Linux Kernel Module Programming
Guide

1999 Ori Pomerantz

Version 1.1.0, 26 April 1999.

This book is about writing Linux Kernel Modules. It is, hopefully, useful for pro-
grammers who know C and want to learn how to write kernel modules. It is written
as an ‘How-To’ instruction manual, with examples of all of the important techniques.

Although this book touches on many points of kernel design, it is not supposed
to fulfill that need — there are other books on this subject, both in print and in the
Linux documentation project.

You may freely copy and redistribute this book under certain conditions. Please
see the copyright and distribution statement.

Names of all products herein are used for identification purposes only and are trademarks
and/or registered trademarks of their respective owners. | make no claim of ownership or
corporate association with the products or companies that own them.

Copyright © 1999 Ori Pomerantz

Ori Pomerantz

Apt. #1032

2355 N Hwy 360

Grand Prairie

TX 75050

USA

E-mail: npg@i npl e-t ech. com

The Linux Kernel Module Programming Guide is afree book; you may reproduce and/or modify
it under the terms of version 2 (or, at your option, any later version) of the GNU General Public
License as published by the Free Software Foundation. Version 2 is enclosed with this document at
Appendix E.

This book is distributed in the hope it will be useful, but without any warranty; without even
the implied warranty of merchantability or fitness for a particular purpose.

The author encourages wide distribution of this book for personal or commercial use, provided
the above copyright notice remains intact and the method adheres to the provisions of the GNU
General Public License (see Appendix E). In summary, you may copy and distribute this book free
of charge or for a profit. No explicit permission is required from the author for reproduction of this
book in any medium, physical or electronic.

Note, derivative works and translations of this document must be placed under the GNU Genera
Public License, and the original copyright notice must remain intact. If you have contributed new
material to this book, you must make the source code (e.g., IATEX source) available for your revisions.
Please make revisions and updates avail able directly to the document maintainer, Ori Pomerantz. This
will alow for the merging of updates and provide consistent revisions to the Linux community.

If you plan to publish and distribute this book commercially, donations, royalties, and/or printed
copies are greatly appreciated by the author and the Linux Documentation Project. Contributing in
this way shows your support for free software and the Linux Documentation Project. If you have
questions or comments, please contact the address above.

Contents

Introduction
Who Should Read This
Note on the Style

031 Newinversion1l.0.1
0.3.2 Newinversion1.1.0
Acknowledgements
0.4.1 Forversion1.0.1
0.4.2 Forversion1.1.0

Hello, world

1.2 MultipleFileKernd Modules., .

Character DeviceFiles

2.1 Multiple Kernel Versions Source Files

The/proc File System

12
14
23

25

i CONTENTS
4 Using/proc For Input 32
ProcfsS.C 33
5 Talking to Device Files (writesand IOCTLYS) 43
chardev.C a4
chardev.h 55
IOCtL.C . . 57
6 Startup Parameters 61
ParamM.C e e e e e e 61
7 System Calls 65
syscall.C 67
8 Blocking Processes 73
SEEP.C . . . e e 74
9 Replacing printk’s 86
printk.C 86
10 Scheduling Tasks 90
sched.C. o 91
11 Interrupt Handlers 97
11.1 Keyboardsonthelntel Architecture 98
INLIPL.C 99
12 Symmetrical Multi—Processing 104
13 Common Pitfalls 106
A Changesbetween 2.0 and 2.2 107
B WhereFrom Here? 109
C Goodsand Services 110
C.1 GettingthisBook inPrint 110
D Showing Your Appreciation 111

E The GNU General Public License 113

Index 120

Chapter O

| ntroduction

So, you want to write akernel module. You know C, you' vewritten a number of normal
programs to run as processes, and now you want to get to where the real action is, to where
asinglewild pointer can wipe out your file system and a core dump means a reboot.

Well, welcome to the club. | once had awild pointer wipe an important directory under
DOS (thankfully, now it stands for the Dead Operating System), and | don’t seewhy living
under Linux should be any safer.

Warning: | wrote this and checked the program under versions 2.0.35 and 2.2.3 of the
kernel running on a Pentium. For the most part, it should work on other CPUs and on other
versions of the kernel, aslong as they are 2.0.x or 2.2.x, but | can’'t promise anything. One
exception is chapter 11, which should not work on any architecture except for x86.

0.1 Who Should Read This

This document is for people who want to write kernel modules. Although | will touch
on how things are done in the kernel in several places, that is not my purpose. There are
enough good sources which do a better job than | could have done.

Thisdocument is also for people who know how to write kernel modules, but have not
yet adapted to version 2.2 of the kernel. If you are such a person, | suggest you look at
appendix A to see all the differences| encountered while updating the examples. Thelist is
nowhere near comprehensive, but | think it covers most of the basic functionality and will
be enough to get you started.

Thekernel isagreat piece of programming, and | believethat programmers should read

at least some kernel source files and understand them. Having said that, | also believein
the value of playing with the system first and asking questions later. When | learn a new
programming language, | don't start with reading the library code, but by writing a small
‘hello, world’ program. | don’t see why playing with the kernel should be any different.

0.2 Noteonthe Style

I like to put as many jokes as possible into my documentation. I’'m writing this because
| enjoy it, and | assume most of you are reading this for the same reason. If you just want
to get to the point, ignore al the normal text and read the source code. | promise to put all
the important detailsin remarks.

0.3 Changes

0.3.1 Newinversion 1.0.1

1. Changes section, 0.3.

2. How tofind the minor device number, 2.

3. Fixed the explanation of the difference between character and devicefiles, 2
4. Makefilesfor Kernel Modules, 1.1.

5. Symmetrical Multiprocessing, 12.

6. A ‘Bad Ideas Chapter, 13.

0.3.2 Newinversion 1.1.0

1. Support for version 2.2 of the kernel, all over the place.
2. Multi kernel version sourcefiles, 2.1.

3. Changesbetween 2.0 and 2.2, A.

4. Kernel Modulesin Multiple Source Files, 1.2.

5. Suggestion not to let modules which mess with system callsbermmod’ed, 7.

0.4 Acknowledgements

I'd like to thank Yoav Weiss for many helpful ideas and discussions, as well as for
finding mistakes within this document before its publication. Of course, any remaining
mistakes are purely my fault.

The TpX skeleton for this book was shamelessly stolen from the * Linux Installation and
Getting Started’ guide, where the TeX work was done by Matt Welsh.

My gratitude to Linus Torvalds, Richard Stallman and all the other people who made it
possible for me to run a high quality operating system on my computer and get the source
code goes without saying (yeah, right — then why did | say it?).

0.4.1 For version1.0.1

| couldn’t list everybody who e-mailed me here, and if I've left you out | apologize in
advance. The following people were specially helpful:

e Frodo L ooijaard from the Netherlands For a host of useful suggestions, and infor-
mation about the 2.1.x kernels.

e Stephen Judd from New Zealand Spelling corrections.
e Magnus Ahltorp from Sweden Correcting a mistake of mine about the difference
between character and block devices.
0.4.2 For version 1.1.0

e Emmanuel Papirakis from Quebec, Canada For porting al of the examples to
version 2.2 of the kerndl.

¢ Frodo Looijaard from the Netherlands For telling me how to create amultiplefile
kernel module (1.2).

Of course, any remaining mistakes are my own, and if you think they make the book
unusable you're welcome to apply for afull refund of the money you paid me for it.

Chapter 1

Hello, world

When the first caveman programmer chiseled the first program on the walls of the first
cave computer, it was a program to paint the string ‘Hello, world’ in Antelope pictures.
Roman programming textbooks began with the ‘Salut, Mundi’ program. | don't know
what happens to people who break with this tradition, and | think it's safer not to find out.

A kernel module has to have at least two functions: i ni t _-nodul e which is caled
when the module is inserted into the kernel, and cl eanup_nmodul e whichis called just
before it is removed. Typicaly, i ni t _nodul e either registers a handler for something
with the kernel, or it replaces one of the kernel function with its own code (usually code
to do something and then call the original function). The cl eanup_nodul e function is
supposed to undo whatever i ni t _nodul e did, so the module can be unloaded safely.

hello.c

/* hello.c
* Copyright (C) 1998 by Ori Ponerantz

*

* "Hello, world" - the kernel nodul e version.
*/

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */

#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/nodver si ons. h>
#endi f

/* Initialize the nodule */
int init_nodul e()
{
printk("Hello, world - this is the kernel speaking\n");

/* If we return a non zero value, it neans that
* init_nodule failed and the kernel nodul e

* can’'t be | oaded */

return O;

/* Ceanup - undid whatever init_nmodule did */
voi d cl eanup_nodul e()

{

printk("Short is the life of a kernel nodule\n");

}

1.1 Makefilesfor Kernel Modules

A kernel module is not an independant executable, but an object file which will be
linked into the kernel in runtime. As a result, they should be compiled with the - ¢ flag.
Also, all kernel modules have to be compiled with certain symbols defined.

__KERNEL __ — This tells the header files that this code will be run in kernel mode,
not as part of a user process.

MODUL E — Thistells the header files to give the appropriate definitions for akernel
module.

LI NUX — Technically speaking, thisis not necessary. However, if you ever want
to write a serious kernel module which will compile on more than one operating
system, you'll be happy you did. Thiswill allow you to do conditional compilation
on the parts which are OS dependant.

There are other symbols which have to be included, or not, depending on the flags the
kernel was compiled with. If you're not sure how the kernel was compiled, look it up in
/fusr/include/linux/config.h

__SMP__ — Symmetrical MultiProcessing. This has to be defined if the kernel was
compiled to support symmetrical multiprocessing (even if it's running just on one
CPU). If you use Symmetrical MultiProcessing, there are other things you need to
do (see chapter 12).

CONFI GMODVERSI ONS — If CONFIG_.MODVERSIONS was enabled, you
need to have it defined when compiling the kernel module and and to include

/usr/include/linux/mdversions. h. Thiscan aso be done by the code
itself.

M akefile

Makefile for a basic kernel nodul e

CC=gcc
MODCFLAGS : = -Vl |l -DMODULE -D__KERNEL__ - DLI NUX

hell o.0: hello.c /usr/include/linux/version.h
$(CC $(MIDCFLAGS) -c hello.c

echo insnod hello.o to turn it on

echo rmmod hello to turn if off

echo

echo X and kernel progranm ng do not mx.

echo Do the insnmod and rnmmod from out side X

So, now the only thing left isto su to root (you didn’t compile this as root, did you?
Living on the edge'...), and then i nsnod hel | o and r mod hel | o to your heart’s
content. While you do it, notice your new kernel modulein/ pr oc/ nodul es.

By the way, the reason why the Makefile recommends against doing i nsnod from X
is because when the kernel has a message to print with pri nt k, it sendsit to the console.
When you don't use X, it just goes to the virtual terminal you're using (the one you chose
with Alt-F<n>) and you see it. When you do use X, on the other hand, there are two
possibilities. Either you have a console open with xt er m - C, in which case the output
will be sent there, or you don't, in which case the output will go to virtual terminal 7 — the
one ‘covered by X.

If your kernel becomes unstable you're likelier to get the debug messages without X.
Outsideof X, pr i nt k goesdirectly from the kernel to the console. In X, on the other hand,
pri nt k'sgotoauser mode process (xt er m - C). When that process receives CPU time,
it issupposed to send it to the X server process. Then, when the X server receivesthe CPU,
it is supposed to display it — but an unstable kernel usually means that the system is about
to crash or reboot, so you don’t want to delay the error messages, which might explain to
you what went wrong, for longer than you haveto.

1.2 Multiple File Kernel Modules

Sometimes it makes sense to divide a kernel module between severa source files. In
this case, you need to do the following:

1. Inall the source files but one, add the line#def i ne __NO.VERSI ON__. Thisisim-
portant because nodul e. h normally includesthe definition of ker nel _ver si on,
a global variable with the kernel version the module is compiled for. If you need
ver si on. h, you need to include it yourself, because nodul e. h won't do it for
you with __NO_VERSI ON__.

2. Compileall the sourcefiles as usual.

3. Combine all the object
filesinto asingle one. Under x86, doitwithld -m el f_.i 386 -r -0 <nane

1Thereason | prefer not to compile asroot isthat the least done as root the safer the box is. | work in computer
security, so I’'m paranoid

of nodul e>. 0 <1st source file>. 0 <2nd source file>.o.
Here's an example of such akernel module.

start.c

[* start.c
* Copyright (C) 1999 by Oi Pomerantz

* "Hello, world" - the kernel nodul e version
* This file includes just the start routine
*/

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/nodver si ons. h>
#endi f

/* Initialize the nodule */
int init_nodul e()

{
printk("Hello, world - this is the kernel speaking\n");

/* If we return a non zero value, it nmeans that
* init_nodule failed and the kernel nodul e

* can’'t be | oaded */

return O;

stop.c

/* stop.c
* Copyright (C 1999 by Oi Ponerantz

* "Hello, world" - the kernel nmodule version. This
* file includes just the stop routine.
*/

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */

#define _ NO VERSI ON /[* This isn't "the" file
* of the kernel nodule */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

#i ncl ude <linux/version.h> /* Not included by
* nodul e. h because
* of the _ NO VERSION _ */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/ nodver si ons. h>
#endi f

/* Ceanup - undid whatever init_nodule did */
voi d cl eanup_nodul e()

{

printk("Short is the life of a kernel nodule\n");

M akefile

Makefile for a nultifile kernel nodule

CC=gcc
MODCFLAGS : = -Vl | -DMODULE -D__KERNEL_ - DLI NUX

hell 0.0: start.o stop.o
ld -melf_i386 -r -0 hello.o start.o stop.o

start.o: start.c /usr/include/linux/version.h
$(CC) $(MODCFLAGS) -c start.c

stop.o: stop.c /usr/include/linux/version.h
$(CC $(MOIDCFLAGS) -c stop.c

Chapter 2

Character Device Files

So, now we're bold kernel programmers and we know how to write kernel modules to
do nothing. We feel proud of ourselves and we hold our heads up high. But somehow we
get the feeling that something is missing. Catatonic modules are not much fun.

There are two major ways for a kernel module to talk to processes. One is through
device files (like the files in the / dev directory), the other is to use the proc file system.
Since one of the major reasons to write something in the kernel is to support some kind of
hardware device, we'll begin with devicefiles.

The original purpose of devicefilesisto allow processes to communicate with device
driversin the kernel, and through them with physical devices (modems, terminals, etc.).
The way thisisimplemented is the following.

Each device driver, which is responsible for some type of hardware, is assigned
its own major number. The list of drivers and their mgjor numbers is available in
/ proc/ devi ces. Each physical device managed by a device driver is assigned a mi-
nor number. The/ dev directory is supposed to include a special file, called adevicefile,
for each of those devices, whether or not it'sreally installed on the system.

