. There exists D ⊂ R, and a sequence of continuous functions
{fn}∞n=1 on D which converges to a function f : D → R which is not continuous.

Definition 4.13. Let D ⊂ R, let {fn}∞n=1 be a sequence of functions on D,
and let f : D → R. We say that {fn}∞n=1 converges uniformly to f on D if for every
ε > 0, there exists N ∈ N such that for all n ∈ N which satisfy n > N , and for all
x ∈ D, there holds |fn(x)− f(x)| < ε.

Theorem 4.26. Let D ⊂ R, and let {fn}∞n=1 be a sequence of continuous func-
tions on D which converges uniformly to f . Then f is continuous on D.

Let D ⊂ R, and let {fn}∞n=1 be a sequence of functions defined on D. As with
numerical series, we define the sequence of partial sums of the series

∑∞
n=1 fn by

sm =
∑m
n=1 fn, and we say that the series

∑∞
n=1 fn converges if the sequence of

partial sums {sm}∞m=1 converges.

Theorem 4.27. Let D ⊂ R, and let {fn}∞n=1 be a sequence of continuous func-
tions on D. Suppose that there are numbers cn ∈ R such that |fn| 6 cn, and
such that

∑∞
n=1 cn converges. Then the series

∑∞
n=1 fn converges to a continuous

function.
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CHAPTER 5

Integration and Differentiation

1. The Lower and Upper Intergals

We will use the notation {xj}nj=0 for a finite sequence, i.e., a function x : Nn
0 →

R, where n is some positive integer, and Nn
0 = {j ∈ Z : 0 6 j 6 n}. As before, a

finite sequence {xj}nj=0 is increasing if xj−1 < xj for all 1 6 j 6 n.

Definition 5.1. Let n ∈ N. An increasing finite sequence P = {xj}nj=0 with
x0 = a, and xn = b is called a partition of [a, b]. We denote the set of all partitions
of [a, b] by P[a, b]. If P = {xj}nj=1 ∈ P[a, b], we define ∆j(P ) = xj − xj−1. If
P1, P2 ∈ P[a, b], we say that P1 is a refinement of P2, written P1 ⊃ P2, if the image
of P2 as a function is contained in the image of P1.

Theorem 5.1. Let P1, P2 ∈ P[a, b]. Then there is P ∈ P[a, b] such that P ⊃ P1,
and P ⊃ P2.

A partition P satisfying P ⊃ P1, and P ⊃ P2, as given by this theorem, is
called a common refinement of P1 and P2.

Definition 5.2. Let f be a bounded function defined on [a, b], and let P ∈
P[a, b]. We define for each 1 6 j 6 n:

L(f, P ) =
n∑
j=1

mj(f, P )∆j(P ), U(f, P ) =
n∑
j=1

Mj(f, P )∆j(P ),

where

mj(f, P ) = inf
[xj−1,xj ]

f, Mj(f, P ) = sup
[xj−1,xj ]

f.

We define the lower integral and the upper integral of f over [a, b] by:∫ b

a

f(x) dx = sup
{
L(f, P ) : P ∈ P[a, b]

}
,

∫ b

a

f(x) dx = inf
{
U(f, P ) : P ∈ P[a, b]

}
.

Theorem 5.2. Let f be a bounded function on [a, b], and let P ∈ P[a, b], then
L(f, P ) = −U(−f, P ).

Theorem 5.3. Let f be a bounded function on [a, b], and let P1, P2 ∈ P[a, b]
satisfy P1 ⊃ P2. Then, L(f, P2) 6 L(f, P1), and U(f, P1) 6 U(f, P2).

Theorem 5.4. Let f be a bounded function on [a, b], and let P1, P2 ∈ P[a, b],
then L(f, P1) 6 U(f, P2).

33
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Theorem 5.5. Let f be a bounded function on [a, b], then∫ b

a

f dx 6

∫ b

a

f dx.

2. The Riemann Integral and its Properties

Definition 5.3. Let f be a bounded function on [a, b]. We say that f is
Riemann integrable, written f ∈ R[a, b], if the lower and upper integrals of f over
[a, b] coincide. In this case, we denote their common value by:∫ b

a

f(x) dx.

Theorem 5.6. Let f ∈ R[a, b]. Then, for every ε > 0 there is P ∈ P[a, b] such
that

U(f, P )− L(f, P ) < ε.

Theorem 5.7. Let f be a bounded function on [a, b]. Suppose that for every
ε > 0 there is P ∈ P[a, b] such that

U(f, P )− L(f, P ) < ε.

Then f ∈ R[a, b].

Theorem 5.8. Suppose that f is continuous on [a, b]. Then f ∈ R[a, b].

Theorem 5.9. Suppose that f ∈ R[a, b], and let c ∈ R. Then cf ∈ R[a, b] and∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx.

Definition 5.4. A function f : D → R is non-decreasing on D if for every
x, y ∈ D such that x 6 y, there holds f(x) 6 f(y). We say that f is non-increasing
on D is −f is non-decreasing. A function f : D → R is monotonic if f is either
non-decreasing or non-increasing on [a, b].