For example, if youdol s -1 /dev/ hd[ab] *, you'll see all of the IDE hard disk
partitions which might be connected to a machine. Notice that all of them use the same
major number, 3, but the minor number changes from one to the other Disclaimer: This
assumes you're using a PC architecture. | don’t know about devices on Linux running on
other architectures.

When the system was installed, al of those device files were created by the nknod
command. There's no technical reason why they have to bein the/ dev directory, it'sjust

12

a useful convention. When creating a device file for testing purposes, as with the exercise
here, it would probably make more sense to place it in the directory where you compile the
kernel module.

Devicesare divided into two types: character devicesand block devices. The difference
is that block devices have a buffer for requests, so they can choose by which order to
respond to them. Thisisimportant in the case of storage devices, where it's faster to read
or write sectors which are close to each other, rather than those which are further apart.
Another difference is that block devices can only accept input and return output in blocks
(whose size can vary according to the device), whereas character devices are allowed to use
as many or asfew bytes asthey like. Most devicesin the world are character, because they
don’t need this type of buffering, and they don’t operate with a fixed block size. You can
tell whether a device file isfor a block device or a character device by looking at the first
character intheoutput of I s -1 . If it's‘b’ thenit'sablock device, and if it's‘c’ thenit's
acharacter device.

This module is divided into two separate parts: The module part which regis-
ters the device and the device driver part. The i ni t _nodul e function calls nod-
ul eregi st er _chrdev to add the device driver to the kernel’s character device driver
table. It also returns the major number to be used for the driver. The cl eanup_nodul e
function deregisters the device.

This (registering something and unregistering it) is the general functionality of those
two functions. Things in the kernel don't run on their own initiative, like processes, but
are called, by processes viasystem calls, or by hardware devices viainterrupts, or by other
parts of the kernel (simply by calling specific functions). As a result, when you add code
to the kernel, you're supposed to register it as the handler for a certain type of event and
when you removeit, you' re supposed to unregister it.

The device driver proper is composed of the four device_<action> functions, which
are called when somebody tries to do something with a device file which has our major
number. The way the kernel knowsto call themisviathefi | e_oper ati ons structure,
Fops, which was given when the device was registered, which includes pointers to those
four functions.

Another point we need to remember here is that we can’t allow the kernel module to
be r moded whenever root feels like it. The reason isthat if the device file is opened by
a process and then we remove the kernel module, using the file would cause a call to the
memory location where the appropriate function (read/write) used to be. If we're lucky, no
other code was |oaded there, and we' |l get an ugly error message. If we're unlucky, another
kernel module was loaded into the same location, which means a jump into the middle of

another function within the kernel. The results of this would be impossible to predict, but
they can’t be positive.

Normally, when you don’ t want to allow something, you return an error code (anegative
number) from the function which is supposed to do it. With cl eanup_nodul e that is
impossible because it's a void function. Once cl eanup_nodul e iscalled, the moduleis
dead. However, there is a use counter which counts how many other kernel modules are
using this kernel module, called the reference count (that's the last number of the linein
/ proc/ nodul es). If this number isn’t zero, r nmod will fail. The modul€’s reference
count is available in the variable nod_use_count _. Since there are macros defined for
handling this variable (MOD_I NC_USE_COUNT and MOD_DEC_USE_COUNT), we prefer to
use them, rather than nod_use_count _ directly, so we'll be safe if the implementation
changesin the future.

chardev.c

/* chardev.c

* Copyright (C) 1998-1999 by Ori Pomerantz
* Create a character device (read only)

*/

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/nodversi ons. h>
#endi f

/* For character devices */
#include <linux/fs. h> /* The character device

* definitions are here */
#i ncl ude <linux/wapper.h> /* A wapper which does

* next to nothing at

* at present, but may

* help for conpatibility
* with future versions

* of Linux */

/* In 2.2.3 /usr/include/linux/version.h includes
* a macro for this, but 2.0.35 doesn’'t - so | add
* it here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢c) ((a)*65536+(b)*256+(c))
#endi f

/* Conditional conpilation. LINUX VERSI ON CODE is
* the code (as per KERNEL_VERSI ON) of this version. */
#if LI NUX_VERSI ON_CODE > KERNEL_VERSI ON(2, 2, 0)
#i ncl ude <asnfuaccess.h> /* for put_user */
#endi f

#defi ne SUCCESS 0

/* DeVI ce mcl al’athﬂS EE R R I I I I R R O */

/* The name for our device, as it wll appear
* in /proc/devices */
#def i ne DEVI CE_NAME "char _dev"

/* The maxi mum | ength of the nmessage fromthe device */
#def i ne BUF_LEN 80

/* I's the device open right now? Used to prevent
* concurent access into the same device */
static int Device Open = 0;

/* The message the device will give when asked */
static char Message[BUF_LEN;

/* How far did the process readi ng the nessage

* get? Useful if the nessage is larger than the size
* of the buffer we get to fill in device_read. */
static char *Message Ptr

/* This function is called whenever a process
* attenpts to open the device file */
static int device_open(struct inode *inode,
struct file *file)

{

static int counter = O;

#i f def DEBUG
printk ("device_open(%, %)\n", inode, file);
#endi f

/* This is how you get the minor device nunber in
* case you have nore than one physical device using
* the driver. */

printk("Device: %d. %d\n",

i node->i _rdev >> 8, inode->i _rdev & OxFF);

/* W don't want to talk to two processes at the
* sane tinme */
i f (Device_QOpen)

return -EBUSY;

/* If this was a process, we would have had to be

* nore careful here.

* |n the case of processes, the danger woul d be
* that one process mght have check Devi ce_Open
* and then be replaced by the schedual er by anot her
* process which runs this function. Then, when the
* first process was back on the CPU, it would assune
* the device is still not open.

* However, Linux guarantees that a process won't be
* replaced while it is running in kernel context.

* I n the case of SMP, one CPU m ght increnent
* Device_Open while another CPU is here, right after
* the check. However, in version 2.0 of the

* kernel this is not a problem because there’'s a | ock

* to guarantee only one CPU will be kernel nodule at
* the same tinme. This is bad in terms of
* performance, so version 2.2 changed it.

* Unfortunately, | don’t have access to an SMP box
* to check how it works with SMP.
*/

Devi ce_QOpen++;

/* Initialize the message. */
sprintf(Message,
“If I told you once, | told you % tines - %",
count er ++,
"Hell o, world\n");
/* The only reason we're allowed to do this sprintf
* is because the nmaxi mum | ength of the nessage
* (assuming 32 bit integers - up to 10 digits
* with the minus sign) is less than BUF_LEN, which
* is 80. BE CAREFUL NOT TO OVERFLOW BUFFERS,
* ESPECI ALLY I N THE KERNEL!!!

*/
Message_ Ptr = Message;

/* Make sure that the nodule isn't renoved while
* the file is open by incrementing the usage count
* (the nunber of opened references to the nodule, if
* it’s not zero rmmod will fail)
*/
MOD_| NC_USE_COUNT;

ret urn SUCCESS;

/* This function is called when a process cl oses the
* device file. It doesn’t have a return value in
* version 2.0.x because it can't fail (you nust ALWAYS
* be able to close a device). In version 2.2.x it is
* allowed to fail - but we won't let it.
*/
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
static int device_rel ease(struct inode *inode,
struct file *file)
#el se
static void device_rel ease(struct inode *inode,
struct file *file)
#endi f
{
#i f def DEBUG
printk ("device_rel ease(%, %)\n", inode, file);
#endi f

/* W're now ready for our next caller */
Devi ce_QOpen --;

/* Decrement the usage count, otherw se once you

* opened the file you' Il never get rid of the nodule.
*/

MOD_DEC _USE_COUNT;

#if LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
return O;
#endi f

}

/* This function is called whenever a process which
* have already opened the device file attenpts to
* read fromit. */

#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)

static ssize_t device_read(struct file *file,
char *buffer, /* The buffer to fill with data */
size_t length, /* The length of the buffer */
|off t *offset) /* Qur offset in the file */

#el se

static int device_read(struct inode *inode,

struct file *file,

char *buffer, /* The buffer to fill with
* the data */
int |ength) /* The length of the buffer
* (mustn't wite beyond that!) */
#endi f
{

/* Number of bytes actually witten to the buffer */
int bytes read = 0;

/* If we're at the end of the message, return O
* (which signifies end of file) */
if (*Message Ptr == 0)

return O;

/* Actually put the data into the buffer */
while (length & *Message Ptr) {

/* Because the buffer is in the user data segnent,
* not the kernel data segnent, assignnent woul dn’t
* work. Instead, we have to use put_user which
* copies data fromthe kernel data segment to the
* user data segnent. */

put user(*(Message Ptr++), buffer++);

length --;
bytes_read ++;

}

#i f def DEBUG
printk ("Read % bytes, % left\n",
bytes_read, |ength);
#endi f

/* Read functions are supposed to return the nunber
* of bytes actually inserted into the buffer */
return bytes read;

/* This function is called when sonebody tries to wite
* into our device file - unsupported in this exanple.
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
static ssize_t device_ wite(struct file *file,
const char *buffer, /* The buffer */
size_ t length, /* The length of the buffer */

*/

loff _t *offset) /* Qur offset in the file */
#el se
static int device wite(struct inode *inode,
struct file *file,
const char *buffer,
int |ength)
#endi f

{
return -El NVAL;

/* '\/bdule mcl aratIOHS KRR b S b S I R R R I */

/* The nmjor device nunber for the device. This is
* global (well, static, which in this context is gl oba
*within this file) because it has to be accessible
* both for registration and for rel ease. */

static int Mjor;

/* This structure will hold the functions to be
* called when a process does sonething to the device
* we created. Since a pointer to this structure is
* kept in the devices table, it can't be local to
* init_nodule. NULL is for uninplenented functions. */

struct file_operations Fops = {
NULL, /* seek */
devi ce_read,
device write,
NULL, /* readdir */
NULL, /* select */
NULL, /[* ioctl */

#i

NULL, /* mmap */

devi ce_open,

f LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
NULL, /* flush */

#endi f

}s

/*

device release /* a.k.a. close */

Initialize the nodule - Register the character device */

int init_nodul e()

{

/* Register the character device (atleast try) */
Maj or = nodul e_regi ster_chrdev(O0,
DEVI CE_NAVE
&Fops) ;

/* Negative values signify an error */
if (Mpjor < 0) {
printk ("% device failed with %\ n",
"Sorry, registering the character”,
Maj or) ;
return Mjor;

}

printk ("% The major device nunber is %.\n"

"Regi steration is a success.",

Maj or) ;
printk ("If you want to talk to the device driver,\n");
printk ("you Il have to create a device file. \n");
printk ("W suggest you use:\n");
printk ("mknod <name> c¢ % <mi nor>\n", Major);
printk ("You can try different mnor nunbers %",

"and see what happens.\n");

return O;

/* Ceanup - unregister the appropriate file from/proc */
voi d cl eanup_nodul e()

{

int ret;

/* Unregi ster the device */
ret = modul e_unregi ster_chrdev(Major, DEVI CE_NAME);

/* If there's an error, report it */
if (ret <0)
printk("Error in unregister_chrdev: %l\n", ret);

2.1 MultipleKernel Versions Source Files

The system calls, which are the magjor interface the kernel shows to the processes,
generally stay the same across versions. A new system call may be added, but usually the
old oneswill behave exactly likethey used to. Thisisnecessary for backward compatibility
— anew kernel version is not supposed to break regular processes. In most cases, the
device fileswill also remain the same. On the other hand, the internal interfaces within the
kernel can and do change between versions.

The Linux kernel versions are divided between the stable versions (n.<even
number>.m) and the development versions (n.<odd number>.m). The development ver-
sions include all the cool new ideas, including those which will be considered a mistake,
or reimplemented, in the next version. As aresult, you can't trust the interface to remain
the same in those versions (which is why | don't bother to support them in this book, it's
too much work and it would become dated too quickly). In the stable versions, on the other
hand, we can expect the interface to remain the same regardless of the bug fix version (the
m number).

This version of the MPG includes support for both version 2.0.x and version 2.2.x
of the Linux kernel. Since there are differences between the two, this requires condi-

tional compilation depending on the kernel version. The way to do this to use the macro
LI NUX_VERSI ON_CCDE. In version ab.c of the kernel, the value of this macro would
be 216a + 28b 4 ¢. To get the value for a specific kernel version, we can use the KER-
NEL _VERSI ON macro. Sinceit’s not defined in 2.0.35, we define it ourselvesif necessary.

Chapter 3

The/proc File System

In Linux there is an additional mechanism for the kernel and kernel modules to send
information to processes — the / pr oc file system. Originally designed to alow easy
access to information about processes (hence the name), it is now used by every bit of the
kernel which has something interesting to report, such as/ pr oc/ nodul es which hasthe
list of modulesand / pr oc/ mem nf o which has memory usage statistics.

The method to use the proc file system is very similar to the one used with device
drivers — you create a structure with all the information needed for the / pr oc file, in-
cluding pointers to any handler functions (in our case there is only one, the one called
when somebody attempts to read from the / pr oc file). Then, i ni t _-nodul e registers
the structure with the kernel and cl eanup_nodul e unregistersit.

The reason we use pr oc_r egi st er _dynami ¢! is because we don’t want to deter-
mine the inode number used for our file in advance, but to allow the kernel to determine it
to prevent clashes. Normal file systems are located on a disk, rather than just in memory
(which iswhere/ pr oc is), and in that case the inode number is a pointer to a disk loca-
tion where thefile'sindex-node (inode for short) islocated. Theinode containsinformation
about thefile, for exampl e thefile's permissions, together with a pointer to the disk location
or locations where the file's data can be found.

Because we don't get called when the file is opened or closed, there's no where for us
to put MOD_lI NC_USE_COUNT and MOD_DEC_USE_CQUNT in this module, and if the file
is opened and then the module is removed, there’'s no way to avoid the consegquences. In
the next chapter we'll see a harder to implement, but more flexible, way of dealing with

Linversion 2.0, in version 2.2 thisis done for us automatically if we set the inode to zero.

25

/ pr oc fileswhich will allow usto protect against this problem as well.

procfs.c
/* procfs.c - «create a "file" in /proc
* Copyright (C) 1998-1999 by Ori Pomerantz
*/

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/ nodver si ons. h>
#endi f

/* Necessary because we use the proc fs */
#i ncl ude <linux/proc_fs. h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢c) ((a)*65536+(b)*256+(c))
#endi f

/* Put data into the proc fs file.

Argunent s

1. The buffer where the data is to be inserted, if
you decide to use it.

2. Apointer to a pointer to characters. This is
useful if you don't want to use the buffer
al | ocated by the kernel

3. The current position in the file.

The size of the buffer in the first argunent.

5. Zero (for future use?).

>

Usage and Return Val ue

If you use your own buffer, like |I do, put its
| ocation in the second argunent and return the
nunber of bytes used in the buffer.

A return val ue of zero neans you have no further
information at this time (end of file). A negative
return value is an error condition

For More Information

The way | discovered what to do with this function
wasn’'t by readi ng docunentation, but by reading the
code which used it. | just |ooked to see what uses
the get _info field of proc dir_entry struct (I used a
conbination of find and grep, if you re interested),
and | sawthat it is used in <kernel source
directory>/fs/proc/array.c.

If sonething is unknown about the kernel, this is
usually the way to go. In Linux we have the great

advant age of having the kernel source code for
free - use it.
*/
int procfile_read(char *buffer,
char **buffer_|ocation,
off t offset,
int buffer | ength,

int zero)

{
int len; /* The nunber of bytes actually used */
/* This is static so it will still be in nmenory

* when we | eave this function */
static char ny_buffer[80];

static int count = 1;

/* We give all of our information in one go, so if the
* user asks us if we have nore information the
* answer should al ways be no.

* This is inportant because the standard read
* function fromthe library would continue to issue
* the read systemcall until the kernel replies

* that it has no nore information, or until its
* puffer is filled.
* [
if (offset > 0)
return O;

/* Fill the buffer and get its length */
len = sprintf(my_buffer
"For the %% time, go away!\n", count,
(count % 100 > 10 && count % 100 < 14) ? "th"
(count %10 == 1) ? "st"
(count %10 == 2) ? "nd"

(count %10 == 3) ? "rd" : "th");
count ++;

/* Tell the function which called us where the
* puffer is */
*puf fer Il ocation = my_buffer

/* Return the length */
return | en;

struct proc_dir_entry Qur_Proc_File =
{
0, /* Inode nunmber - ignore, it will be filled by
* proc_register[_dynamc] */
4, [* Length of the file nanme */
"test", /* The file name */
SIFREG| SIRUG /* File nmobde - this is a regul ar
* file which can be read by its
* owner, its group, and everybody
* else */
1, /* Nunber of links (directories where the
* file is referenced) */
0, O, [/* The uid and gid for the file - we give it
* to root */
80, /* The size of the file reported by |Is. */
NULL, /* functions which can be done on the inode
* (linking, removing, etc.) - we don't
* support any. */
procfile read, /* The read function for this file,
* the function called when sonebody
* tries to read sonething fromit. */
NULL /* We could have here a function to fill the
* file's inode, to enable us to play with
* perm ssions, ownership, etc. */

/* Initialize the nodule - register the proc file */
int init_nodul e()
{
/* Success if proc_register[_dynamic] is a success,
* failure otherw se. */
#if LI NUX_VERSI ON_CODE > KERNEL_ VERSI O\(2, 2, 0)
/* In version 2.2, proc_register assign a dynanic
* inode nunmber automatically if it is zero in the
* structure , so there’s no nore need for
* proc_register_dynamc
*/
return proc_register(&rroc_root, &ur_ Proc_File);
#el se

return proc_register_dynani c(&roc_root, &ur_ Proc_File);

#endi f

/* proc_root is the root directory for the proc

* fs (/proc). This is where we want our file to be
* | ocat ed.

*/

/* Ceanup - unregister our file from/proc */
voi d cl eanup_nodul e()

{

proc_unregi ster(&roc_root, Qur_Proc_File.low.ino);

TOC

Chapter 4

Using /proc For I nput

So far we have two ways to generate output from kernel modules: we can register a
device driver and nknod a device file, or we can create a/ pr oc file. This allows the
kernel module to tell us anything it likes. The only problem is that thereis no way for usto
talk back. The first way we'll send input to kernel modules will be by writing back to the
/ pr oc file.

Because the proc filesystem was written mainly to allow the kernel to report its situa-
tion to processes, there are no specia provisions for input. The pr oc_di r _ent ry struct
doesn’t include a pointer to an input function, the way it includes a pointer to an output
function. Instead, to writeinto a/ pr oc file, we need to use the standard filesystem mech-
anism.

In Linux there is a standard mechanism for file system registration. Since every file
system has to have its own functions to handle inode and file operations!, there is a special
structure to hold pointers to all those functions, st r uct i node_oper ati ons, which
includes a pointer to st ruct fil e_operati ons. In/proc, whenever we register a
new file, we're allowed to specify which st ruct i node_oper at i ons will beused for
access to it. Thisisthe mechanism we use, astruct i node_operati ons whichin-
cludesapointertoast ruct fil e_operati ons whichincludes pointersto our nod-
ul e_i nput and nodul e_out put functions.

It'simportant to note that the standard roles of read and write are reversed in the kernel.
Read functions are used for output, whereas write functions are used for input. The reason

1The difference between the two is that file operations deal with thefile itself, and inode operations deal with
ways of referencing thefile, such ascreating linksto it.

32

for that isthat read and writerefer to the user’s point of view — if aprocess reads something
from the kernel, then the kernel needs to output it, and if a process writes something to the
kernel, then the kernel receivesit asinput.

Another interesting point here is the nodul e_per ni ssi on function. This function
is called whenever a process tries to do something with the / pr oc file, and it can decide
whether to allow access or not. Right now it isonly based on the operation and the uid of the
current used (asavailablein cur r ent , apointer to a structure which includes information
on the currently running process), but it could be based on anything we like, such as what
other processes are doing with the same file, the time of day, or the last input we received.

The reason for put _user and get _user isthat Linux memory (under Intel archi-
tecture, it may be different under some other processors) is segmented. This means that
a pointer, by itself, does not reference a unique location in memory, only alocation in a
memory segment, and you need to know which memory segment it isto be able to use it.
Thereis one memory segment for the kernel, and one of each of the processes.

The only memory segment accessible to a processis its own, so when writing regular
programs to run as processes, there’s no need to worry about segments. When you write a
kernel module, normally you want to access the kernel memory segment, which is handled
automatically by the system. However, when the content of a memory buffer needs to be
passed between the currently running process and the kernel, the kernel function receives
a pointer to the memory buffer which is in the process segment. The put _user and
get _user macros alow you to access that memory.

procfs.c

/* procfs.c - create a "file" in /proc, which allows
* both input and output. */

/* Copyright (C) 1998-1999 by Oi Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/nodversi ons. h>
#endi f

/* Necessary because we use proc fs */
#i ncl ude <linux/proc_fs. h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢) ((a)*65536+(b)*256+(c))
#endi f

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
#i ncl ude <asnfuaccess.h> [* for get_user and put_user */
#endi f

/* The nodul e’ s file functions ***x***kxxkkkxxkkkxrikx */

/* Here we keep the | ast nessage received, to prove
* that we can process our input */

#defi ne MESSAGE_LENGTH 80

static char Message[MESSAGE LENGTH];

/* Since we use the file operations struct, we can’'t

* use the special proc output provisions - we have to

* use a standard read function, which is this function */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)

static ssize_t nodul e_out put (

struct file *file, /* The file read */

char *buf, /* The buffer to put data to (in the
* user segment) */

size_t len, [/* The length of the buffer */

loff_t *offset) /* Ofset inthe file - ignore */

#el se
static int nodul e_out put(

struct inode *inode, /* The inode read */

struct file *file, /* The file read */

char *buf, /* The buffer to put data to (in the
* user segnent) */

int len) /* The length of the buffer */

#endi f

{

static int finished = O;
int i;
char message[MESSAGE LENGTH+30] ;

/* We return 0 to indicate end of file, that we have
* no nore informati on. Ot herw se, processes will
* continue to read fromus in an endl ess | oop. */
if (finished) {

finished = 0;

return O;

/* W use put_user to copy the string fromthe kernel’'s
* menory segnent to the nmenory segnent of the process
* that called us. get _user, BTW is
* used for the reverse. */

sprintf(message, "Last input: %",

for(i=0; i<len && nessage[i]; i ++)

put _user(message[i], buf+i);

Message) ;

/* Notice, we assunme here that the size of the message
* is belowlen, or it will be received cut. In a real
* |ife situation, if the size of the nessage is |ess
* than len then we’'d return |l en and on the second call

* start filling the buffer with the len+l th byte of
* the nessage. */

finished = 1;

return i; /* Return the number of bytes "read" */

/* This function receives input fromthe user when the
* user wites to the /proc file. */

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)

static ssize_t nodul e_input (

struct file *file, /* The file itself */

const char *buf, [* The buffer with input */

size_t length, /[* The buffer’s length */

lof f_t *offset) /* offset to file - ignore */
#el se

static int nodul e_input(
struct inode *inode, /* The file's inode */

struct file *file, /[* The file itself */
const char *buf, /[* The buffer with the input */
int |ength) /[* The buffer’s length */
#endi f
{
int i;

/* Put the input into Message, where nodul e_out put
*wWwill later be able to use it */
for(i=0; i<MESSAGE LENGTH 1 && i<length; i++)
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
get _user (Message[i], buf+i);
/* In version 2.2 the semantics of get_user changed,

* it not longer returns a character, but expects a

* variable to fill up as its first argunent and a
* user segnent pointer to fill it fromas the its
* second.

* The reason for this change is that the version 2.2
* get _user can also read an short or an int. The way
* it knows the type of the variable it should read

* is by using sizeof, and for that it needs the

* variable itself.

*/
#el se
Message[i] = get _user(buf+i);
#endi f
Message[i] = '\0"; /* we want a standard, zero

* termnated string */

/* W& need to return the nunber of input characters
* used */
return i;

/* This function decides whether to allow an operation
* (return zero) or not allowit (return a non-zero
* which indicates why it is not allowed).

* The operation can be one of the foll ow ng val ues:

- Execute (run the "file" - meaningless in our case)
- Wite (input to the kernel nopdule)

- Read (output fromthe kernel nodul e)

*
AN O

* This is the real function that checks file
* perm ssions. The permissions returned by Is -1 are
* for referece only, and can be overridden here.

*/
static int nodul e _perm ssion(struct inode *inode, int op)
{
/* W allow everybody to read from our nodul e, but
* only root (uid 0) may wite to it */
if (op ==4]| (op ==2 && current->euid == 0))
return O;

[* If it’s anything el se, access is denied */
return - EACCES;

/* The file is opened - we don’t really care about
* that, but it does nean we need to increnent the
* nmodul e’ s reference count. */
i nt nodul e_open(struct inode *inode, struct file *file)

{
MOD_| NC_USE_COUNT;

return O;

/* The file is closed - again, interesting only because

* of the reference count. */
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)

i nt nodul e_cl ose(struct inode *inode, struct file *file)
#el se
voi d nmodul e_cl ose(struct inode *inode, struct file *file)
#endi f

{
MOD_DEC_USE_COUNT;

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
return 0; /* success */
#endi f

}

/* Structures to register as the /proc file, with
* pointers to all the relevant functions. *****x*x%xxx x/

/* File operations for our proc file. This is where we
* place pointers to all the functions called when
* sonebody tries to do something to our file. NULL
* means we don’t want to deal with sonething. */
static struct file_operations File_Ops_4 Qur_Proc_File =
{
NULL, /* Iseek */
nmodul e_output, /* "read" fromthe file */
nmodul e_i nput , [* "wite" to the file */
NULL, /* readdir */
NULL, /* select */
NULL, /* ioctl */
NULL, /* mmap */
nodul e_open, /* Sonmebody opened the file */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
NULL, /* flush, added here in version 2.2 */
#endi f
nmodul e_cl ose, /* Somebody closed the file */
/* etc. etc. etc. (they are all given in
* Jusr/include/linux/fs.h). Since we don’t put
* anything here, the systemw || keep the default
* data, which in Unix is zeros (NULLs when taken as
* pointers). */

/* Inode operations for our proc file. W need it so
* we'll have sone place to specify the file operations
* structure we want to use, and the function we use for
* permissions. It’'s also possible to specify functions
* to be called for anything else which could be done to
* an inode (although we don't bother, we just put
* NULL). */
static struct inode_operations Inode Ops_4 Qur_Proc_File =

{

&File Ops_4 Qur_Proc_File,

NULL, /* create */

NULL, /* | ookup */

NULL, /* link */

NULL, /* unlink */

NULL, /* symink */

NULL, /* nkdir */

NULL, /* rmdir */

NULL, /* nknod */

NULL, /* renane */

NULL, /* readlink */

NULL, /* follow link */

NULL, /* readpage */

NULL, /* writepage */

NULL, /* bmap */

NULL, /* truncate */

nmodul e_perm ssion /* check for perm ssions */

/* Directory entry */
static struct proc_dir_entry Qur_Proc_File =
{
0, /* Inode nunber - ignore, it will be filled by
* proc_register[_dynanmic] */

7, I* Length of the file nane */

"rwtest", /* The file name */

SIFREG| S IRUGO | S | WSR

/* File mode - this is a regular file which

* can be read by its owner, its group, and everybody
* else. Also, its owner can wite to it.

* Actually, this field is just for reference, it’'s
* modul e_perni ssion that does the actual check. It
* could use this field, but in our inplenentation it
* doesn't, for sinplicity. */
1, /* Nunmber of links (directories where the
* file is referenced) */
0, 0, /* The uid and gid for the file -
* we give it to root */
80, /* The size of the file reported by |Is. */
& node _Ops_4 Qur _Proc_File,
/* A pointer to the inode structure for
* the file, if we need it. In our case we
* do, because we need a wite function. */
NULL
/* The read function for the file. Irrelevant,
* because we put it in the inode structure above */

b

/* Module initialization and cl eanup *****x**xkkxdkrkkrxs /[

/* Initialize the nodule - register the proc file */
int init_nodul e()
{
/* Success if proc_register[_dynamic] is a success,
* failure otherw se */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
/* In version 2.2, proc_register assign a dynanic

* inode nunmber automatically if it is zero in the
* structure , so there’s no nore need for
* proc_register_dynamc

*/

return proc_register(&rroc_root, &ur_ Proc_File);

#el se

return proc_register_dynanic(&roc_root, &ur Proc File);

#endi f
}

/* deanup -

unregi ster our file from/proc */

voi d cl eanup_nodul e()

{

proc_unregi ster(&roc_root, Qur_Proc_File.low.ino);

Chapter 5

Talking to Device Files (writes
and IOCTLYS)

Devicefiles are supposed to represent physical devices. Most physical devices are used
for output as well as input, so there has to be some mechanism for device drivers in the
kernel to get the output to send to the device from processes. Thisis done by opening the
devicefile for output and writing to it, just like writing to afile. In the following example,
thisisimplemented by devi ce_wri t e.

Thisis not always enough. Imagine you had a serial port connected to a modem (even
if you have an internal modem, it is till implemented from the CPU’s perspective as a
serial port connected to amodem, so you don't haveto tax your imagination too hard). The
natural thing to do would be to use the device file to write things to the modem (either mo-
dem commands or data to be sent through the phone line) and read things from the modem
(either responses for commands or the data received through the phoneline). However, this
leaves open the question of what to do when you need to talk to the serial port itself, for
example to send the rate at which datais sent and received.