Theorem 5.10. Suppose that f is monotonic on [a, b]. Then f ∈ R[a, b].

Theorem 5.11. Suppose that f, g ∈ R[a, b]. Then f + g ∈ R[a, b] and∫ b

a

(
f(x) + g(x)

)
dx =

∫ b

a

f(x) dx+
∫ b

c

g(x) dx.

Theorem 5.12. Let f ∈ R[a, b] and a < c < b. Then, we have f ∈ R[a, c] ∩
R[c, b], and: ∫ b

a

f(x) dx =
∫ c

a

f(x) dx+
∫ b

c

f(x) dx.

Theorem 5.13. Suppose that f ∈ R[a, b], and f > 0. Then∫ b

a

f(x) dx > 0.

Theorem 5.14. Suppose that f, g ∈ R[a, b], and f 6 g. Then∫ b

a

f(x) dx 6
∫ b

a

g(x) dx.
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Theorem 5.15. Suppose that f ∈ R[a, b]. Then |f | ∈ R[a, b], and∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ 6
∫ b

a

|f(x)| dx.

Theorem 5.16. If f ∈ R[a, b], and |f | 6M , then∣∣∣∣∣
∫ b

a

f(x) dx

∣∣∣∣∣ 6M(b− a).

Theorem 5.17. Let f ∈ R[a, b]. Define F : [a, b]→ R by:

F (x) =
∫ x

a

f(t) dt,

for each x ∈ [a, b]. Then F is continuous on [a, b].

Theorem 5.18. Let fn ∈ R[a, b], and suppose that the sequence {fn}∞n=1 con-
verges uniformly to f . Then f ∈ R[a, b], and∫ b

a

f(x) dx = lim
n→∞

∫ b

a

fn(x) dx.

3. The Derivative

Definition 5.5. Let D ⊂ R, f : D → R, and a ∈ intD. Define the function
fa : D \ {a} → R by:

fa(x) =
f(x)− f(a)

x− a
.(5.1)

If the function fa has the limit m at a, we say that m is the derivative of f at a,
and write:

f ′(a) = lim
x→a

f(x)− f(a)
x− a

.(5.2)

If f has a derivative at a, we say that f is differentiable at a. If D is open, and f
is differentiable at each a ∈ D, then we say that f is differentiable on D.

Theorem 5.19. Let f : D → R be differentiable at a ∈ intD. Then f is con-
tinuous at a.

Theorem 5.20. Let f : D → R be differentiable at a ∈ intD, and let c ∈ R.
Then the function cf : D → R is differentiable at a, and

(cf)′(a) = cf ′(a).(5.3)

Theorem 5.21. Let f, g : D → R be differentiable at a ∈ intD. Then the
function f + g is differentiable at a, and

(f + g)′(a) = f ′(a) + g′(a).(5.4)

Theorem 5.22. Let f, g : D → R be differentiable at a ∈ intD. Then the
function fg is differentiable at a, and

(fg)′(a) = f ′(a) g(a) + f(a) g′(a).(5.5)
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Theorem 5.23. For each 1 6 k 6 n, let ck ∈ R, and let p : R → R be the
polynomial given by:

p(x) =
n∑
k=0

ck x
k.(5.6)

Let a ∈ R, then p is differentiable at a, and

p′(a) =
n∑
k=1

k cka
k−1.(5.7)

4. The Mean Value Theorem

Theorem 5.24. Let f : [a, b]→ R be continuous on [a, b], and differentiable on
(a, b). Suppose that there is c ∈ (a, b), such that f(c) = sup

(a,b)

f . Then f ′(c) = 0.

Theorem 5.25. Let f : [a, b]→ R be continuous on [a, b], and differentiable on
(a, b). Suppose also that f(a) = f(b) = 0. Then there is c ∈ (a, b) such that

f ′(c) = 0.(5.8)

Theorem 5.26. Let f : [a, b]→ R be continuous on [a, b], and differentiable on
(a, b). Then there is c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.(5.9)

Theorem 5.27. Let f : [a, b]→ R be continuous on [a, b], and differentiable on
(a, b). Suppose also that

f ′(c) = 0,(5.10)

for all c ∈ (a, b). Then, there is d ∈ R, such that f(x) = d for all x ∈ [a, b].

Theorem 5.28. Let f : [a, b]→ R be continuous on [a, b], and differentiable on
(a, b). Suppose also that

f ′(c) > 0,(5.11)

for each c ∈ (a, b). Then f is non-decreasing on [a, b].

5. Integration and Differentiation

Theorem 5.29. Let f ∈ R[a, b]. Define F : [a, b]→ R by:

F (x) =
∫ x

a

f(t) dt,

for x ∈ [a, b]. If f is continuous at c ∈ [a, b], then F is differentiable at c, and

F ′(c) = f(c).

Theorem 5.30. Let f ∈ R[a, b], and suppose there is a continuous function
F : [a, b]→ R such that F ′(x) = f(x) for each x ∈ (a, b). Then∫ b

a

f(x) dx = F (b)− F (a).