The answer in Unix is to use a special function called i oct | (short for input output
control). Every device can haveitsowni oct | commands, which canbereadi octl’s
(to send information from a process to the kernel), write i oct | ’s (to return information
to aprocess), ! both or neither. Theioctl function is called with three parameters: the file
descriptor of the appropriate device file, the ioctl number, and a parameter, which is of type

INotice that here the roles of read and write are reversed again, soini oct | *sread is to send information to
the kernel and writeis to receive information from the kernel.

43

long so you can use acast to use it to pass anything. 2

Theioctl number encodes the major device number, the type of theioctl, the command,
and the type of the parameter. Thisioctl number is usually created by a macro cal (_I O,
1 OR, _I OWor _| OAR — depending on the type) in a header file. This header file should
then be #i ncl ude’d both by the programs which will usei oct | (so they can generate
the appropriatei oct | 's) and by the kernel module (so it can understand it). Inthe example
below, the header fileischar dev. h and the program which usesitisi oct | . c.

If youwant tousei oct | "sinyour own kernel modules, it is best to receive an official
i oct| assignment, so if you accidentally get somebody else’'si oct | ’s, or if they get
yours, you'll know something is wrong. For more information, consult the kernel source
treeat ‘Docunent ati on/ioctl - nunber.txt’.

chardev.c

/* chardev.c

*

* Create an input/output character device
*/

/* Copyright (C 1998-99 by Oi Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/ nodver si ons. h>
#endi f

2Thisisn't exact. You won't be able to pass a structure, for example, through an ioctl — but you will be able
to pass a pointer to the structure.

/* For character devices */

/* The character device definitions are here */
#i ncl ude <linux/fs. h>

/* A wapper which does next to nothing at
* at present, but nay help for conpatibility
* with future versions of Linux */

#i ncl ude <l i nux/w apper. h>

/* Qur own ioctl nunbers */
#i ncl ude "chardev. h"

/* In 2.2.3 [usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’'t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢c) ((a)*65536+(b)*256+(c))
#endi f

#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
#i ncl ude <asnfuaccess.h> [* for get_user and put_user */
#endi f

#defi ne SUCCESS 0

/* DeVI ce mcl al’athﬂS EE R R R I I I R R R I I O O */

/* The nanme for our device, as it will appear in
* [proc/devices */
#defi ne DEVI CE_NAME "char _dev"

/* The maxi mum | ength of the nessage for the device */
#def i ne BUF_LEN 80

/* I's the device open right now? Used to prevent
* concurent access into the same device */
static int Device Open = 0;

/* The message the device will give when asked */
static char Message[BUF_LEN;

/* How far did the process reading the nessage get?

* Useful if the nmessage is larger than the size of the
* pbuffer we get to fill in device_read. */
static char *Message Ptr;

/* This function is called whenever a process attenpts
* to open the device file */
static int device_open(struct inode *inode,
struct file *file)
{
#i f def DEBUG
printk ("device_open(%)\n", file);
#endi f

/* W don't want to talk to two processes at the
* same time */
i f (Device_QOpen)

return - EBUSY,;

/* If this was a process, we would have had to be

* nore careful here, because one process m ght have

* checked Device _Open right before the other one

* tried to increment it. However, we're in the

* kernel, so we’'re protected agai nst context sw tches.

* This is NOT the right attitude to take, because we

* mght be running on an SWMP box, but we’'ll deal wth
* SMP in a later chapter.
*/

Devi ce_Qpen++;

/* Initialize the message */
Message Ptr = Message;

MOD_| NC_USE_COUNT;

return SUCCESS;

/* This function is called when a process cl oses the
* device file. It doesn’t have a return val ue because
* it cannot fail. Regardl ess of what el se happens, you
* should always be able to close a device (in 2.0, a 2.2
* device file could be inpossible to close). */
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
static int device_rel ease(struct inode *inode,
struct file *file)
#el se
static void device_rel ease(struct inode *inode,
struct file *file)
#endi f

{
#i f def DEBUG

printk ("device_rel ease(%, %)\n", inode, file);
#endi f

/* W're now ready for our next caller */
Devi ce_QOpen --;

MOD_DEC_USE_COUNT;

#i f LI NUX_VERSI ON_CODE >= KERNEL_VERSI O\(2, 2, 0)
return O;
#endi f

}

/* This function is called whenever a process which
* has al ready opened the device file attenpts to
* read fromit. */
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
static ssize_t device_read(
struct file *file,

char *buffer, /* The buffer to fill with the data */
size_t length, /* The length of the buffer */
loff_t *offset) /* offset to the file */

#el se

static int device_ read(
struct inode *inode,
struct file *file,

char *buffer, /* The buffer to fill with the data */
int |ength) /* The length of the buffer
* (mustn't wite beyond that!) */
#endi f
{

/* Number of bytes actually witten to the buffer */
int bytes read = 0;

#i f def DEBUG
printk("device_read(%, %, %d)\ n"
file, buffer, length);
#endi f

/* If we're at the end of the message, return O
* (which signifies end of file) */
if (*Message Ptr == 0)
return O;

/* Actually put the data into the buffer */
while (length & *Message Ptr) {

/* Because the buffer is in the user data segnent,
* not the kernel data segnent, assignnent woul dn’t
* work. Instead, we have to use put_user which
* copies data fromthe kernel data segment to the
* user data segnent. */

put _user(*(Message Ptr++), buffer++);

length --;

bytes read ++;

#i f def DEBUG
printk ("Read % bytes, % left\n",
bytes read, |ength);
#endi f

/* Read functions are supposed to return the nunber
* of bytes actually inserted into the buffer */
return bytes read;

/* This function is called when sonebody tries to
* wite into our device file. */

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
static ssize t device wite(struct file *file,
const char *buffer,
size_t |ength,
loff _t *offset)
#el se
static int device wite(struct inode *inode,
struct file *file,
const char *buffer,
int |ength)
#endi f
{

int i;

#i f def DEBUG
printk ("device wite(%, %, %)",
file, buffer, length);
#endi f

for(i=0; i<length &% i <BUF_LEN;, i ++)
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
get _user (Message[i], buffer+i);
#el se
Message[i] = get_user(buffer+i);
#endi f

Message_Ptr = Message;

/* Again, return the nunmber of input characters used */
return i;

/* This function is called whenever a process tries to
* do an ioctl on our device file. W get two extra
* paraneters (additional to the inode and file

* structures, which all device functions get): the number
* of the ioctl called and the paraneter given to the
* joctl function.

* If the ioctl is wite or read/wite (meaning output
* is returned to the calling process), the ioctl cal
* returns the output of this function
*/
nt device_ioctl (
struct inode *inode,
struct file *file,
unsigned int ioctl_num/* The nunber of the ioctl */
unsi gned long ioctl _paran) /* The paraneter to it */

int i;
char *tenp;

#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
char ch;

#endi f

/* Switch according to the ioctl called */
switch (ioctl_num {
case | OCTL_SET_ MsG
/* Receive a pointer to a nessage (in user space)
* and set that to be the device's nessage. */

/* Get the paraneter given to ioctl by the process */
temp = (char *) ioctl_param

/* Find the I ength of the nessage */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
get _user(ch, tenp);
for (i=0; ch &% i<BUF_LEN; i++, tenp++)
get _user(ch, tenp);
#el se
for (i=0; get user(tenp) && i <BUF_LEN; i++, tenp++)

#endi f

/* Don’t reinvent the wheel - call device wite */
#if LI NUX_VERSI ON_CCODE >= KERNEL_VERSI O\(2, 2, 0)
device_ wite(file, (char *) ioctl_param i, 0);

#el se

device write(inode, file, (char *) ioctl_param i);
#endi f

br eak;

case | OCTL_GET_MsG
/* Gve the current nessage to the calling
* process - the paraneter we got is a pointer,
*fill it */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
i = device_ read(file, (char *) ioctl_param 99, 0);
#el se
i = device_read(inode, file, (char *) ioctl_param
99);
#endi f
/* Warning - we assune here the buffer length is
* 100. If it's less than that we m ght overflow
* the buffer, causing the process to core dunp.

* The reason we only allow up to 99 characters is
* that the NULL which term nates the string al so
* needs room */

/* Put a zero at the end of the buffer, so it
* will be properly termnated */

put _user('\0', (char *) ioctl_paramti);

br eak;

case | OCTL_GET_NTH BYTE:
/[* This ioctl is both input (ioctl_param and

* output (the return value of this function) */
return Message[ioctl parani;
br eak;

return SUCCESS;

/* '\/bdule mcl aratIOHS KRR b S b S S Rk b e */

/* This structure will hold the functions to be called
* when a process does sonething to the device we
* created. Since a pointer to this structure is kept in
* the devices table, it can’t be local to
* init_nodule. NULL is for uninplenented functions. */
struct file_operations Fops = {
NULL, /* seek */
devi ce_read,
device wite,
NULL, /* readdir */
NULL, /* select */
device_ioctl, [* ioctl */
NULL, [* mmap */
devi ce_open,
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
NULL, /* flush */
#endi f
device release /* a.k.a. close */

}s

/* Initialize the nmodule - Register the character device */

int init_nodul e()

{

int ret_val;

/* Register the character device (atleast try) */
ret _val = nodul e_register_chrdev(MVAJOR_NUM
DEVI CE_NANME,
&Fops) ;

/* Negative values signify an error */
if (ret_val < 0) {
printk ("% failed with %\ n",
"Sorry, registering the character device ",

ret_val);
return ret_val;

}
printk ("% The major device nunber is %l.\n",

"Regi steration is a success",

MAJOR_NUM ;
printk ("If you want to talk to the device driver,\n");
printk ("you' Il have to create a device file. \n");

printk ("W suggest you use:\n");

printk ("nmknod % c¢ % 0\ n", DEVI CE _FI LE NAME,
MAJOR_NUM ;

printk ("The device file nane is inportant, because\n");

printk ("the ioctl program assunes that’'s the\n");

printk ("file you'll use.\n");

return O;

/* Cd eanup - unregister the appropriate file from/proc */
voi d cl eanup_nodul e()

{

int ret;

/* Unregi ster the device */
ret = nmodul e_unregi ster_chrdev(MAJOR NUM DEVI CE_NAME) ;

/[* If there’s an error, report it */
if (ret <0)
printk("Error in nmodul e_unregister_chrdev: %\n", ret);

chardev.h

/* chardev.h - the header file with the ioctl definitions.

* The declarations here have to be in a header file,
* because they need to be known both to the kernel

* modul e (in chardev.c) and the process calling ioctl
* (ioctl.c)

*/

#i f ndef CHARDEV_H
#defi ne CHARDEV_H

#include <linux/ioctl.h>

/* The major device nunber. W can’t rely on dynanic
* registration any nore, because ioctls need to know
*it. */

#defi ne MAJOR_NUM 100

/* Set the nessage of the device driver */

#define | OCTL_SET_MSG _| OR(MAJOR_NUM O, char *)
/* 1OR neans that we're creating an ioctl conmand

* nunber for passing infornation froma user process
to the kernel nodule.

*

* The first arguments, MAJOR NUM is the major device
* nunber we’'re using.

* The second argument is the nunmber of the command
* (there could be several with different meanings).

* The third argunent is the type we want to get from
* the process to the kernel

/* Get the nessage of the device driver */

#define | OCTL_GET_MSG | OR(MAJOR NUM 1, char *)

/* This IOCTL is used for output, to get the nessage
* of the device driver. However, we still need the
* pbuffer to place the nmessage in to be input,
* as it is allocated by the process.
*/

/* Get the n"th byte of the nessage */

#define | OCTL_GET_NTH BYTE _| OAR(MAJOR_NUM 2, int)

/* The I OCTL is used for both input and output. It
* receives fromthe user a nunber, n, and returns
* Message[n]. */

/* The nane of the device file */
#defi ne DEVI CE_FI LE NAME "char _dev"

#endi f

ioctl.c

/* ioctl.c - the process to use ioctl’s to control the
* kernel nodul e

* Until now we could have used cat for input and

* output. But now we need to do ioctl’s, which require
* writing our own process.

*/

/* Copyright (C 1998 by Ori Ponerantz */

/* device specifics, such as ioctl nunbers and the
* major device file. */
#i ncl ude "chardev. h"

#i nclude <fcntl. h> /* open */
#i ncl ude <uni std. h> [* exit */
#i ncl ude <sys/ioctl.h> /[/* ioctl */

/* Functions for the ioctl calls */

ioctl _set_msg(int file_desc, char *message)

{

int ret_val;

ret_val = ioctl(file_desc, |IOCTL_SET_MSG message);

if (ret_val < 0) {
printf ("ioctl_set_nsg failed:%\n", ret_val);
exit(-1);
}
}

ioctl_get_msg(int file_desc)
{

int ret_val;

char message[100];

/* Warning - this is dangerous because we don’'t tell

* the kernel how far it’'s allowed to wite, so it

* mght overflow the buffer. In a real production

* program we would have used two ioctls - one to tell
* the kernel the buffer length and another to give

* it the buffer to fill

*/

ret_val = ioctl(file_desc, |IOCTL_GET_MSG message);

if (ret_val < 0) {
printf ("ioctl _get nsg failed: %\ n", ret_val);
exit(-1);

}

printf("get_nsg nessage: %s\n", nessage);

ioctl _get nth_byte(int file_desc)
{

int i;
char c;
printf("get_nth_byte message:");
i = 0;
while (c !'=0) {
c = ioctl(file_desc, |IOCTL_GET_NTH BYTE, i++);

if (c <0) {
printf(

"ioctl _get nth byte failed at the % th byte:\n",

exit(-1);
}

put char (c);

}
putchar('\n");

Main - Call the ioctl functions */

mai n()

int file desc, ret_val
char *msg = "Message passed by ioctl\n";

file_desc = open(DEVI CE_FI LE NAME, 0);
if (file_desc < 0) {
printf ("Can’'t open device file: %\n",
DEVI CE_FI LE_NAME)
exit(-1);
}

i)

ioctl _get_nth_byte(file_desc);
ioctl _get msg(file_desc);
ioctl _set msg(file_desc, nsQ);

cl ose(fil e_desc);

Chapter 6

Startup Parameters

In many of the previous examples, we had to hard-wire something into the kernel mod-
ule, such asthefile namefor / pr oc files or the mgjor device number for the device so we
can havei oct | 'stoit. This goes against the grain of the Unix, and Linux, philosophy
which isto write flexible program the user can customize.

The way to tell a program, or a kernel module, something it needs before it can start
working isby command line parameters. In the case of kernel modules, wedon't get ar gc
and ar gv — instead, we get something better. We can define global variablesin the kernel
module and i nsrrod will fill them for us.

In this kernel module, we define two of them: str1 and str2. All you need to
do is compile the kernel module and then runi nsnod st r 1=xxx str2=yyy. When
i ni t_nodul e iscaled, str1 will point to the string ‘xxx’ and st r 2 to the string
yyy'.

In version 2.0 there is no type checking on these argumentst. If the first character of
strlorstr2isadigit thekernel will fill the variable with the value of the integer, rather
than a pointer to the string. If areal life situation you have to check for this.

On the other hand, in version 2.2 you use the macro MACRO_PARMto tell i nsnod that
you expect a parameters, its name and its type. This solves the type problem and allows
kernel modules to receive strings which begin with a digit, for example.

param.c

1There can't be, since under C the object file only has the location of global variables, not their type. That is
why header files are necessary

61

/* paramc
*
* Receive command |ine paraneters at nodul e installation
*/

/* Copyright (C) 1998-99 by Oi Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/nodver si ons. h>
#endi f

#include <stdio.h> /* | need NULL */

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’'t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢) ((a)*65536+(b)*256+(c))
#endi f

/* Emmanuel Papirakis:

* Praneter nanmes are now (2.2) handled in a macro
* The kernel doesn’'t resolve the synbol nanes
* like it seems to have once did.

* To pass paraneters to a nodule, you have to use a nmacro
* defined in include/linux/nodules.h (line 176).

* The macro takes two paraneters. The paranmeter’s nane and
* it'’s type. The type is a letter in double quotes.

* For exanple, "i" should be an integer and "s" shoul d

* be a string.

char *strl1, *str2

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
MODULE PARMstr1, "s");

MODULE _PARM str2, "s");

#endi f

/* Initialize the nodule - show the paraneters */
int init_nodule()
{
if (strl == NULL || str2 == NULL) {
printk("Next time, do insnmod param strl=<sonethi ng>");
printk("str2=<sonething>\n");
} else
printk("Strings:% and %\n", strl, str2);

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
printk("If you try to insnod this nodule twice,");
printk("(w thout rmmod’ing\n");

printk("it first), you mght get the wong");

printk("error message:\n");

printk("’synbol for paraneters strl not found .\n");
#endi f

return O;

/* O eanup */

voi d cl eanup_nodul e()
{

}

Chapter 7

System Calls

So far, the only thing we've done was to use well defined kernel mechanismsto register
/ proc files and device handlers. This is fine if you want to do something the kernel
programmers thought you'd want, such as write a device driver. But what if you want to
do something unusual, to change the behavior of the system in some way? Then, you're
mostly on your own.

This is where kernel programming gets dangerous. While writing the example below,
| killed the open system call. This meant | couldn’t open any files, | couldn’t run any
programs, and | couldn’t shut down the computer. | had to pull the power switch. Luckily,
no files died. To ensure you won't lose any files either, please run sync right before you
do thei nsnod and the r nmod.

Forget about / pr oc files, forget about device files. They're just minor details. The
real process to kernel communication mechanism, the one used by all processes, is system
calls. When a process requests a service from the kernel (such as opening afile, forking
to a new process, or reguesting more memory), this is the mechanism used. If you want
to change the behaviour of the kernel in interesting ways, thisisthe place to do it. By the
way, if you want to see which system calls a program uses, run strace <comrand>
<ar gunment s>.

In general, a process is not supposed to be able to access the kernel. It can’t access
kernel memory and it can't call kernel functions. The hardware of the CPU enforces this
(that’s the reason why it's called ‘protected mode’). System calls are an exception to this
general rule. What happensis that the process fills the registers with the appropriate values
and then calls a special instruction which jumps to a previously defined location in the

65

kernel (of course, that location is readable by user processes, it is not writable by them).
Under Intel CPUSs, thisis done by means of interrupt 0x80. The hardware knows that once
you jump to this location, you are no longer running in restricted user mode, but as the
operating system kernel — and therefore you're allowed to do whatever you want.

The location in the kernel a process can jump to is called syst emcal | . The pro-
cedure at that location checks the system call number, which tells the kernel what service
the process requested. Then, it looks at the table of system cals (sys_cal | _t abl e)
to see the address of the kernel function to call. Then it cals the function, and &f-
ter it returns, does a few system checks and then return back to the process (or to
a different process, if the process time ran out). If you want to read this code, it's
at the source file ar ch/ <archi t ect ure>/ kernel / entry. S, after the line EN-
TRY(systemcal |).

So, if we want to change the way a certain system call works, what we need to do isto
write our own function to implement it (usually by adding a bit of our own code, and then
calling the original function) and then change the pointer at sys_cal | _t abl e to point to
our function. Because we might be removed later and we don’t want to leave the systemin
an unstable state, it's important for cl eanup_nodul e to restore the table to its original
state.

The source code here is an example of such a kernel module. We want to ‘spy’ on a
certain user, and to pr i nt k amessage whenever that user opens afile. Towards this end,
we replace the system call to open a file with our own function, called our _sys_open.
This function checks the uid (user’sid) of the current process, and if it's equal to the uid
we spy on, it callspri nt k to display the name of the file to be opened. Then, either way,
it callsthe original open function with the same parameters, to actually open the file.

Thei ni t _modul e function replaces the appropriate location in sys_cal | _t abl e
and keeps the original pointer in a variable. The cl eanup_nodul e function uses that
variable to restore everything back to normal. This approach is dangerous, because of the
possibility of two kernel modules changing the same system call. Imagine we have two
kernel modules, A and B. A’s open system call will be A_open and B’s will be B_open.
Now, when A isinserted into the kernel, the system call is replaced with A_open, which
will call the original sys_open when it's done. Next, B is inserted into the kernel, which
replaces the system call with B_open, which will call what it thinks is the original system
call, A_open, when it's done.

Now, if B is removed first, everything will be well — it will simply restore the system
call to A_open, which callsthe original. However, if A isremoved and then B is removed,
the system will crash. A’'s removal will restore the system call to the original, sys_open,

cutting B out of the loop. Then, when B is removed, it will restore the system call to what
it thinks isthe original, A_open, which is no longer in memory. At first glance, it appears
we could solve this particular problem by checking if the system call is equal to our open
function and if so not changing it at al (so that B won't change the system call when it's
removed), but that will cause an even worse problem. When A isremoved, it sees that the
system call was changed to B_open so that it is no longer pointing to A_open, so it won't
restore it to sys.open before it is removed from memory. Unfortunately, B_open will still
try to call A_open which is no longer there, so that even without removing B the system
would crash.

I can think of two ways to prevent this problem. The first is to restore the call to the
original value, sys_open. Unfortunately, sys.open is not part of the kernel system tablein
/ proc/ ksyns, sowe can't accessit. The other solution is to use the reference count to
prevent root from r nmod’ing the module once it is loaded. This is good for production
modules, but bad for an educational sample — whichiswhy | didn’t do it here.

syscall.c

/* syscall.c
*
* Systemcall "stealing" sanple
*/

/* Copyright (C) 1998-99 by Oi Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/nodversi ons. h>
#endi f

#i ncl ude <sys/syscall.h> /[* The list of systemcalls */

/* For the current (process) structure, we need
* this to know who the current user is. */
#i ncl ude <l i nux/sched. h>

/* In 2.2.3 /usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢) ((a)*65536+(b)*256+(c))
#endi f

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
#i ncl ude <asm uaccess. h>
#endi f

/* The systemcall table (a table of functions). W
* just define this as external, and the kernel wll
* fill it up for us when we are insnod’ ed
*/

extern void *sys call _table[];

/* UD we want to spy on - will be filled fromthe
* conmand |ine */
int uid;

#i f LI NUX_VERSI ON_CODE >= KERNEL_VERSI O\(2, 2, 0)

MODULE_PARM ui d, "i");
#endi f
/* A pointer to the original systemcall. The reason

* we keep this, rather than call the original function
* (sys_open), is because sonebody el se m ght have

* replaced the systemcall before us. Note that this

* is not 100% safe, because if another nodul e

* replaced sys_open before us, then when we’'re inserted
* we'll call the function in that module - and it

* m ght be renpved before we are

* Anot her reason for this is that we can’'t get sys_open

* |t's a static variable, so it is not exported. */
asninkage int (*original _call)(const char *, int, int);

/* For sonme reason, in 2.2.3 current->uid gave me

* zero, not the real user ID | tried to find what went
* wong, but | couldn’'t do it in a short tine, and
*I"’mlazy - so I'll just use the systemcall to get the

* uid, the way a process woul d.

* For sone reason, after | reconpiled the kernel this
* probl em went away.

*/

asnm i nkage int (*getuid_call)();

/* The function we'll replace sys_open (the function

* called when you call the open systemcall) with. To
* find the exact prototype, with the nunber and type
* of argunents, we find the original function first

* (it's at fs/open.c).

* In theory, this neans that we're tied to the

* current version of the kernel. In practice, the

* gystem calls al nost never change (it would weck havoc
* and require programs to be reconpiled, since the system
* calls are the interface between the kernel and the

* processes).

*/
asnl i nkage i nt our_sys_open(const char *fil enane,
int flags,
i nt node)
{
int i =0;
char ch;

/* Check if this is the user we're spying on */
if (uid == getuid_call()) {

/* getuid_call is the getuid system call

* which gives the uid of the user who

* ran the process which called the system

* call we got */

/* Report the file, if relevant */
printk("Opened file by %: ", uid);
do {
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
get _user(ch, filename+i);
#el se
ch = get _user(fil enane+i);
#endi f
i ++;
printk("%", ch);
} while (ch !'= 0);
printk("\n");

/*

/* Call the original sys open - otherw se, we |ose
* the ability to open files */
return original _call (filename, flags, node);

Initialize the nodule - replace the systemcall */

int init_nodul e()

{

/* Warning - too late for it now, but naybe for

* next time... */

printk("l’' mdangerous. | hope you did a ");
printk("sync before you insnod ed ne.\n");
printk("My counterpart, cleanup_nodule(), is even");
printk("nore dangerous. [f\n");

printk("you value your file system it will ");
printk("be \"sync; rnmod\" \n");

printk("when you renove this nodule.\n");

/* Keep a pointer to the original function in

* original _call, and then replace the system cal
* in the systemcall table with our_sys_open */
original _call = sys call _table[__NR open];

sys_call table[__NR open] = our_sys_open

/* To get the address of the function for system
* call foo, go to sys call _table[__NR foo]. */

printk("Spying on U D: %\ n", uid);

/* Get the systemcall for getuid */
getuid_call = sys call _table[__NR getuid];

return O;

/* Cdeanup - unregister the appropriate file from/proc */
voi d cl eanup_nodul e()

{

/* Return the systemcall back to normal */

if (sys_call _table[__NR open] != our_sys open) {
printk("Sonebody el se also played with the ");
printk("open systemcall\n");
printk("The systemnmay be left in ");
printk("an unstable state.\n");

}

sys_call _table[__NR open] = original_call;

Chapter 8

Blocking Processes

What do you do when somebody asks you for something you can’t do right away? If
you're a human being and you' re bothered by a human being, the only thing you can say is:
‘Not right now, I'm busy. Go away!’. But if you're a kernel module and you're bothered
by a process, you have another possibility. You can put the process to sleep until you can
service it. After al, processes are being put to sleep by the kernel and woken up all the
time (that's the way multiple processes appear to run on the same time on asingle CPU).

This kernel module is an example of this. The file (called / pr oc/ sl eep) can only
be opened by a single process at atime. If the file is already open, the kernel module calls
modul e_i nterrupti bl e_sl eep_on!. Thisfunction changes the status of the task (a
task is the kernel data structure which holds information about a process and the system
cal it'sin, if any) to TASK_I NTERRUPTI BLE, which means that the task will not run
until it is woken up somehow, and adds it to Wi t Q, the queue of tasks waiting to access
the file. Then, the function calls the scheduler to context switch to a different process, one
which has some use for the CPU.

When a process is done with thefilg, it closesit, and nodul e_cl ose iscaled. That
function wakes up all the processes in the queue (there’s no mechanism to only wake up
one of them). It then returns and the process which just closed the file can continue to
run. Intime, the scheduler decides that that process has had enough and gives control of
the CPU to another process. Eventually, one of the processes which was in the queue will
be given control of the CPU by the scheduler. It starts at the point right after the call to
modul e_i nterrupti bl e_sl eep_on 2. It can then proceed to set a global variable to

1The easiest way to keep afile openisto openitwithtai | -f.
2This means that the process is still in kernel mode — as far as the process is concerned, it issued the open

73

tell al the other processes that the file is still open and go on with itslife. When the other
processes get a piece of the CPU, they’ Il see that global variable and go back to sleep.

To make our life more interesting, nodul e_cl ose doesn’t have a monopoly on wak-
ing up the processes which wait to access the file. A signal, such as Ctrl-C (SI G NT) can
also wake up aprocess®. In that case, we want to return with - El NTR immediately. This
isimportant so users can, for example, kill the process before it receives thefile.

There is one more point to remember. Some times processes don’'t want to sleep, they
want either to get what they want immediately, or to be told it cannot be done. Such
processes use the O_NONBLOCK flag when opening the file. The kernel is supposed to
respond by returning with the error code - EAGAI Nfrom operations which would otherwise
block, such as opening the file in this example. The program cat_noblock, availablein the
source directory for this chapter, can be used to open afile with O.NONBL OCK.

deep.c

/* sleep.c - create a /proc file, and if several
* processes try to open it at the sane tinme, put all
* but one to sleep */

/* Copyright (C) 1998-99 by Oi Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */

#i f CONFI G_MODVERSI ONS==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/nodversions. h>

#endi f

system call and the system call hasn't returned yet. The process doesn’'t know somebody else used the CPU for
most of the time between the moment it issued the call and the moment it returned.

3Thisisbecausewe used nodul e_i nt er rupt i bl e_sl eep_on. Wecould haveused modul e_sl eep_on
instead, but that would have resulted is extremely angry users whose control C's are ignored.

/* Necessary because we use proc fs */
#i ncl ude <linux/proc_fs. h>

/* For putting processes to sleep and waki ng themup */
#i ncl ude <l i nux/sched. h>
#i ncl ude <l i nux/w apper. h>

/* In 2.2.3 [usr/include/linux/version.h includes a
* macro for this, but 2.0.35 doesn’t - so | add it
* here if necessary. */
#i f ndef KERNEL_VERSI ON
#def i ne KERNEL_VERSI ON(a, b, ¢) ((a)*65536+(b)*256+(c))
#endi f

#if LI NUX_VERSI ON_CCODE >= KERNEL_VERSI O\(2, 2, 0)
#i ncl ude <asnfuaccess.h> /[* for get_user and put_user */
#endi f

/* The nodule’'s file functions ***x**kxxkkkxxkkkxrhkx */

/* Here we keep the | ast nessage received, to prove
* that we can process our input */

#defi ne MESSAGE_LENGTH 80

static char Message[MESSAGE LENGTH];

/* Since we use the file operations struct, we can’'t use
* the special proc output provisions - we have to use
* a standard read function, which is this function */
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)

static ssize_t nodul e_out put (
struct file *file, /* The file read */
char *buf, /* The buffer to put data to (in the
* user segment) */
size_t len, [/* The length of the buffer */
loff_t *offset) /* Ofset inthe file - ignore */
#el se
static int nodul e out put(
struct inode *inode, /* The inode read */
struct file *file, [* The file read */
char *buf, /* The buffer to put data to (in the
* user segnent) */
int len) [/* The length of the buffer */
#endi f
{
static int finished = 0;
int i;
char message[MESSAGE LENGTH+30] ;

/* Return O to signify end of file - that we have
* nothing nore to say at this point. */
if (finished) {

finished = 0;

return O;

/* If you don't understand this by now, you're
* hopel ess as a kernel programer. */
sprintf(message, "Last input:%\n", Message);
for(i=0; i<len && nessage[i]; i ++)

put user(nessage[i], buf+i);

finished = 1,
return i; /* Return the number of bytes "read" */

/* This function receives input fromthe user when
* the user wites to the /proc file. */

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
static ssize_t nodul e_i nput (

struct file *file, [* The file itself */

const char *buf, [* The buffer with input */

size_ t length, [* The buffer’s length */

lof f_t *offset) /* offset to file - ignore */
#el se

static int nodul e_input(
struct inode *inode, /* The file's inode */

struct file *file, /* The file itself */
const char *buf, [* The buffer with the input */
i nt | ength) /* The buffer’s length */
#endi f
{
int i;

/* Put the input into Message, where nodul e_out put
*will later be able to use it */
for(i=0; i<MESSAGE LENGTH 1 && i<length; i++)
#if LI NUX_VERSI ON_CCODE >= KERNEL_VERSI O\(2, 2, 0)
get _user (Message[i], buf+i);
#el se
Message[i] = get_user(buf+i);
#endi f
/* we want a standard, zero term nated string */
Message[i] = "\0O’

/* W need to return the nunber of input
* characters used */
return i;

}

/* 1 if the file is currently open by sonebody */

int Already_Open = 0;

/* Queue of processes who want our file */
static struct wait_queue *WaitQ = NULL;

/* Called when the /proc file is opened */
static int nmodul e_open(struct inode *inode,
struct file *file)

/* If the file's flags include O NONBLOCK, it neans

* the process doesn’'t want to wait for the file.

* |nthis case, if the file is already open, we

* should fail with -EAGAIN, neaning "you'll have to

* try again", instead of blocking a process which

* would rather stay awake. */

if ((file->f _flags & O NONBLOCK) && Al ready_ Open)
return - EAGAI N,

/* This is the correct place for MOD_|I NC_USE COUNT
* because if a process is in the loop, whichis

* within the kernel module, the kernel nodul e nust
* not be renoved. */

MOD_| NC_USE_COUNT

/* If the file is already open, wait until it isnt */
whil e (Al ready_Open)
{
#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
int i, is_sig=0;
#endi f

/* This function puts the current process,

* including any systemcalls, such as us, to sleep

* Execution will be resuned right after the function
* call, either because sonebody called

* wake_up(&MitQ (only nodul e_cl ose does that,

* when the file is closed) or when a signal, such
* as Crl-C, is sent to the process */

nmodul e_interruptible_sleep on(&W\itQ ;

/* I'f we woke up because we got a signal we're not
* blocking, return -EINTR (fail the systemcall).
* This allows processes to be killed or stopped. */

* Emmanuel Papirakis:

* This is alittle update to work with 2.2.*. Signals

* now are contained in two words (64 bits) and are

* stored in a structure that contains an array of two

* unsigned |l ongs. W now have to make 2 checks in our if.

* Ori Ponerant z:

* Nobody prom sed ne they' || never use nore than 64
* bits, or that this book won't be used for a version
* of Linux with a word size of 16 bits. This code
* would work in any case.
*/
#i f LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)

for(i=0; i< NSIGWRDS & !is_sig; i++)
is sig = current->signal.sig[i] &
“current->bl ocked.sig[i];
if (is_sig) {
#el se
if (current->signal & “current->bl ocked) ({
#endi f
/[* It’s inportant to put MOD DEC USE COUNT here,

* because for processes where the open is

* interrupted there will never be a correspondi ng
* close. If we don't decrenent the usage count

* here, we will be left with a positive usage

* count which we'll have no way to bring down to
* zero, giving us an imortal nodul e, which can

* only be killed by rebooting the nmachine. */
MOD_DEC_USE_COUNT;

return - EINTR;

/* If we got here, Already_Open nust be zero */

/* Open the file */
Al ready_ Open = 1;
return O; /* Allow the access */

/* Called when the /proc file is closed */

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)

i nt nodul e_cl ose(struct inode *inode, struct file *file)

#el se

voi d nodul e_cl ose(struct inode *inode, struct file *file)

#endi f

{
/* Set Already_Open to zero, so one of the processes
*inthe WaitQwill be able to set Al ready Open back
* to one and to open the file. Al the other processes
* will be called when Already_Open is back to one, so
* they' Il go back to sleep. */
Al ready_Open = 0;

/* Wake up all the processes in WitQ so if anybody

* is waiting for the file, they can have it. */
nodul e_wake up(&WMitQ ;

MOD_DEC_USE_COUNT;

#if LI NUX_VERSI ON_CCDE >= KERNEL_VERSI O\(2, 2, 0)
return 0; /* success */
#endi f
}
/* This function decides whether to allow an operation

*

st

{

(return zero) or not allowit (return a non-zero
whi ch indicates why it is not allowed).

The operation can be one of the follow ng val ues:

- Execute (run the "file" - meaningless in our case)
- Wite (input to the kernel nodule)

- Read (output fromthe kernel nodul e)

A N O

This is the real function that checks file

perm ssions. The permissions returned by Is -1 are
for referece only, and can be overridden here.
/

atic int nodul e _pernission(struct inode *inode, int op)

/* W allow everybody to read from our nodul e, but

* only root (uid 0) nay wite to it */

if (op==4]| (op ==2 & current->euid == 0))
return O;

/[* If it’s anything el se, access is denied */
return - EACCES;

/*

st

#i

Structures to register as the /proc file, with
pointers to all the relevant functions. *****x*x*x*xx%x x/

File operations for our proc file. This is where
we place pointers to all the functions called when
sonebody tries to do sonething to our file. NULL
means we don’t want to deal with sonething. */
atic struct file operations File Ops 4 Qur _Proc File =
{
NULL, [/* |seek */
nmodul e_output, /* "read" fromthe file */
nmodul e_i nput /[* "wite" to the file */
NULL, /* readdir */
NULL, /* select */
NULL, [/* ioctl */
NULL, /* rmap */
nmodul e_open,/* called when the /proc file is opened */
f LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
NULL, [* flush */

#endi f

st

nodul e_cl ose /* called when it's classed */

}s

I node operations for our proc file. W need it so

we' | | have sonewhere to specify the file operations
structure we want to use, and the function we use for
perm ssions. It’'s also possible to specify functions

to be called for anything el se which could be done to an
i node (although we don’t bother, we just put NULL). */
atic struct inode_operations Inode Ops 4 Qur Proc _File =

{

&File_Ops_4 Qur_Proc_File,
NULL, /* create */

NULL, /* | ookup */

NULL, /* link */

NULL, /* unlink */

NULL, /* symink */

NULL, /* nkdir */

NULL, /* rmdir */

NULL, /* nknod */

NULL, /* renane */

NULL, /* readlink */

NULL, /* follow_link */
NULL, /* readpage */

NULL, /* writepage */
NULL, /* bmap */

NULL, /* truncate */

nodul e_perm ssion /* check for perm ssions */

b

/* Directory entry */
static struct proc_dir_entry Qur_Proc_File =
{
0, /* Inode nunmber - ignore, it will be filled by
* proc_register[_dynanic] */

5, /* Length of the file name */
"sleep", /* The file nane */
SIFREG| S IRUGO | S | WSR
/* File mode - this is a regular file which
* can be read by its owner, its group, and everybody
* else. Also, its owner can wite to it.

* Actually, this field is just for reference, it’'s

* modul e_perni ssion that does the actual check. It

* could use this field, but in our inplenentation it
* doesn't, for sinplicity. */

1, /* Nunmber of links (directories where the

* file is referenced) */
0, 0, /* The uid and gid for the file
* it to root */
80, /* The size of the file reported by
& node_Ops_4 Qur_Proc_File,
/* A pointer to the inode structure for
* the file, if we need it. In our case

* do, because we need a wite function

- we give

ls. */

*/

NULL /* The read function for the file.

* |Irrel evant, because we put it
* in the inode structure above *

/

/* Module initialization and cl eanup *****x***xxxxxxkx */

/-k
i nt

{

Initialize the nodule - register the pro
i nit_nodul e()

c file */

/* Success if proc_register _dynamc is a success,

* failure otherw se */

#if LI NUX_VERSI ON_CODE >= KERNEL_VERSI ON(2, 2, 0)
return proc_register(&rroc_root, &ur_ Pro

#el

se

return proc_register_dynani c(&proc_root,
#endi f

/

* proc_root is the root directory for th
* fs (/proc). This is where we want our
* | ocat ed.

*/

c File);

&Qur _Proc_File);

e proc
file to be

*

Cl eanup - unregister our file from/proc. This could

get dangerous if there are still processes waiting in
Wait Q because they are inside our open function,
which will get unloaded. I'lIl explain howto avoid

renoval of a kernel module in such a case in
chapter 10. */

voi d cl eanup_nodul e()

{

proc_unregi ster(&roc_root, Qur_Proc_File.low.ino);

Chapter 9
Replacing printk’s

In the beginning (chapter 1), | said that X and kernel module programming don’t mix.
That's true while developing the kernel module, but in actual use you want to be able to
send messages to whichever tty! the command to the module came from. Thisisimportant
for identifying errors after the kernel module is released, because it will be used through
all of them.

The way thisis doneisby using cur r ent , apointer to the currently running task, to
get the current task’s tty structure. Then, we look inside that tty structure to find a pointer
to a string write function, which we use to write a string to the tty.

printk.c

/* printk.c - send textual output to the tty you're
* running on, regardl ess of whether it’'s passed
* through X11, telnet, etc. */

/* Copyright (C 1998 by Ori Ponerantz */

/* The necessary header files */

1Teletype, originally acombination keyboard—printer used to communicate with a Unix system, and today an
abstraction for the text stream used for aUnix program, whether it's a physical terminal, an xterm onan X display,
anetwork connection used with telnet, etc.

86

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ==1

#def i ne MODVERSI ONS

#i ncl ude <l i nux/nodver si ons. h>
#endi f

/* Necessary here */
#i ncl ude <l i nux/sched. h> /* For current */
#i nclude <linux/tty. h> /[* For the tty declarations */

/* Print the string to the appropriate tty, the one
* the current task uses */
void print_string(char *str)
{
struct tty_struct *my_tty;

/* The tty for the current task */
ny_tty = current->tty;

/* If ny_tty is NULL, it neans that the current task
* has no tty you can print to (this is possible, for
* exanple, if it’s a daenon). In this case, there's
* not hing we can do. */

if (my_tty !'= NULL) {

/[* ny _tty->driver is a struct which holds the tty's
* functions, one of which (wite) is used to

* wite strings to the tty. It can be used to take
* a string either fromthe user’s nenory segment

* or the kernel’'s nmenory segnent.

*

(*

str, /

The function's first paraneter is the tty to
wite to, because the same function would
normal Iy be used for all tty's of a certain type.
The second paraneter controls whether the
function receives a string fromkernel menory
(false, 0) or fromuser nenory (true, non zero).
The third paraneter is a pointer to a string,
and the fourth paraneter is the I ength of
the string.
/
(my_tty->driver).wite)(
my_tty, /* The tty itself */
0, /* W don’t take the string fromuser space */
* String */

strlen(str)); /* Length */

ttys were originally hardware devices, which
(usual ly) adhered strictly to the ASCI| standard.
According to ASCII, to nove to a new |ine you
need two characters, a carriage return and a
line feed. In Unix, on the other hand, the
ASCIl line feed is used for both purposes - so
we can’t just use \n, because it wouldn’t have
a carriage return and the next line wll
start at the colum right

after the line feed.

BTW this is the reason why the text file

is different between Uni x and W ndows.

In CP/Mand its derivatives, such as M5-DCS and
W ndows, the ASCI| standard was strictly
adhered to, and therefore a new line requires
both a line feed and a carriage return.

*/

(*

(my_tty->driver).wite)(
ny_tty,

01
"\ 015\ 012",
2);

/* Module initialization and cl eanup ********xxxkkxkkxx*

/* Initialize the nodule - register the proc file */
int init_nodul e()

{
print_string("Mdule Inserted");

return O;

/* Ceanup - unregister our file from/proc */
voi d cl eanup_nodul e()

{
print_string("Mdul e Removed");

*/

Chapter 10

Scheduling Tasks

Very often, we have ‘housekeeping’ tasks which have to be done at a certain time, or
every so often. If the task isto be done by aprocess, wedo it by putting itinthecr ont ab
file. If the task is to be done by a kernel module, we have two possibilities. The first isto
put a process in the cr ont ab file which will wake up the module by a system call when
necessary, for example by opening afile. Thisisterribly inefficient, however — we run a
new process off of cr ont ab, read a new executable to memory, and all this just to wake
up akernel module which isin memory anyway.

Instead of doing that, we can create a function that will be called once for every timer
interrupt. The way we do thisis we create atask, heldinastruct tqg._struct,which
will hold a pointer to the function. Then, we use queue_t ask to put that task on a
task list called t g_ti ner, which is the list of tasks to be executed on the next timer
interrupt. Because we want the function to keep on being executed, we need to put it back
ont g_ti mer wheneveritiscaled, for the next timer interrupt.

There's one more point we need to remember here. When a module is removed by
r mmod, first its reference count is checked. If it is zero, nodul e_cl eanup is called.
Then, the module is removed from memory with all its functions. Nobody checksto seeif
the timer’s task list happens to contain a pointer to one of those functions, which will no
longer be available. Ageslater (from the computer’s perspective, from ahuman perspective
it's nothing, less than a hundredth of a second), the kernel has a timer interrupt and tries
to call the function on the task list. Unfortunately, the function is no longer there. In most
cases, the memory page where it sat is unused, and you get an ugly error message. But if
some other code is now sitting at the same memory location, things could get very ugly.

90

Unfortunately, we don’t have an easy way to unregister atask from atask list.

Since cl eanup_nodul e can't return with an error code (it's avoid function), the so-
lution is to not let it return at all. Instead, it calls sl eep_on or modul e_sl eep_on! to
put the r mrod process to sleep. Before that, it informs the function called on the timer
interrupt to stop attaching itself by setting aglobal variable. Then, on the next timer inter-
rupt, ther mod processwill be woken up, when our function is no longer in the queue and
it's safe to remove the module.

sched.c

/* sched.c - scheduale a function to be called on
* every timer interrupt. */

/* Copyright (C 1998 by Ori Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/nodversi ons. h>
#endi f

/* Necessary because we use the proc fs */
#i ncl ude <linux/proc_fs. h>

/* We schedual e tasks here */
#i ncl ude <l i nux/tqueue. h>

1They'reredly the same.

/* W& also need the ability to put ourselves to sleep

* and wake up later */
#i ncl ude <l i nux/sched. h>

/* In 2.2.3 /usr/include/linux/version.h includes a

* macro for this, but 2.0.35 doesn’t - so
* here if necessary. */
#i f ndef KERNEL_VERSI ON

| add it

#define KERNEL_VERSI ON(a, b, ¢) ((a)*65536+(b)*256+(c))

#endi f

/* The nunber of times the timer interrupt
* called so far */
static int Timerintrpt = O;

/* This is used by cleanup, to prevent the

has been

nodul e from

* being unloaded while intrpt_routine is still in

* the task queue */
static struct wait_queue *WaitQ = NULL;

static void intrpt_routine(void *);

/* The task queue structure for this task
static struct tqg_struct Task = {

fromtqueue.h */

NULL, /* Next itemin list - queue_task will do

* this for us */

0, /* A flag neaning we haven’'t been inserted

* into a task queue yet */
intrpt_routine, /* The function to run */
NULL /* The void* paraneter for that f

}s

unction */

/* This function will be called on every tiner
* interrupt. Notice the void* pointer - task functions
* can be used for nore than one purpose, each tine
* getting a different paraneter. */
static void intrpt_routine(void *irrel evant)
{
/* Increment the counter */
Ti mer | nt r pt ++;

/* If cleanup wants us to die */
if (WaitQ != NULL)

wake up(&WMitQ; /* Now cl eanup_nodul e can return */
el se

/* Put ourselves back in the task queue */

queue_t ask(&Task, &t q_tiner);

/* Put data into the proc fs file. */

int procfile_read(char *buffer,
char **pbuffer |l ocation, off _t offset,
int buffer_length, int zero)

int len; /* The nunber of bytes actually used */
/* This is static so it will still be in nmenory
* when we | eave this function */

static char ny_buffer[80];

static int count = 1;

/* W give all of our information in one go, so if

* the anybody asks us if we have nore information
* the answer shoul d al ways be no.
*/
if (offset > 0)
return O;

/* Fill the buffer and get its length */

len = sprintf(my_buffer
"Timer was called % tines so far\n",
Timerlntrpt);

count ++;

/* Tell the function which called us where the
* puffer is */
*puffer Il ocation = my_buffer

/* Return the length */
return | en;

struct proc_dir_entry Qur_Proc_File =
{
0, /* Inode nunmber - ignore, it will be filled by
* proc_register_dynamc */
5, /* Length of the file name */
"sched", /* The file nane */
S IFREG | S_|I RUGO
/* File mode - this is a regular file which can
* be read by its owner, its group, and everybody
* else */
1, /* Number of links (directories where
* the file is referenced) */
0, 0, /* The uid and gid for the file - we give
* it to root */
80, /* The size of the file reported by |Is. */

NULL, /* functions which can be done on the
* inode (linking, renoving, etc.) - we don’t
* support any. */
procfil e_read,
/* The read function for this file, the function called
* when sonebody tries to read sonething fromit. */
NULL
/* We could have here a function to fill the
* file's inode, to enable us to play with
* perm ssions, ownership, etc. */

}s

/* Initialize the nodule - register the proc file */

int init_nodul e()

{
/* Put the task in the tqg_tiner task queue, so it
* will be executed at next timer interrupt */
gueue_t ask(&Task, &t q_tiner);

/* Success if proc_register _dynamc is a success,

* failure otherw se */
#if LI NUX_VERSI ON_CODE > KERNEL_VERSI ON(2, 2, 0)

return proc_register(&rroc_root, &ur_ Proc_File);
#el se

return proc_register_dynanic(&roc_root, &ur Proc File);
#endi f
}

/* O eanup */
voi d cl eanup_nodul e()
{
/* Unregister our /proc file */
proc_unregi ster(&roc_root, Qur_Proc_File.low.ino);

}

*

*

Sleep until intrpt_routine is called one I|ast
tinme. This is necessary, because ot herw se we'll
deal | ocate the nenory holding intrpt_routine and
Task while tg_timer still references them
Notice that here we don't allow signals to

i nterrupt us.

Since WaitQ is now not NULL, this autonatically
tells the interrupt routine it’'s tinme to die. */

sl eep_on(&WMitQ ;

Chapter 11

Interrupt Handlers

Except for the last chapter, everything we did in the kernel so far we've done as a
response to a process asking for it, either by dealing with a special file, sendingani oct | ,
or issuing a system call. But the job of the kernel isn’t just to respond to process requests.
Another job, which is every bit as important, is to speak to the hardware connected to the
machine.

There are two types of interaction between the CPU and the rest of the computer’s
hardware. The first type is when the CPU gives orders to the hardware, the other is when
the hardware needs to tell the CPU something. The second, called interrupts, is much
harder to implement because it has to be dealt with when convenient for the hardware, not
the CPU. Hardware devices typicaly have a very small amount of ram, and if you don’t
read their information when available, it islost.

Under Linux, hardware interrupts are called IRQs (short for Interrupt Requests)!.
There are two types of IRQs, short and long. A short IRQ is one which is expected to
take avery short period of time, during which the rest of the machine will be blocked and
no other interrupts will be handled. A long IRQ is one which can take longer, and dur-
ing which other interrupts may occur (but not interrupts from the same device). If at all
possible, it's better to declare an interrupt handler to be long.

When the CPU receives an interrupt, it stops whatever it's doing (unlessit’s processing
a more important interrupt, in which case it will deal with this one only when the more
important one is done), saves certain parameters on the stack and callsthe interrupt handler.
This means that certain things are not alowed in the interrupt handler itself, because the

1Thisis standard nomencalture on the Intel architecture where Linux originated.

97

system isin an unknown state. The solution to this problem is for the interrupt handler to
do what needs to be done immediately, usually read something from the hardware or send
something to the hardware, and then schedul e the handling of the new information at alater
time (thisis called the ‘bottom half") and return. The kernel is then guaranteed to call the
bottom half as soon as possible — and when it does, everything allowed in kernel modules
will be allowed.

The way to implement this is to call r equest _i r g to get your interrupt handler
caled when the relevant IRQ is received (there are 16 of them on Intel platforms).
This function receives the IRQ number, the name of the function, flags, a name for
[proc/interrupts and aparameter to pass to the interrupt handler. The flags can in-
clude SA_SHI RQto indicate you're willing to share the IRQ with other interrupt handlers
(usually because a number of hardware devices sit on the same IRQ) and SA_I NTERRUPT
to indicate thisis afast interrupt. This function will only succeed if there isn’t already a
handler on this IRQ, or if you're both willing to share.

Then, from within the interrupt handler, we communicate with the hardware and
then use queue_t ask_i r q with t q_i mredi at e and mar k_bh(BH.I| MVEDI ATE) to
schedule the bottom half. Thereasonwe can’'t usethe standard queue_t ask inversion 2.0
is that the interrupt might happen right in the middie of somebody else's queue_t ask?.
We need mar k _bh because earlier versionsof Linux only had an array of 32 bottom halves,
and now one of them (BH.I MVEDI ATE) is used for the linked list of bottom halves for
driverswhich didn’'t get a bottom half entry assigned to them.

11.1 Keyboardson thelntel Architecture

Warning: Therest of thischapter iscompletely I ntel specific. |f you’'renot running
on an Intel platform, it will not work. Don’t even try to compilethe code here.

| had a problem with writing the sample code for this chapter. On one hand, for an
example to be useful it has to run on everybody’s computer with meaningful results. On
the other hand, the kernel already includes device drivers for all of the common devices,
and those device drivers won't coexist with what I'm going to write. The solution I've
found was to write something for the keyboard interrupt, and disable the regular keyboard
interrupt handler first. Sinceit is defined asa static symbol in the kernel sourcefiles (specif-
ically,dri ver s/ char/ keyboar d. c), thereis no way to restoreit. Beforeinsmod'ing
this code, do on another terminal sl eep 120 ; reboot if you vaueyour file system.

2queue_t ask_i r q is protected from this by a global lock — in 2.2 there is no queue_t ask.i r q and
queue_t ask is protected by alock.

Thiscode bindsitself to IRQ 1, which isthe IRQ of the keyboard controlled under Intel
architectures. Then, when it receives a keyboard interrupt, it reads the keyboard's status
(that’s the purpose of thei nb(0x64)) and the scan code, which is the value returned by
the keyboard. Then, as soon asthe kernel think it'sfeasible, it runsgot _char which gives
the code of the key used (the first seven bits of the scan code) and whether it has been
pressed (if the 8th bit is zero) or released (if it's one).

intrpt.c

/* intrpt.c - An interrupt handler. */

/* Copyright (C 1998 by Ori Ponerantz */

/* The necessary header files */

/* Standard in kernel nodules */
#i ncl ude <linux/kernel.h> /* W’ re doing kernel work */
#i ncl ude <linux/nmodule.h> /* Specifically, a nodule */

/* Deal with CONFI G MODVERSI ONS */
#i f CONFI G_MODVERSI ONS==1

#defi ne MODVERSI ONS

#i ncl ude <l i nux/nodversi ons. h>
#endi f

#i ncl ude <l i nux/sched. h>
#i ncl ude <l i nux/tqueue. h>

/* W want an interrupt */
#i ncl ude <linux/interrupt.h>

#i ncl ude <asmi o. h>

/*

*

In 2.2.3 /usr/include/linux/version.h includes a
macro for this, but 2.0.35 doesn’t - so | add it
here if necessary. */

#i f ndef KERNEL_VERSI ON
#defi ne KERNEL_VERSI ON(a, b, c) ((a)*65536+(b)*256+(c))
#endi f

/*

*

BottomHalf - this will get called by the kernel
as soon as it's safe to do everything normally
al | owed by kernel nodules. */

static void got_char(void *scancode)

{

printk("Scan Code % %s.\n",

(int) *((char *) scancode) & Ox7F,
*((char *) scancode) & 0x80 ? "Rel eased" : "Pressed");

This function services keyboard interrupts. It reads
the relevant informati on fromthe keyboard and then
schedual es the bottomhalf to run when the kerne
considers it safe. */

void irg_handler(int irq,

{

void *dev_id,
struct pt_regs *regs)

/* This variables are static because they need to be

* accessi bl e (through pointers) to the bottom
* half routine. */

static unsigned char scancode;
static struct tq_struct task =

{NULL, 0, got_char, &scancode};

unsi gned char status;

/* Read keyboard status */
status = i nb(0x64);
scancode = i nb(0x60);

/* Schedual e bottomhalf to run */
#if LI NUX_VERSI ON_CODE > KERNEL_VERSI O\(2, 2, 0)
gueue_t ask(& ask, & qg_i mediate);

#el se

gqueue_task_irqg(& ask, & qg_inmediate);
#endi f

mar k_bh(| MVEDI ATE_BH) ;
}

/* Initialize the nodule - register the I RQ handl er */
int init_nodul e()
{
/* Since the keyboard handl er won’t co-exist with
* anot her handl er, such as us, we have to disable
* it (free its IRQ before we do anything. Since we
* don’t know where it is, there’s no way to

* reinstate it later - so the conmputer will have to
* be rebooted when we’'re done.
*/

free_irqg(l, NULL);

/* Request IRQ 1, the keyboard IRQ to go to our
* irqg_handler. */
return request _irq(
1, /* The nunber of the keyboard I RQ on PCs */
irq_handler, /* our handler */
SA SH RQ
/* SA SHIRQ neans we're willing to have ot he
* handl ers on this | RQ

*

* SA | NTERRUPT can be used to make the
* handler into a fast interrupt.

*/

"test_keyboard_irqg_handl er”, NULL);

/* O eanup */
voi d cl eanup_nodul e()
{
/* This is only here for conpleteness. It's totally
* irrelevant, since we don't have a way to restore
* the nornmal keyboard interrupt so the computer
* is conpletely useless and has to be rebooted. */
free_irqg(l, NULL);
}

TOC

Chapter 12

Symmetrical Multi—Processing

One of the easiest (read, cheapest) ways to improve hardware performance is to put
more than one CPU on the board. This can be done either making the different CPUs
take on different jobs (asymmetrical multi—processing) or by making them all run in paral-
lel, doing the same job (symmetrical multi—processing, ak.a. SMP). Doing asymmetrical
multi—processing effectively requires specialized knowledge about the tasks the computer
should do, which is unavailable in a general purpose operating system such as Linux. On
the other hand, symmetrical multi—processing is relatively easy to implement.

By relatively easy, | mean exactly that — not that it's really easy. In a symmetrical
multi—processing environment, the CPUs share the same memory, and as a result code
running in one CPU can affect the memory used by another. You can no longer be certain
that a variable you've set to a certain value in the previous line still has that value — the
other CPU might have played with it while you weren’t looking. Obviously, it'simpossible
to program like this.

In the case of process programming this normally isn’t an issue, because a process will
normally only run on one CPU at atime!. The kernel, on the other hand, could be called
by different processes running on different CPUs.

In version 2.0.x, thisisn’t a problem because the entire kernel is in one big spinlock.
This means that if one CPU isin the kernel and another CPU wants to get in, for example
because of asystem call, it has to wait until the first CPU is done. This makes Linux SMP
safe?, but terriably inefficient.

1The exception is threaded processes, which can run on several CPUs at once.
2Meaning it is safe to use it with SMP

104

Inversion 2.2.x, several CPUs can be in the kernel at the sametime. Thisis something
module writers need to be aware of. | got somebody to give me access to an SMP box, so
hopefully the next version of this book will include more information.

Chapter 13

Common Pitfalls

Before | send you on your way to go out into the world and write kernel modules, there
are afew things | need to warn you about. If | fail to warn you and something bad happen,
please report the problem to me for afull refund of the amount | got paid for your copy of
the book.

1. Using standard libraries You can't do that. In a kernel module you can only use
kernel functions, which are the functions you can seein/ pr oc/ ksyns.

2. Disabling interrupts You might need to do this for a short time and that is OK, but
if you don't enable them afterwards, your system will be stuck and you'll have to
power it off.

3. Sticking your head inside a large carnivore | probably don't have to warn you
about this, but | figured | will anyway, just in case.

106

Appendix A

Changes between 2.0 and 2.2

I don’'t know the entire kernel well enough do document all of the changes. In the
course of converting the examples (or actually, adapting Emmanuel Papirakis's changes)
I came across the following differences. | listed al of them here together to help module
programmers, especially those who learned from previous versions of this book and are
most familiar with the techniques | use, convert to the new version.

An additional resource for people who wish to convert
to22isinhttp://ww. at nf. csiro. au/ “rgooch/ | i nux/ docs/ porti ng-
to-2.2.htnm .

1. asm/uaccess.h If you need put _user or get _user you haveto #includeit.

2. get_user Inversion 2.2, get _user receives both the pointer into user memory and
the variable in kernel memory to fill with the information. The reason for thisisthat
get _user can now read two or four bytes at atimeif the variable we read is two or
four byteslong.

3. file_.operations This structure now has a flush function between the open and
cl ose functions.

4. closein file_operations In version 2.2, the close function returns an integer, so it's
alowed to fail.

5. read and write in file_operations The headers for these functions changed. They
now return ssi ze_t instead of an integer, and their parameter list is different. The
inode is no longer a parameter, and on the other hand the offset into thefileis.

107

10.

. proc_register _dynamic This function no longer exists. Instead, you call the regular

proc_regi st er and put zero in the inode field of the structure.

. Signals The signals in the task structure are no longer a 32 hit integer, but an array

of _NSI G.\WORDS integers.

. queue_task_irq Evenif you want to scheduale a task to happen from inside an inter-

rupt handler, you use queue_t ask, not queue_t ask_i r q.

. Module Parameters You no longer just declare module parameters as global vari-

ables. In 2.2 you have to also use MODUL E_PARMto declare their type. Thisisabig
improvement, because it allows the module to receive string parameters which start
with a digits, for example, without getting confused.

Symmetrical Multi—Processing The kernel is no longer inside one huge spinlock,
which means that kernel modules have to be aware of SMP.

Appendix B

Where From Here?

I could easily have squeezed a few more chapters into this book. | could have added a
chapter about creating new file systems, or about adding new protocols stacks (asif there's
a need for that — you'd have to dig under ground to find a protocol stack not supported
by Linux). | could have added explanations of the kernel mechanisms we haven't touched
upon, such as bootstrapping or the disk interface.

However, | chose not to. My purpose in writing this book was to provide initiation
into the mysteries of kernel
module programming and to teach the common techniques for that purpose. For people
serioudly interested in kernel programming, | recommend the list of kernel resources in
http://jungla.dit.upmes/™jnseyas/| inux/kernel/hackers-
docs. ht m . Also, as Linus said, the best way is to learn the kernel is to read the source
code yourself.

If you're interested in more examples of short kernel modules, | recommend Phrack
magazine. Even if you're not interested in security, and as a programmer you should be,
the kernel modules there are good examples of what you can do inside the kernel, and
they’re short enough not to require too much effort to understand.

| hope | have helped you in your quest to become a better programmer, or at least to
have fun through technology. And, if you do write useful kernel modules, | hope you
publish them under the GPL, so | can use them too.

109

Appendix C

Goods and Services

I hope nobody minds the shameless promations here. They are al things which are
likely to be of use to beginning Linux Kernel Module programmers.

C.1 Getting thisBook in Print

The Coriolis group is going to print this book sometimes in the summer of *99. If this
is already summer, and you want this book in print, you can go easy on your printer and
buy it in anice, bound form.

110

Appendix D

Showing Your Appreciation

This is a free document. You have no obligations beyond those given in the GNU
Public License (Appendix E). However, if you want to do something in return for getting
this book, there are a few things you could do.

e Send me apostcard to
Oi Pomerant z
Apt. #1032
2355 N Hwy 360
Grand Prairie
TX 75050
USA
If you want to receive athank-you from me, include your e-mail address.

o Contribute money, or better yet, time, to the free software community. Write a pro-
gram or a document and publish it under the GPL. Teach other people how to use
free software, such as Linux or Perl.

e Explain to people how being selfish is not incompatible with living in a society or
with helping other people. | enjoyed writing this document, and | believe publishing
it will contribute to me in the future. At the same time, | wrote a book which, if
you got this far, helps you. Remember that happy people are usually more useful
to oneself than unhappy people, and able people are way better than people of low
ability.

111

e Behappy. If | get to meet you, it will make the encounter better for me, it will make
you more useful for me;-).

Appendix E

The GNU General Public License

Printed below is the GNU General Public License (the GPL or copyleft), under which
this book is licensed.

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge,
MA 02139, USA Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software-to make sure the softwareisfreefor all itsusers.
This General Public License applies to most of the Free Software Foundation’s software
and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public Licenseinstead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain

113

responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such aprogram, whether gratis or for afee, you
must give the recipients al the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program isthreatened constantly by software patents. Wewishto avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone'sfree use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General
Public License. The ‘Program’, below, refers to any such program or work, and a
‘work based on the Program’ means either the Program or any derivative work under
copyright law: that isto say, awork containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
trandation is included without limitation in the term ‘modification’.) Each licensee
isaddressed as ‘you'.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work
based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receiveit, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may chargeafeefor the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for afee.

. You may modify your copy or copies of the Program or any portion of it, thus form-
ing a work based on the Program, and copy and distribute such modifications or
work under the terms of Section 1 above, provided that you also meet all of these
conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no chargeto al third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must causeit, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the
Program itself isinteractive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do
not apply to those sections when you distribute them as separate works. But when
you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose
permissionsfor other licensees extend to the entire whole, and thusto each and every
part regardless of who wroteit.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with awork based on the Program) on a volume of a storage or distri-
bution medium does not bring the other work under the scope of this License.

. You may copy and distribute the Program (or awork based on it, under Section 2) in
object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

a. Accompany it with the complete corresponding machine-readabl e source code,
which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

b. Accompany it with awritten offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source
distribution, a complete machine-readable copy of the corresponding source
code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢. Accompany it with theinformation you received asto the offer to distribute cor-
responding source code. (This aternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making mod-
ifications to it. For an executable work, complete source code means al the source
code for al modules it contains, plus any associated interface definition files, plus
the scripts used to control compilation and installation of the executable. However,
as a specia exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components
(compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
adesignated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are
not compelled to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under

this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such partiesremainin
full compliance.

. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its deriva-
tive works. These actions are prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program (or any work based on the Pro-
gram), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receivesalicensefrom the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement or
for any other reason (not limited to patent issues), conditions are imposed on you
(whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you
cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit royalty-free
redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be
to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole isintended to apply in other circumstances.

It isnot the purpose of this section to induce you to infringe any patents or other prop-
erty right claims or to contest validity of any such claims; this section has the sole
purpose of protecting the integrity of the free software distribution system, which is
implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or

10.

11

she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a conse-
guence of the rest of this License.

. If the distribution and/or use of the Program is restricted in certain countries either

by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

. The Free Software Foundation may publish revised and/or new versions of the Gen-

eral Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which appliesto it and ‘any later version’, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify
aversion number of this License, you may choose any version ever published by the
Free Software Foundation.

If you wish to incorporate parts of the Program into other free programswhose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by
the two goals of preserving the free status of al derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE ISNO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY AP-
PLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM *AS IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM ISWITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY
WHO MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMIT-
TED ABOVE, BELIABLE TO YOU FOR DAMAGES, INCLUDING ANY GEN-
ERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THEUSE OR INABILITY TOUSE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
APPENDIX: HOW TO APPLY THESE TERMS TO YOUR NEW PROGRAMS

If you develop a new program, and you want it to be of the greatest possible use to
the public, the best way to achieve this is to make it free software which everyone can
redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the ‘ copyright’ line and a pointer to where the full notice is found.

onelineto givethe program’s name and a brief idea of what it does. Copyright
©19yy name of author

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Soft-
ware Foundation; either version 2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc., 675
Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it startsin an
interactive mode:

Gnonovi si on version 69, Copyright (C 19yy nane of author
Ghonovi sion cones with ABSOLUTELY NO WARRANTY; for
details type showw. This is free software, and you are
wel cone to redistribute it under certain conditions; type
show ¢ for details.

The hypothetical commands show w and show ¢ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than show w and show c; they could even be mouse-clicks or menu items—-whatever
suits your program.

You should also get your employer (if you work as a programmer) or your schoal, if
any, to sign a ‘copyright disclaimer’ for the program, if necessary. Here is a sample; alter
the names:

Yoyodyne, Inc., hereby disclaimsall copyright interest in the program Gnomo-
vision (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into propri-
etary programs. If your program is a subroutine library, you may consider it more useful to
permit linking proprietary applications with the library. If thisis what you want to do, use
the GNU Library General Public Licenseinstead of this License.

| ndex

/dev, 12, 13
/proc file system, 25
/proc/interrupts, 98
/proc/ksyms, 106
/proc/meminfo, 25
/proc/modules, 8, 14, 25
/proc

using for input, 32

_10, 44
-IOR, 44
_10W, 44
_IOWR, 44
NSIG_WORDS, 108
_KERNEL__, 7
_NO_VERSION_,, 8
_SMP__, 7
2.0.x kernel, 24
2.2 changes, 107
2.2.x kernel, 24
access

sequential, 13
argc, 61
argv, 61

asm/uaccess.h, 107

BH_IMMEDIATE, 98
blocking processes, 73
blocking, how to avoid, 74

121

bottom half, 98
busy, 73

calls

system, 65
character devicefiles, 12
chardev.c, sourcefile, 14, 44
chardev.h, source file, 55
cleanup_module, 5, 14
cleanup_module

genera purpose, 13
close, 107
compilation

conditional, 24
compiling, 6
conditional compilation, 24
config.h, 7
CONFIG_.MODVERSIONS, 7
configuration

kerndl, 7
console, 8
copying Linux, 120
copyright, 113-120
CPU

multiple, 104
crontab, 90
ctrl-c, 74
current pointer, 33
current task, 86

defining ioctls, 57
development version

kernel, 23
devicefiles

block, 13
devicefiles

character, 12, 13
devicefiles

input to, 43
device number

major, 13
devices

physical, 12
DOS, 2

EAGAIN, 74

EINTR, 74

elf_i386, 9

ENTRY (system_call), 66
entry.S, 66

file system registration, 32
file system

/proc, 25
file_operations structure, 13, 32
file_operations

structure, 107
flush, 107
Free Software Foundation, 113

General Public License, 113-120
get_user, 33, 107
GNU

General Public License, 113-120

handlers
interrupt, 97

hard disk

partitions of, 12
hard wiring, 61
header file for ioctls, 57
hello world, 5
hello.c, sourcefile, 5
housekeeping, 90

IDE

hard disk, 12
inb, 99
init_-module, 5
init_-module

genera purpose, 13
inode, 25
inode_operations structure, 32
input to devicefiles, 43
Input

using /proc for, 32
insmod, 8, 61, 65
intel architecture

keyboard, 98
interrupt 0x80, 66
interrupt handlers, 97
interruptibe_sleep_on, 73
interrupts, 108
interrupts

disabling, 106
intrpt.c, source file, 99
ioctl, 43
ioctl.c, sourcefile, 57
ioctl

defining, 57
ioctl

header file for, 57
ioctl

official assignment, 44

ioctl
using in a process, 60
irgs, 108

kernel configuration, 7
kernel versions, 23
KERNEL_VERSION, 24
kernel _version, 8
keyboard, 98
ksyms

proc file, 106

Id, 9
libraries
standard, 106
LINUX, 7
Linux
copyright, 120
LINUX_VERSION_CODE, 24

MACRO_PARM, 61

major device number, 13
major number, 12

makefile, 6

Makefile, sourcefile, 7, 11
mark_bh, 98

memory segments, 33

minor number, 12

mknod, 13
MOD_DEC_USE_COUNT, 14
MOD_INC_USE_COUNT, 14, 67
mod_use_count_, 14

modem, 12, 43

MODULE, 7

Module Parameters, 108
module.h, 8

module_cleanup, 91

module_interruptibe_sleep_on, 73
MODULE_PARM, 108
module_permissions, 33
module_register_chrdev, 13
module_sleep_on, 74, 91
module_wake_up, 74
modversions.h, 7

multi tasking, 73
multi-processing, 104
multiple sourcefiles, 8
multitasking, 74

non blocking, 74
number

major (of device driver), 12

number

major (of physical device), 12

O_NONBLOCK, 74
official ioctl assignment, 44
open

system call, 66

param.c, sourcefile, 61
Parameters

Module, 108
parameters

startup, 61
partition

of hard disk, 12
permissions, 33
physical devices, 12
pointer

current, 33
printk, 8
printk.c, sourcefile, 86

printk root, 8

replacing, 86
proc file system, 25 SA_INTERRUPT, 98
proc SA_SHIRQ, 98

using for input, 32 salut mundi, 5
proc_dir_entry structure, 32 sched.c, source file, 91
proc_register, 25, 108 scheduler, 74
proc_register_dynamic, 25, 108 scheduling tasks, 90
processes segment

blocking, 73 memory, 33
Processes selfishness, 111

kiIIing, 74 sequential access, 13
processes serial port, 43

putting to sleep, 73 shutdown, 65
processes SIGINT, 74

_ waking up, 74 signal, 74

processng) signals, 108

mult, %04 sleep.c, sourcefile, 74
procfs.c, sourcefile, 26, 33 g

eep
put_.user, 33,107 putting processes to, 73
putting processesto sleep, 73 sleep_on, 74, 91
queue task, 90, 98, 108 SV, 104, 108
queue_task_irg, 98, 108 source files
multiple, 8

read, 107 source
read chardev.c, 14, 44

inthe kernel, 33 source
reference count, 14, 91 chardev.h, 55
refund policy, 106 source
registration hello.c, 5

file system, 32 source
replacing printk’s, 86 intrpt.c, 99
request_irqg, 98 source
rmmod, 8, 65, 67, 91 ioctl.c, 57
rmmod source

preventing, 14 Makefile, 7, 11

source sys._open, 67

param.c, 61 syscall.c, sourcefile, 67
source system calls, 65
printk.c, 86 system_call, 66
source
procfs.c, 26, 33 task, 90
source task structure, 73
sched.c, 91 task
source current, 86
sleep.c, 74 TASK_INTERRUPTIBLE, 73
source tasks
start.c, 9 scheduling, 90
source terminal, 12
stop.c, 10 terminal
source virtual, 8
syscall.c, 67 tg-immediate, 98
ssize t, 107 tg_struct struct, 90
stable version tg_timer, 90
kernel, 23 tty_struct, 86
standard libraries, 106 type checking, 61
start.c, sourcefile, 9
startup parameters, 61 uaccess.h
stop.c, sourcefile, 10 asm, 107
strace, 65
struct file_operations, 13, 32 version.h, 8
struct inode_operations, 32 versions supported, 24
struct proc_dir_entry, 32 versions
struct tg_struct, 90 kernel, 107
struct virtual terminal, 8
tty, 86
structure waking up processes, 74
task, 73 write, 107
Symmetrical Multi—Processing, 108 write
symmetrical multi—processing, 104 in the kernel, 33
sync, 65 write

sys_cal_table, 66 to devicefiles, 43

X
why you should avoid, 8
xterm -C, 8

	toc:

