XML Bible

Elliotte Rusty Harold

2

WORLDWIDE

IDG Books Worldwide, Inc.
An International Data Group Company

Foster City, CA O Chicago, IL O Indianapolis, IN O New York, NY

XML™ Bible

Published by

IDG Books Worldwide, Inc.

An International Data Group Company

919 E. Hillsdale Blvd., Suite 400

Foster City, CA 94404

www . idgbooks. com (IDG Books Worldwide Web site)

Copyright © 1999 IDG Books Worldwide, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced or
transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.

ISBN: 0-7645-3236-7

Printed in the United States of America
10987654321

10/QV/QY/ZZ/FC

Distributed in the United States by IDG Books
Worldwide, Inc.

Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United Kingdom:;
by IDG Norge Books for Norway; by IDG Sweden Books
for Sweden; by IDG Books Australia Publishing
Corporation Pty. Ltd. for Australia and New Zealand; by
TransQuest Publishers Pte Ltd. for Singapore,
Malaysia, Thailand, Indonesia, and Hong Kong; by
Gotop Information Inc. for Taiwan; by ICG Muse, Inc.
for Japan; by Norma Comunicaciones S.A. for
Colombia; by Intersoft for South Africa; by Eyrolles for
France; by International Thomson Publishing for
Germany, Austria and Switzerland; by Distribuidora
Cuspide for Argentina; by Livraria Cultura for Brazil; by
Ediciones ZETA S.C.R. Ltda. for Peru; by WS Computer
Publishing Corporation, Inc., for the Philippines; by
Contemporanea de Ediciones for Venezuela; by
Express Computer Distributors for the Caribbean and
West Indies; by Micronesia Media Distributor, Inc. for
Micronesia; by Grupo Editorial Norma S.A. for
Guatemala; by Chips Computadoras S.A. de C.V. for
Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland.
Authorized Sales Agent: Anthony Rudkin Associates for
the Middle East and North Africa.

For general information on IDG Books Worldwide’s
books in the U.S., please call our Consumer Customer
Service department at 800-762-2974. For reseller
information, including discounts and premium sales,
please call our Reseller Customer Service department
at 800-434-3422.

For information on where to purchase IDG Books
Worldwide’s books outside the U.S., please contact our
International Sales department at 317-596-5530 or fax
317-596-5692.

For consumer information on foreign language
translations, please contact our Customer Service
department at 800-434-3422, fax 317-596-5692, or e-mail
rights@idgbooks.com.

For information on licensing foreign or domestic rights,
please phone +1-650-655-3109.

For sales inquiries and special prices for bulk
quantities, please contact our Sales department at
650-655-3200 or write to the address above.

For information on using IDG Books Worldwide’s books
in the classroom or for ordering examination copies,
please contact our Educational Sales department at
800-434-2086 or fax 317-596-5499.

For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 650-655-3000 or fax
650-655-3299.

For authorization to photocopy items for corporate,
personal, or educational use, please contact Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, or fax 978-750-4470.

Library of Congress Cataloging-in-Publication Data
Harold, Elliote Rusty.

XML bible / Elliote Rusty Harold.

p. cm.

ISBN 0-7645-3236-7 (alk. paper)

1. XML (Document markup language) I. Title.
QA76.76.H94H34 1999 99-31021
005.7'2--dc21 CIP

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR BEST
EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK
AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS
CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF THE
INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED OR
WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR AUTHOR SHALL
BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: All brand names and product names used in this book are trade names, service marks, trademarks,
or registered trademarks of their respective owners. IDG Books Worldwide is not associated with any product or
vendor mentioned in this book.

——

DG
KS

WORLDWIDE

is a registered trademark or trademark under exclusive license
to IDG Books Worldwide, Inc. from International Data Group, Inc.
in the United States and/or other countries.

ABOUT IDG BOOKS WORLDWIDE

Welcome to the world of IDG Books Worldwide.

IDG Books Worldwide, Inc., is a subsidiary of International Data Group, the world's largest publisher of
computer-related information and the leading global provider of information services on information technology.
IDG was founded more than 30 years ago by Patrick J. McGovern and now employs more than 9,000 people
worldwide. IDG publishes more than 290 computer publications in over 75 countries. More than 90 million
people read one or more IDG publications each month.

Launched in 1990, IDG Books Worldwide is today the #1 publisher of best-selling computer books in the
United States. We are proud to have received eight awards from the Computer Press Association in recognition
of editorial excellence and three from Computer Currents’ First Annual Readers’ Choice Awards. Our best-
selling ...For Dummies® series has more than 50 million copies in print with translations in 31 languages. IDG
Books Worldwide, through a joint venture with IDG’s Hi-Tech Beijing, became the first U.S. publisher to
publish a computer book in the People’s Republic of China. In record time, IDG Books Worldwide has become
the first choice for millions of readers around the world who want to learn how to better manage their
businesses.

Our mission is simple: Every one of our books is designed to bring extra value and skill-building instructions
to the reader. Our books are written by experts who understand and care about our readers. The knowledge
base of our editorial staff comes from years of experience in publishing, education, and journalism —
experience we use to produce books to carry us into the new millennium. In short, we care about books, so
we attract the best people. We devote special attention to details such as audience, interior design, use of
icons, and illustrations. And because we use an efficient process of authoring, editing, and desktop publishing
our books electronically, we can spend more time ensuring superior content and less time on the technicalities
of making books.

You can count on our commitment to deliver high-quality books at competitive prices on topics you want
to read about. At IDG Books Worldwide, we continue in the IDG tradition of delivering quality for more than
30 years. You'll find no better book on a subject than one from IDG Books Worldwide.

.
IDG %ohn Kilcullen Steven Berkowitz %

BOOKS Chairman and CEO President and Publisher
WORLDWIDE IDG Books Worldwide, Inc. IDG Books Worldwide, Inc.
E—
E
=— =— ==~
WINNER IX X WINNER
A— A—
Eighth Annual M M Eleventh Annual
Computer Press N Computer Press
Awards: 1992 Ninth Annual Tenth Annual Awards: 1995
é Computer Press Computer Press é
Awardsém% Awardsélgm

IDG is the world’s leading IT media, research and exposition company. Founded in 1964, IDG had 1997 revenues of $2.05
billion and has more than 9,000 employees worldwide. IDG offers the widest range of media options that reach IT buyers
in 75 countries representing 95% of worldwide IT spending. IDG's diverse product and services portfolio spans six key areas
including print publishing, online publishing, expositions and conferences, market research, education and training, and
global marketing services. More than 90 million people read one or more of IDG’s 290 magazines and newspapers, including
IDG’s leading global brands — Computerworld, PC World, Network World, Macworld and the Channel World family of
publications. IDG Books Worldwide is one of the fastest-growing computer book publishers in the world, with more than
700 titles in 36 languages. The “...For Dummies®” series alone has more than 50 million copies in print. IDG offers online
users the largest network of technology-specific Web sites around the world through IDG.net (http://www.idg.net), which
comprises more than 225 targeted Web sites in 55 countries worldwide. International Data Corporation (IDC) is the world’s
largest provider of information technology data, analysis and consulting, with research centers in over 41 countries and more
than 400 research analysts worldwide. IDG World Expo is a leading producer of more than 168 globally branded conferences
and expositions in 35 countries including E3 (Electronic Entertainment Expo), Macworld Expo, ComNet, Windows World
Expo, ICE (Internet Commerce Expo), Agenda, DEMO, and Spotlight. IDG’s training subsidiary, ExecuTrain, is the world’s
largest computer training company, with more than 230 locations worldwide and 785 training courses. IDG Marketing
Services helps industry-leading IT companies build international brand recognition by developing global integrated marketing
programs via IDG's print, online and exposition products worldwide. Further information about the company can be found
at www.idg.com. 1/24/99

Credits

Acquisitions Editor Copy Editors
John Osborn Amy Eoff
Amanda Kaufman
Development Editor Nicole LeClerc
Terri Varveris Victoria Lee
Contributing Writer Production
Heather Williamson IDG Books Worldwide Production
Technical Editor Proofreading and Indexing
Greg Guntle York Production Services

About the Author

Elliotte Rusty Harold is an internationally respected writer, programmer, and
educator both on the Internet and off. He got his start by writing FAQ lists for the
Macintosh newsgroups on Usenet, and has since branched out into books, Web
sites, and newsletters. He lectures about Java and object-oriented programming
at Polytechnic University in Brooklyn. His Cafe con Leche Web site at http://
metalab.unc.edu/xml/ has become one of the most popular independent XML
sites on the Internet.

Elliotte is originally from New Orleans where he returns periodically in search of
a decent bowl of gumbo. However, he currently resides in the Prospect Heights
neighborhood of Brooklyn with his wife Beth and cats Charm (named after the
quark) and Marjorie (named after his mother-in-law). When not writing books, he
enjoys working on genealogy, mathematics, and quantum mechanics. His previous
books include The Java Developer’s Resource, Java Network Programming, Java
Secrets, JavaBeans, XML: Extensible Markup Language, and Java 1/0.

For Ma, a great grandmother

Preface

Welcome to the XML Bible. After reading this book | hope you’ll agree with me that
XML is the most exciting development on the Internet since Java, and that it makes
Web site development easier, more productive, and more fun.

This book is your introduction to the exciting and fast growing world of XML. In this
book, you'll learn how to write documents in XML and how to use style sheets to
convert those documents into HTML so legacy browsers can read them. You'll

also learn how to use document type definitions (DTDs) to describe and validate
documents. This will become increasingly important as more and more browsers like
Mozilla and Internet Explorer 5.0 provide native support for XML.

About You the Reader

Unlike most other XML books on the market, the XML Bible covers XML not from
the perspective of a software developer, but rather that of a Web-page author. |
don’t spend a lot of time discussing BNF grammars or parsing element trees.
Instead, | show you how you can use XML and existing tools today to more
efficiently produce attractive, exciting, easy-to-use, easy-to-maintain Web sites
that keep your readers coming back for more.

This book is aimed directly at Web-site developers. | assume you want to use XML
to produce Web sites that are difficult to impossible to create with raw HTML. You'll
be amazed to discover that in conjunction with style sheets and a few free tools,
XML enables you to do things that previously required either custom software
costing hundreds to thousands of dollars per developer, or extensive knowledge

of programming languages like Perl. None of the software in this book will cost

you more than a few minutes of download time. None of the tricks require any
programming.

What You Need to Know

XML does build on HTML and the underlying infrastructure of the Internet. To that
end, | will assume you know how to use ftp files, send email, and load URLs in your
Web browser of choice. | will also assume you have a reasonable knowledge of
HTML at about the level supported by Netscape 1.1. On the other hand, when |
discuss newer aspects of HTML that are not yet in widespread use like cascading
style sheets, | will cover them in depth.

Preface

To be more specific, in this book | assume that you can:

0 Write a basic HTML page including links, images, and text using a text editor.

O Place that page on a Web server.
On the other hand, | do not assume that you:

0 Know SGML. In fact, this preface is almost the only place in the entire book
you’ll see the word SGML used. XML is supposed to be simpler and more
widespread than SGML. It can’t be that if you have to learn SGML first.

O Are a programmer, whether of Java, Perl, C, or some other language, XML is
a markup language, not a programming language. You don’t need to be a
programmer to write XML documents.

What You'll Learn

This book has one primary goal; to teach you to write XML documents for the Web.
Fortunately, XML has a decidedly flat learning curve, much like HTML (and unlike
SGML). As you learn a little you can do a little. As you learn a little more, you can do
a little more. Thus the chapters in this book build steadily on each other. They are
meant to be read in sequence. Along the way you'll learn:

O How an XML document is created and delivered to readers.

0 How semantic tagging makes XML documents easier to maintain and develop
than their HTML equivalents.

How to post XML documents on Web servers in a form everyone can read.
How to make sure your XML is well-formed.

How to use international characters like _and _ in your documents.

How to validate documents with DTDs.

How to use entities to build large documents from smaller parts.

How attributes describe data.

How to work with non-XML data.

How to format your documents with CSS and XSL style sheets.

How to connect documents with XLinks and Xpointers.

O oo o0oogoooogooo

How to merge different XML vocabularies with namespaces.

0 How to write metadata for Web pages using RDF.

Preface Xi

In the final section of this book, you’ll see several practical examples of XML being
used for real-world applications including:

O Web Site Design
0 Push

O Vector Graphics
0 Genealogy

How the Book Is Organized

This book is divided into five parts and includes three appendixes:

l. Introducing XML

I. Document Type Definitions
Il Style Languages

V. Supplemental Technologies
V. XML Applications

By the time you're finished reading this book, you’ll be ready to use XML to create
compelling Web pages. The five parts and the appendixes are described below.

Part I. Introducing XML

Part | consists of Chapters 1 through 7. It begins with the history and theory behind
XML, the goals XML is trying to achieve, and shows you how the different pieces of
the XML equation fit together to create and deliver documents to readers. You’'ll see
several compelling examples of XML applications to give you some idea of the wide
applicability of XML, including the Vector Markup Language (VML), the Resource
Description Framework (RDF), the Mathematical Markup Language (MathML), the
Extensible Forms Description Language (XFDL), and many others. Then you’ll learn
by example how to write XML documents with tags you define that make sense for
your document. You’ll see how to edit them in a text editor, attach style sheets to
them, and load them into a Web browser like Internet Explorer 5.0 or Mozilla. You'll
even learn how you can write XML documents in languages other than English,
even languages that aren’t written remotely like English, such as Chinese, Hebrew,
and Russian.

XIi

Preface

Part 1l: Document Type Definitions

Part Il consists of Chapters 8 through 11, all of which focus on document type
definitions (DTDs). An XML document may optionally contain a DTD that specifies
which elements are and are not allowed in an XML document. The DTD specifies
the exact context and structure of those elements. A validating parser can read a
document and compare it to its DTD, and report any mistakes it finds. This enables
document authors to make sure that their work meets any necessary criteria.

In Part Il, you’ll learn how to attach a DTD to a document, how to validate your
documents against their DTDs, and how to write your own DTDs that solve your
own problems. You’l learn the syntax for declaring elements, attributes, entities,
and notations. You’'ll see how you can use entity declarations and entity references
to build both a document and its DTD from multiple, independent pieces. This
allows you to make long, hard-to-follow documents much simpler by separating
them into related modules and components. And you’ll learn how to integrate other
forms of data like raw text and GIF image files in your XML document.

Part Ill: Style Languages

Part Ill consists of Chapters 12 through 15. XML markup only specifies what'’s in a
document. Unlike HTML, it does not say anything about what that content should
look like. Information about an XML document’s appearance when printed, viewed
in a Web browser, or otherwise displayed is stored in a style sheet. Different style
sheets can be used for the same document. You might, for instance, want to use a
style sheet that specifies small fonts for printing, another one that uses larger fonts
for on-screen use, and a third with absolutely humongous fonts to project the
document on a wall at a seminar. You can change the appearance of an XML docu-
ment by choosing a different style sheet without touching the document itself.

Part Il describes in detail the two style sheet languanges in broadest use on the
Web, Cascading Style Sheets (CSS) and the Extensible Style Language (XSL).

CSS is a simple style-sheet language originally designed for use with HTML. CSS
exists in two versions: CSS Level 1 and CSS Level 2. CSS Level 1 provides basic
information about fonts, color, positioning, and text properties, and is reasonably
well supported by current Web browsers for HTML and XML. CSS Level 2 is a more
recent standard that adds support for aural style sheets, user interface styles,
international and bi-directional text, and more. CSS is a relatively simple standard
that spplies fixed style rules to the contents of particular elements.

XSL, by contrast, is a more complicated and more powerful style language that cannot
only apply styles to the contents of elements but can also rearrange elements, add
boilerplate text, and transform documents in almost arbitrary ways. XSL is divided
into two parts: a transformation language for converting XML trees to alternative
trees, and a formatting language for specifying the appearance of the elements of an
XML tree. Currently, the transformation language is better supported by most tools

Preface Xili

than the formatting language. Nonetheless, it is beginning to firm up, and is supported
by Microsoft Internet Explorer 5.0 and some third-party formatting engines.

Part IV: Supplemental Technologies

Part IV consists of Chapters 16 through 19. It introduces some XML-based languages
and syntaxes that layer on top of basic XML. XLinks provides multi-directional
hypertext links that are far more powerful than the simple HTML <A> tag. XPointers
introduce a new syntax you can attach to the end of URLs to link not only to parti-
cular documents, but to particular parts of particular documents. Namespaces use
prefixes and URLs to disambiguate conflicting XML markup languages. The Resource
Description Framework (RDF) is an XML application used to embed meta-data in
XML and HTML documents. Meta-data is information about a document, such as the
author, date, and title of a work, rather than the work itself. All of these can be added
to your own XML-based markup languages to extend their power and utility.

Part V: XML Applications

Part V, which consists of Chapters 20-23, shows you four practical uses of XML in
different domains. XHTML is a reformulation of HTML 4.0 as valid XML. Microsoft’s
Channel Definition Format (CDF), is an XML-based markup language for defining
channels that can push updated Web site content to subscribers. The Vector
Markup Language (VML) is an XML application for scalable graphics used by Micro-
soft Office 2000 and Internet Explorer 5.0. Finally, a completely new application is
developed for genealogical data to show you not just how to use XML tags, but why
and when to choose them.

Appendixes

This book has two appendixes, which focus on the formal specifications for XML, as
opposed to the more informal description of it used throughout the rest of the
book. Appendix A provides detailed explanations of three individual parts of the
XML 1.0 specification: XML BNF grammar, well-formedness constraints, and the
validity constraints. Appendix B contains the official W3C XML 1.0 specification
published by the W3C. The book also has a third appendix, Appendix C, which
describes the contents of the CD-ROM that accompanies this book.

What You Need

To make the best use of this book and XML, you need:

O A PC running Windows 95, Windows 98, or Windows NT
O Internet Explorer 5.0

0 AJava 1.1 or later virtual machine

XV

Preface

Any system that can run Windows will suffice. In this book, | mostly assume you're
using Windows 95 or NT 4.0 or later. As a longtime Mac and Unix user, | somewhat
regret this. Like Java, XML is supposed to be platform independent. Also like Java,
the reality is somewhat short of the hype. Although XML code is pure text that can
be written with any editor, many of the tools are currently only available on
Windows.

However, although there aren’t many Unix or Macintosh native XML programs,
there are an increasing number of XML programs written in Java. If you have a Java
1.1 or later virtual machine on your platform of choice, you should be able to make
do. Even if you can’t load your XML documents directly into a Web browser, you
can still convert them to XML documents and view those. When Mozilla is released,
it should provide the best XML browser yet across multiple platforms.

How to Use This Book

This book is designed to be read more or less cover to cover. Each chapter builds
on the material in the previous chapters in a fairly predictable fashion. Of course,
you’re always welcome to skim over material that’s already familiar to you. | also
hope you’ll stop along the way to try out some of the examples and to write some
XML documents of your own. It’s important to learn not just by reading, but also by
doing. Before you get started, I'd like to make a couple of notes about grammatical
conventions used in this book.

Unlike HTML, XML is case sensitive. <FATHER> is not the same as <Father> or
<father>. The father element is not the same as the Father element or the
FATHER element. Unfortunately, case-sensitive markup languages have an annoying
habit of conflicting with standard English usage. On rare occasion this means

that you may encounter sentences that don’t begin with a capital letter. More
commonly, you'll see capitalization used in the middle of a sentence where you
wouldn’t normally expect it. Please don’t get too bothered by this. All XML and
HTML code used in this book is placed in a monospaced font, so most of the time
it will be obvious from the context what is meant.

| have also adopted the British convention of only placing punctuation inside quote
marks when it belongs with the material quoted. Frankly, although | learned to write
in the American educational system, | find the British system is far more logical,
especially when dealing with source code where the difference between a comma
or a period and no punctuation at all can make the difference between perfectly
correct and perfectly incorrect code.

Preface XV

What the Icons Mean

Throughout the book, I've used icons in the left margin to call your attention to
points that are particularly important.

-
Note Note icons provide supplemental information about the subject at hand, but gen-
€ erally something that isn’t quite the main idea. Notes are often used to elaborate
on a detailed technical point.

Tip Tip icons indicate a more efficient way of doing something, or a technique that

\ may not be obvious.

F

ontha CD-ROM icons tell you that software discussed in the book is available on the

CD-@ % companion CD-ROM. This icon also tells you if a longer example, discussed but
; not included in its entirety in the book, is on the CD-ROM.

Caution icons warn you of a common misconception or that a procedure doesn’t

Caution always work quite like it's supposed to. The most common purpose of a Caution
icon in this book is to point out the difference between what a specification says
should happen, and what actually does.

) gr?ss_ \ The Cross Reference icon refers you to other chapters that have more to say about
eference , particular subject.

= i

About the Companion CD-ROM

The inside back cover of this book contains a CD-ROM that holds all numbered
code listings that you'll find in the text. It also includes many longer examples that
couldn’t fit into this book. The CD-ROM also contains the complete text of various
XML specifications in HTML. (Some of the specifications will be in other formats as
well.) Finally, you will find an assortment of useful software for working with XML
documents. Many (though not all) of these programs are written in Java, so they’ll
run on any system with a reasonably compatible Java 1.1 or later virtual machine.
Most of the programs that aren’t written in Java are designed for Windows 95, 98,
and NT.

For a complete description of the CD-ROM contents, you can read Appendix C. In
addition, to get a complete description of what is on the CD-ROM, you can load the
file index.html onto your Web browser. The files on the companion CD-ROM are not
compressed, so you can access them directly from the CD.

XVi

Preface

Reach Out

The publisher and | want your feedback. After you have had a chance to use this
book, please take a moment to complete the IDG Books Worldwide Registration
Card (in the back of the book). Please be honest in your evaluation. If you thought a
particular chapter didn’t tell you enough, let me know. Of course, | would prefer to
receive comments like: “This is the best book I've ever read”, “Thanks to this book,
my Web site won Cool Site of the Year”, or “When | was reading this book on the
beach, | was besieged by models who thought | was super cool”, but I'll take any
comments | can get :-).

Feel free to send me specific questions regarding the material in this book. I'll do
my best to help you out and answer your questions, but | can’t guarantee a reply.
The best way to reach me is by email:

elharo@metalab.unc.edu

Also, | invite you to visit my Cafe con Leche Web site at http://metalab.unc.
edu/xm1/, which contains a lot of XML-related material and is updated almost
daily. Despite my persistent efforts to make this book perfect, some errors have
doubtless slipped by. Even more certainly, some of the material discussed here
will change over time. I'll post any necessary updates and errata on my Web site at
http://metalab.unc.edu/xml/books/bible/. Please let me know via email of
any errors that you find that aren’t already listed.

Elliotte Rusty Harold
elharo@metalab.unc.edu
http://metalab.unc.edu/xml/
New York City, June 1999

Acknowledgments

The folks at IDG have all been great. The acquisitions editor, John Osborn, deserves
special thanks for arranging the unusual scheduling this book required to hit the
moving target XML presents. Terri Varveris shepherded this book through the
development process. With poise and grace, she managed the constantly shifting
outline and schedule that a book based on unstable specifications and software
requires. Amy Eoff corrected many of my grammatical shortcomings. Susan Parini
and Ritchie Durdin, the production coordinators, also deserve special thanks for
managing the production of this book and for dealing with last-minute figure
changes.

Steven Champeon brought his SGML experience to the book, and provided many
insightful comments on the text. My brother Thomas Harold put his command
of chemistry at my disposal when | was trying to grasp the Chemical Markup
Language. Carroll Bellau provided me with parts of my family tree, which you'll
find in Chapter 17.

| also greatly appreciate all the comments, questions, and corrections sent in by
readers of my previous book, XML: Extensible Markup Language. | hope that I've
managed to address most of those comments in this book. They’ve definitely
helped make XML Bible a better book. Particular thanks are due to Alan Esenther
and Donald Lancon Jr. for their especially detailed comments.

WandaJane Phillips wrote the original version of Chapter 21 on CDF that is adapted
here. Heather Williamson, in addition to performing yeoman-like service as technical
editor, wrote Chapter 13, CSS Level 2, and parts of Chapters 18, 19, and 22. Her help
was instrumental in helping me almost meet my deadline. (Blame for this almost
rests on my shoulders, not theirs.) Also, | would like to thank Piroz Mohseni, who
also served as a technical editor for this book.

The agenting talents of David and Sherry Rogelberg of the Studio B Literary Agency
(http://www.studiob.com/) have made it possible for me to write more or less
full-time. | recommend them highly to anyone thinking about writing computer
books. And as always, thanks go to my wife Beth for her endless love and
understanding.

Contents at a Glance

PIEIACE ... bbbt bbbttt iX
ACKNOWIEAGMENTS ...ttt ettt beenbesnbearee s XVii
Part I: INtroduCing XIML ... 1
Chapter 1: An Eagle’s Eye VIiew Of XML ..ot 3
Chapter 2: An Introduction to XML Applicationscooeieiiiiiiiiinieere e 17
Chapter 3: Your First XML DOCUMENT cooieiiiiieiie e 49
Chapter 4: StruCturing DAtacccccevieiieiieieeie et ste e 59
Chapter 5: Attributes, Empty Tags, and XSLccccccvieiiiiiiiieice e 95
Chapter 6: Well-Formed XML Documents

Chapter 7: Foreign Languages and NON-ROmMan TeXtccocceveiininenineeieeieennenns 161
Part II: Document Type Definitions ..o 189
Chapter 8: Document Type Definitions and Validitycccocvvcviiiiiieniieneeies 191
Chapter 9: Entities and External DTD SUDSELSccccccvvieiiiiiiiinie e 247
Chapter 10: Attribute Declarations in DTDScccccevieiieiieiieiesie e seesiee e 283
Chapter 11: Embedding NON-XML Dataccceeviiiiiiiinieniieiieiiesie s siee e 307
Part I11: Style LangUAaQEScccccvviiiiciicscssssssss s 321
Chapter 12: Cascading Style Sheets Level 1 ... 323
Chapter 13: Cascading Style Sheets Level 2cccooveveiiiiieie e 389
Chapter 14: XSL Transformationsccccccevieiiiiiiiie et e e 433
Chapter 15: XSL FOrmatting ODJECESccceiiiiiiiiiiesie e 513
Part IV: Supplemental TechnolOgies ..., 569
Chapter 16: XLINKSoooiiiiiiiieicce e 571
Chapter 17: XPOINTEIS ...oeiiiiieeieeee ettt see st et ene e e nee s 591
Chapter 18: NAMESPACESccvviiieiieriieriiesieesieesiesteseeseeseesteesteestessesssestsesreesseessesssenns 617
Chapter 19: The Resource Description Frameworkccccccoovvvieviiiiiiiieniennesiens 631
PartV: XML APPHCALIONSc.c.cviiiriiriiciescse e 655
Chapter 20: Reading Document Type Definitionscccocovviiiiiiniinin i 657
Chapter 21: Pushing Web SiteS With CDFcccccoiiiiininiieneee e 775
Chapter 22: The Vector Markup LaNQUAJEccceoerrirneneaeeeeereesee e 805

Chapter 23: Designing a New XML Applicationcccoceviiiiiiiiie s seeseese e 833

XX Contents at a Glance

Appendix A: XML Reference Material ... 863
Appendix B: The XML 1.0 SPECIfiCatioNccccoveviveiieiiiiccie e 921
Appendix C: What's 0n the CD-ROMccccceiiiiiiiiiiiiinece e 971
INAEX et b r e 975
ENd-USer LICENSE AQIrEEIMENTcviiiiiieiii ittt sttt 1018

CD-ROM Installation INSErUCTIONSoooeiiiiiiieeieeee ettt 1022

Contents

PIEIACE ... bbbt bbbttt iX
ACKNOWIEAGMENTS ...ttt ettt beenbesnbearee s XVii
Part I: Introducing XML 1
Chapter 1: An Eagle’s Eye View Of XML ... 3
WAL IS XIML? .ottt ettt e 3

XML Is @ Meta-Markup LaNQUAGEcccvvieereeiieniieiieie e siee e siee e 3

XML Describes Structure and Semantics, Not Formattingcc.cc...... 4

Why Are Developers Excited about XML? ..o 6
Design of Domain-Specific Markup Languagescccoceooenereneninienenine 6
Self-Describing Dataccoccvevieiiiece s 6
Interchange of Data Among Applicationsccccovvevenie s, 7

Structured and Integrated Datacoccoveereeiiiiiiiicese e 8

The Life of an XML DOCUMENTc.oiviiiiiiciinienieisie et 8
o 1) (0] SRR 9

Parsers and PrOCESSOISccoiiiiiiiriiiieiee ettt et st ee e 9

Browsers and Other TOOIS ...t 9

The Process SUMMAKIZEAccooveiiiiiiiiiniiice e 10

Related TECHNOIOGIEScoiviiiiiiiic e e 10
Hypertext Markup LANQUAGJEc..ccecvereererieneeeeieienie e e nee e see e 10

Cascading Style SNEETS ...t 11

Extensible Style LangUAaQEccccceieirrrieiiie e 12

URLS @Nd URIS ..ottt e bbb 12

XLINKS @Nd XPOINTEISooviiiiiiiciiiieiei et 13

The Unicode CharaCter SEtcoeviiirinieiieeesee e 14

How the Technologies Fit Together ... 14

Chapter 2: An Introduction to XML Applicationsc.cccccccvevevvnicennnnn, 17
What Is an XML APPHICALION?ccoooiiiiiiiiiesieseeee e 17
Chemical Markup LANQUAGEcccceeeeiereienieeeeeeee e se e 18
Mathematical Markup LanguUageccovireiiineinincinenee e 19

Channel Definition FOrmMat ..o 22

ClaSSIC LItEIAtUIEcc.oouieiiiieieite et 22
Synchronized Multimedia Integration Languageccccccvveviveneenennneenn. 24
HTMLATIME oot e 25

Open Software DESCHIPLIONccccviieieiiie e 26

Scalable Vector GraphiCs ... 27

Vector Markup LanNQUAGEcoeeeiiriiieieseeeee e 29

IMUSICIMIL ettt bbb 30

VOXML oo 32

)()(i | Contents

Open Financial EXChangeccccoooiiieiiii i 34
Extensible Forms Description Languageccccevvveveerieeseenieesiesie e 36
Human Resources Markup LaNQUAQEc.ccovvvvviieriienieeneenieniesieeseesine e 38
Resource Description FrameworkK ..o 40
XML FOF XML .ottt ettt ettt sne e e e nneseenteens 42
D OSSP 42
D TSRS 43
DICD ittt et bbbt R bt bt ne et b e b 43
Behind-the-Scene Uses Of XML ... 44
Chapter 3: Your First XML DOCUMENTcccocviiirnirnieneneseeeee, 49
HEHIO XIMIL .ottt et besbe e 49
Creating a Simple XML DOCUMENTc.cccveviiiiiiiiiie e 50
SaviNg the XML FIle ..o e 50
Loading the XML File into a Web BrowSercccccvniniiiciencninenenn 51
Exploring the Simple XML DOCUMENTc.cccooiiiiiiiniecre e 52
Assigning Meaning t0 XML TagSccveverrrirrereieseeieee e see e 54
Writing a Style Sheet for an XML DOCUMENTcccoivviiveiienie i 55
Attaching a Style Sheet to an XML DOCUMENTcccoovvvieviiniiniienieeneee e 56
Chapter 4: Structuring Data ... 59
EXamining the DAtaccccviiiiiiieecie e nre e 59
BALLEIS ..ottt 60
PIECNEIS e 62
Organization of the XML DAtacccccceviiiniiiiieeen e 62
XMLIZING ThE DALAcoveiiieiiieieee e e 65
Starting the Document: XML Declaration and Root Element 65
XMLizing League, Division, and Team Dataccccccevevvviverresieeneenneenn. 67
XMLIZING Player DAtacccveviiieiiiiie et 69
XMLizing Player StatiStiCSccccviiiiiiiiieiienienec e 70
Putting the XML Document Back Together Againc..ccocvvvvvieniinninnns 72
The Advantages of the XML FOrmMatcccoooivininieiine e 80
Preparing a Style Sheet for Document Displaycccccooevriiiiiiiiiiece e 81
Linking to @ Style SNEETccveiiiiiece e 82
Assigning Style Rules to the Root Elementcccccoevviiiiiiiiniieiin i, 84
Assigning Style RUIES t0 TitleS ... 85
Assigning Style Rules to Player
and Statistics EIEMENTS ...t 88
SUMIMING UP ittt sttt seeseesaeeneas 89
Chapter 5: Attributes, Empty Tags, and XSLcccccovvivvviiieincincceeens 95
ATEFIDUTES .ot b e 95
Attributes Versus EIEMENTS ..ot 101
Structured Meta-dataccveeeiieiiie e 102
Meta-Meta-Datac.occeeiieiiiiicii e 105
What's Your Meta-data Is Someone Else’s Dataccccoceevneiinienennn, 106
Elements Are More EXtensible ... 106

Good Times to USe ALIFDULESoovviiiiiieeieee et 107

Contents X)(i | |

EMPLY TGS .o oeveeiiiieiiee ettt et 108
] TSRS 109
XSL Style Sheet TEMPIALESc.cccveiiiiiiiese e 110

The Body Of the DOCUMENTccoviiiiiiiiiienieieiceie e 111

THE THHE oottt 113
Leagues, Divisions, and TEAMSccccovereririnienieneeee e 115

o 1YL TSRS 120
Separation of Pitchers and Batterscccccoccvviiiiieicienec e 122

CSS OF XSL? ittt bttt e 130
Chapter 6: Well-Formed XML DOCUMENTScccovivnieniinieninieinieins 133
#1: The XML declaration must begin the documentcccecveveenen. 144

#2: Use Both Start and End Tags in NOn-Empty Tagsc.ccceeervereennnn 144
Chapter 7: Foreign Languages and Non-Roman Textcccccereenne. 161
Non-Roman Scripts on the Web ... 161
Scripts, Character Sets, Fonts, and GlIyphscccooviviienienicic e 166
A Character Set for the SCript ... 166

A Font for the Character Set ... 167

An Input Method for the Character Set ..., 167
Operating System and Application Softwarec.cccccoiiiiiiiiiiiiennn 168
LegacCy CharaCter SEUScccciiieiieie ettt nae s 169
The ASCI CharaCter SEt ...t 169

The ISO CharaCter SESccccoiiiiiiiiieeee e 172

The MacRoman Character SEtccccooveeiinineniseceee e 175

The Windows ANSI Character SEtcccoeveeiieiieiinieee e 176

The Unicode CharaCter SEt ... e 177
LU I OSSR 182

The Universal Character SyStemccccuceviieiiiiiiiine e 182

How to Write XML in UNICOEcccoviiiiiiieienenee e 183
Inserting Characters in XML Files with Character References 183
Converting to and from UNiCodec.cccooiiieiiiiniiniece e 184

How to Write XML in Other Character Setsccccceviiiiineicenienieee, 185
Part I1l: Document Type Definitions 189
Chapter 8: Document Type Definitions and Validityccccccocevrvnnee. 191
Document Type DefinitioNScccooiiiiiiiie e 191
Document Type DeClarationsccccccviiviieiienii i 192
Validating AQaiNSt @ DTD ...coccviiiiiiciecie et ae e 195
Listing the EIBMENTSccooviiiiiieiece e 201
Element DECIAratioNscoiioiiiieiiecie et 208
AN et nraes 209

P CDATA ettt e et nae et e e nnaeennees 209
CRIIA LISES et e 212
RL=To 1B 1= g [TP PSPPSR 214

ONE Or MOre ChilAreNccuveiiiiiiee et 215

XXIV

Contents

Zero oFr More Children ..o 215
Zero 0r ONE Child ...cooiiiiii e 216

The Complete Document and DTDcccoceviiiiiiieiieiie e 217
CROICES .. 223
Children with ParenthesSes ... 224
MiIXEA CONTENT ... 227
EMPLY EIEMENTS ..o 228
COMMENTS IN DTDS ..ooiiiiiiciecie ettt e e e sreenae s 229
Sharing Common DTDs AmMong DOCUMENTScccccceviviiieiieienie e 234
DTDS at REMOLE URLSoceiiiiiiiiiieicice e 241
PUDHC DTDS ..ottt 241
Internal and External DTD SUDSELScccccooviiieiiciiee e 243
Chapter 9: Entities and External DTD Subsetscccocoeevicccsinnnen. 247
What IS @n ENTITY? ..o s 247
Internal General ENTITIESccooiiiiiii e 249
Defining an Internal General Entity Referencecccccoovoviinienene. 249
Using General Entity References in the DTDccccccceviiiievv e 251
Predefined General Entity RefEerencesccccvvvvievieni e 252
External General ENTItIEScccooiiiiiiiiicce s 253
Internal Parameter ENTITIESccooiiiiiiiiieriereeee e 256
External Parameter ENTITIESccccoviiiiiiiiiiee e 258
Building a Document from PIECEScccviiiiiiiieieceeeeee e 264
Entities and DTDs in Well-Formed DOCUMENLScccccveviveieiieiie e 274
INtErNal ENTILIESociiiiiiiie e 274
EXTErnal ENTITIEScccooiiiiieii s 276
Chapter 10: Attribute Declarations in DTDScccccocivvvniennnineennenn,s 283
What IS @an ALEFIDULE?ooviiiiiiie e 283
Declaring ALtributes iN DTDSccocviiiiiiiieiie et 284
Declaring Multiple ATErDULES ... 285
Specifying Default Values for Attributes ... 286
HREQUIRED ...ttt ettt eas 286
FIMPLIED ..ottt ettt bbb 287
FEFIXED .ottt bbb 288
ATLFIDULE TYPES oottt nbe b an 288
The CDATA ATLHDULE TYPE ..ot 289

The Enumerated ALtribute TYPE ... 289

The NMTOKEN Attribute TYPEoocviiiieiiee e 290

The NMTOKENS AEribute TYPE .occvviiiiiesieceece et 291

The ID AtriDULE TYPE oo 292

The IDREF ALtribULe TYPE ..oooiiiiieiice e 292

The ENTITY ALHDULE TYPE oviiiieiicieciesieereere e 293

The ENTITIES Attribute TYPE ...oooiiiiieeeee e 294

The NOTATION ALtribute TYPE ..ooooiieiieee e 294
Predefined ALIFIDULEScccoi i 295
D]] o - T =TSSP OP PRSP 295

XIMEIANG i 297

Contents XXV

A DTD for Attribute-Based Baseball StatistiCsccocvvieiiieiincieieeieee, 300
Declaring SEASON Attributes in the DTDc.ccccovvvevieeii e 301
Declaring LEAGUE and DIVISION Attributes in the DTDccccccevvvnee. 301
Declaring TEAM Attributes in the DTD ..o 302
Declaring PLAYER Attributes in the DTDcccccocveieiineneiceeeeeee 302
The Complete DTD for the Baseball Statistics Examplec..c....... 304

Chapter 11: Embedding Non-XML Datac.ccccoevevvvveieeecieiceesninnes 307

NOTALIONS .ttt bbbt et et b e ab e st e naeenaeenbe s 307

Unparsed External ENtItIes ... 311
Declaring Unparsed ENtItieSc.ccocooeiiieneieneseeee e 311
Embedding Unparsed ENtitiescccccvveviiiiiniiie s 312
Embedding Multiple Unparsed ENtitiesc.ccccovvevieiiniiiicsie e 315

Processing INSTrUCLIONSocvoiiiiiiieiie e 315

Conditional SECLIONS IN DTDSccoviiiiiieiieiieieeee e 319

Part I1I: Style Languages 321
Chapter 12: Cascading Style Sheets Level 1cccccoevvivvcenciicennnnn, 323

LY o S O TS S 323

Attaching Style Sheets to0 DOCUMENTSccocevveiinininiieeeeee e 324

Selection Of EIEMENTS ..o 327
Grouping SEIECTOIScccviiiiiice et 328
PSEUO-EIEMENTScoiiiiiiiiiiiie e 328
PSEUAO-CIASSESoviiiiiiiiieiiei et 330
SEleCtiON DY ID ..o 332
Contextual SEIECTONScociiiiiiiii e 332
STYLE ALEFDULES ..o e 333

INNEIILANCE ...ttt bbb eas 334

CASCAAES ...ttt bbbt e bbbt 335
The @IMPOIt DIFECLIVEccoviiiiiiecie ettt 336
The important DeClarationccccoceveiienienienicice e 336
CaSCAAR OFUEIeeiiiiiieieee bbb 337

Comments in CSS Style SNEEtS ... 337

CSS UNIES ottt sttt b bbbt e ne e 338
LeNgth VAIUESceoiiiiii e 339
URL VAIUES ...t 341
COION VAIUES ... 342
Keyword ValUES ..o 343

Block, Inline, and List temM EIEMENTSccovvveiiiiiiiii e 344
LIST IEEIMIS .ottt bbb eas 347
The Whitespace Property ... 350

(0] 01 M 0] 1= AT PRV UR TP 352
The font-family Property ... 352
The foNt-Style Property ... 354
The font-variant Property ... 355

The font-weight Propertyccccveoviiiiiie s 356

XXVi

Contents

The fONt-SiZ€ ProPertYooooooiieiiie e 356

The font Shorthand Property ... 359

L (=N o] (o] gl o] o 1T o YU PR 360
Background PrOPErtiEScccoviieiiiiiiiiiiie ettt 361
The background-Color PrOPEITYcccocviieiiniiiiieeceeeesre e 361

The background-image ProPertyccoceevvenieninienieeiesese e 362

The background-repeat Propertycccccoereiieniiieiieienese e 363

The background-attachment Propertycccccoovevviieiiiiiiisieseeseenens 364

The background-position Property ..o 365

The Background Shorthand Propertycccccoeviniinienieniieneenesnens 369

TEXE PFOPEITIES ..ooiiiiiiiiieitiete ettt bbb bbb ne e e 369
The word-Spacing Property ... 370

The letter-spacing Property ... 371

The text-decoration PrOPErtYccccvvieiieiieeii e 371

The vertical-align Property ..o sie e 372

The text-transform Property ... 373

The text-align Property ...t 374

The text-iNdeNnt PropPerty ... 375

The line-height Property ... 375

(200 Qo o] o L] o [P SSTP 377
Margin PrOPErtiesccociiiieiieiie ittt 378
BOrder PrOPErtiesccocciiiiiiiiie ittt 379
Padding PrOPEITIEScoviiiiriiiiie ittt 382

SIZE PIOPEITIES ..o e 383
POSItiONING PrOPErtiesc.ooiiiiiiiiieee et 384

The float PrOPEILY ..cooceeiie ittt 385

The Clear PrOPEILYoocviiiiiieiieeee sttt 386
Chapter 13: Cascading Style Sheets Level 2 ..o, 389
WHAL'S NEW 1N CSS2? ...ttt e 389
NEW PSEUAO-CIASSEScoeiiiiiirieriieicce s 390

New PSEUdO-EIEMENTSccoiiiiiiieiicecee s 391
MEAIA TYPES ..ot 391
Paged MEIAoooiiiiieeeeee s 391
INternatioNaliZationccoooiiiiiiee e 391
Visual Formatting Controlccccvovviieiie i 391
TABIES .. e 391
Generated CONTENTcooviieie e 392
AUral StYIE SNEELS ..o 392

New IMPIEMENTATIONS ..o s 392
SeleCting EIBMENTSooiiiiieiee e 393
Pattern MatChing ... 393

The Universal SEIECTONccoiiiiiiiiiiieeee e 394
Descendant and Child SElECLOrScccoeieiiiiiiniee e 395
Adjacent SibliNg SEIECTOrScccccvviiiiiiiii e 396
ATLFIDULE SEIECTOIS ..o 396
@TUIES .ottt e et e e et an 397

PSEUAO EIEMENTS ...c.oeviieiiiie ettt s 402

Contents X)(Vi |

TN (o [0 O I TS 403
FOrmMAatting @ PAgEcccooiieiiiiie ettt naeenne s 405
R V4=l o o] 01T o 4V PRSP 405

Y U go Tl o o] o 1T o YU SUR R RRTT 405
MAIK PrOPEITY ...oviiiiticiieeeeeee st 405

Page PrOPEITYcoooiiiiiiiee s 406
Page-Break PrOPErtie€Scccoiiiiiiieieie e 407
Visual FOrMAtiNgcoeivieiieiie et saeesreen 407
DiSPIaY PrOPEILY ..cc.viiiiiiiiiiesee ettt 407
Width and Height PrOpertiescccocvviiiiiiiienienieee e 410
OVEITIOW PrOPEITY ...oovieiiiie e 411

ClIP PTOPEITY ..o 411
ViSIDIItY PrOPertY ..o 412

(OF8] =To] gl o o] o1=] o 1SRRI 412
Color-Related Properti€Sccccviiiiiiiiiieiesie e 413

(0] 0] M 0] 1= g AT USSR 416

TeXt SNAAOW PrOPEITY ...c.coiviiiiiiiiie ittt 419
Vertical AlIgN Property ... 419
BOXES it 420
OULIINE PrOPEITIES ...oocveeiieie ettt 420
POSItiONING PrOPErti€sccccoviiiiiiieciieie st 422
Counters and Automatic NUMBEFINGcccoiviiiiiiiiiiie e 424
AUFal STYIE SNEEES ..o e 425
SPEAK PIOPEITY ...t 426

AV o] 18] g L3 o 0] o 1= Y USRS 426
PauSE PrOPEILIESooviiiiiiieiie ettt 427

(O Ul] o] o =] o AT SRR 427
Play-DUuring PrOPEILYccccccoviiiiieiieiieie ettt 428
Spatial PrOPErti€Sccccoiiiiiiiiiiisie et e 428
Voice Characteristics Properties ... 429
SPEECH Properties ... e 431
Chapter 14: XSL Transformationsccccccovveivniiiicsesscee e 433
WAL IS XSL? ittt ettt s e sae e steene e e s eneeees 433
Overview of XSL Transformationsccoceoeiiiiiiiiieseeeese e 435
L ILCCICE T TP PP PP ST OPPTPPPPRPVRPTPN 435

XSL Style Sheet DOCUMENTScccocviiiiiiesieieesicesiceie e 437
Where Does the XML Transformation Happen?cccccvvvivennnennnnn 439

HOW O USE XT ittt 440
Direct Display of XML Files with XSL Style Sheetscccoovcvnieenn. 442

XSL TEMPIALES ...eieeeiieeiee ettt ettt sb et e st eneenee e 444
The xsl:apply-templates Elementccccccovviiiiiiiinicc e 445

The select ALFDULEcooiiii e 447
Computing the Value of a Node with xsl:value-ofcccccoovviiiiiiiiiiininnn, 448
Processing Multiple Elements with xsl:for-eachcccoccoviiiiiiininnnnnnn 450
Patterns for Matching NOGEScccoiiiiiceiee s 451
Matching the ROOt NOAEcooiiiiiiiiee e 451

Matching EIement NamMEScccooviiiiiiiie e 452

XXVili

Contents

Matching Children With / ... 454
Matching Descendants With // ... 455
MatChiNG DY IDooiiiiiiie e 456
Matching Attributes With @ccoocveviiiinic 456
Matching Comments with comment()c.ccccocviiiiiiinen, 458
Matching Processing Instructions with pi() ..., 459
Matching Text Nodes With teXT()cccoerriiiiiiiereeee e 460
Using the Or OPErator | ..cccccceeieeiieciece et 460
TestiNg WIth [] .vvoeieeiie e 461
Expressions for Selecting NOAESccooiiiiiiniii i 463
NOGE AXES ..ottt r e 463
EXPIreSSion TYPES ...ocviiiiiicieee st 470

The Default Template RUIESccooiiiiiii e 480
The Default Rule for EIeMeNnts ... 480

The Default Rule for TeXt NOEScccveiiiiieiiiiieceeeee e 480
Implication of the Two Default RUIES ..o 481
Deciding What Output tO INCIUAEccceiiiiiiiiiice e 481
Using Attribute Value Templates ... 482
Inserting Elements into the Output with xsl:elementc..ccoceeeeee 484
Inserting Attributes into the Output with xsl:attributec........... 484
Defining ALLrDULE SETSoccveiiiiieiee e 485
Generating Processing Instructions with XsEpicccccvvviiiiiiiiiinnnne, 486
Generating Comments with Xsl:commentc.ccccocvneninnicnenienne 487
Generating Text With XSETEXT ... 487
Copying the Current Node With XSI:COPY ...cooviiiiiiiiiiiieeee e 488
Counting Nodes with XSENUMDBET ... 490
Default NUMDEIS ..ot 491
Number to String CONVEISIONcccvevviiieniisiie et 493
SOrting OUELPUL EIEMENTSooviiiiiiiiiiesiee e 494
CDATA AN < SIGNS ..ot e 497
IMIOES ...ttt ettt a e bttt e me et s eeseeeaeeneeneeneenneneas 499
Defining Constants with xsl:variableccccccociiiiiiicici e, 501
Named TEMPIALESccciiieiieiie e nae e s 502
Parametersoooiiiiiiii e 503
Stripping and Preserving WhiteSpacecccevvvieniiiiineeneee e 505
MaKING CROICESooiiiieeee e s 506
D]) SRS PRURRR 507
XSECROOSE .. 507
Merging Multiple Style SNEEtS ..o 508
IMPOrt With XSEIMPOIT ..o 508
Inclusion with Xskinclude ... 508
Embed Style Sheets in Documents with xsl:stylesheet 509
Chapter 15: XSL Formatting OBjJectsccccccevvivceiiicceevcee s 513
Overview of the XSL Formatting Languagec.ccovveveeeienrinenencneeeeeenenns 513
Formatting Objects and Their Propertiesccccocvvieveniieinie e 514
The fO NAMESPACEccueiiiriieieee et 517

FOrmatting Properti€scccocviveiieiieiece et 518

Contents X)(i)(

Transforming to Formatting ObjJects ... 522
USING FOP ettt sttt et e ae e nnee 524

PAGE LAYOUT ..eeiiiiiiiiie ettt ettt ettt n 526
MASTEE PAGES ..ottt e 526

Page SEQUENCESocoiiiiiieiieiee s 529
(000 0] 1= o | S PSPPSR 535
Block-level Formatting ObjJectSc.cccooiiiiiiiiecieee e 535
Inline Formatting ODJECTScccveiviiiiiiiee e 537
Table-formatting ODJECTSccccciiiiiiiiiiese e 538
Out-of-line Formatting ODJECESc.cccovviviiiiinee e 538
RUIES e 539
GrapPhiCS oo e 540
[SRS 540
L] OO TUU R SUSORR 542
TADIES . bbb 543
CRATACTETS ...t 546
RL=To [U 1= g (oo T PP OTP PP PPP PP 546
FOOTNOTES ... e nre e s 547
L [0 T LSRR 547
XSL FOrmatting PrOPErtiescocoviiiieiicie ettt 548
UNits and DAta TYPES ..oiviiieriiiieiiieitieie et 549
Informational PrOPertiescccocoiiiiiinie e 551
Paragraph PropPerti€s ..ot 551
Character PrOPEITIEScccooeiiiiiiiieieeeree e 554
SENLENCE PrOPEITIES ...ocuiieiiieieieeee et 556

Y - W r0] 0 1=T o 1= USSP 559
AUFal PrOPEITIES ..vviiiiiiiiiiie ettt 565
Part IV: Supplemental Technologies 569
Chapter 16: XLINKSooiiicce s 571
XLINKS VErsUS HTIML LINKS ...ocvoiiiiiiieieiisiseeee e 571
SIMPIE LINKS 1ottt bbbt et nn e nees 572
Descriptions of the Local RESOUICEccooviviiiiiiiiii e 574
Descriptions of the Remote RESOUICEccocvvieiciiieiine e 575

[0 1 =TT o=\ T SRS 576
EXEENAEA LINKS ..ot 580
OUL-OF-LINE LINKS .ocviiiie it 583
Extended LiNK GrOUPSoocvoiiiiiieiinie ettt 584
AN EXAMPIE oo s 585

The Steps ATHDULEcoveieee e 587
Renaming XLink AttribDUtes ... 588
Chapter 17: XPOINTELScccccoviiieeiiseee et 591
WHY USE XPOINTEIS? ...t e 591
XPOINtEr EXAMPIES ..ottt nee 592

PN o XYo] (81 (sl Mo Tor= 0] o T =] 1 0 41T R 594

XXX

Contents

T ettt et ee e 597

[0 To) () TSR 598
NEMIQ) s 598
Relative LOCAtiON TEIMScciiiiiiiieiiee e 598
o3 0 1 o SRS 600
AESCENUANT ..ottt bbbt e e e 601

2T 011 (o] OO PR PRI 601

0] g=To1=To [10T USSR 601
FOHOWING 1ot be e 601
PSIDIING oo e 602
FSIDIING i 602
Relative Location Term Argumentscccccooeiininenienieeienee e 602
Selection BY NUMDET ... 603
Selection by NOAE TYPE ...ccviviiieie e 606
Selection by AErIDULEcooviii e 610
String LOCALION TEIMMNS .ooiiiiiiiiiiiiciie ettt 611
The origin Absolute LOCation TEIMcccoiviiiieienie i 612
Spanning a RaNge OF TEXToccviriiiie e 614
Chapter 18: NAMESPACESccccvviiirieieiiiseessssee s 617
What IS 8 NAMESPACE?eoviieiiieriieieee e 617
NaAMESPACE SYNTAX ...c.eeiiiiiiiiiii s 620
Definition Of NameSPaCESccoooiiiriiieeee e 620
MUItiple NAMESPACEScoiverieieeiieieee et 622
ALEFTDULES . bbb 624
Default NamMESPACESccvviiiriiiiieiieiieie e 625
NamMeSPACES IN DTDSooviiiiiieeese e e 628
Chapter 19: The Resource Description Frameworkcccccevvvenne, 631
WRAL IS RDF? ..ot 631
RDF STAtEMENTS ...ooiiiiiiiieie et s 632
BaSIC RDF SYNTAXooiviiiiiiiiiieieiee et 634
The roOt EIEMENT ..o 634

The Description EIEMENTcccveiiiiiiiesiecee e 634
NAIMESPACES ...eiiiiiiiiee ittt e st e s nbeeentee e 635
Multiple Properties and Statementscccccvievieninneeicenic e 637
Resource Valued Properties ..o 638

XML Valued Properties ..o 641
AbDreviated RDF SYNTAXcccooiiieieiirie e eas 642
(070] 01 r=1 [0 1= SRS USRS 643
The Bag CONTAINEToccviiiiiiiiieiece ettt 643

The SeQ CONTAINETocviiiiiiieiieiese e ae e 646

The At CONTAINETooiiiricicec e 646
Statements about CONTAINETISccoiiiiienii e 647
Statements about Container MEMDbErScccooe e 650
Statements about Implied Bagsccccviveveeiiiii e 652

RDF SCREMAS ...ttt et s eaba e e s sbb e e e e eabae s 652

Contents X)(Xi

Part V: XML Applications 655
Chapter 20: Reading Document Type Definitionsccccccevviiennnn, 657
The Importance of Reading DTDSccccoiiirieiini e 658
WAL IS XHTIVIL? oottt ettt e s st e e 659

Why Validate HTIML?occoiiiiiiee e 659
Modularization of XHTML Working Draftcccceceviiviiiiinvciece s 660

The Structure of the XHTML DTDSccvvviiiiiiic ettt 660
XHTML SEHICEDTD coviiiiiiiiic ettt st 662
XHTML TransSitional DTDoooiiiviiiiiiie ettt avarre e 669

The XHTML FrameSet DTD ...cooiicieieiiie ettt 676

The XHTML MOGUIESvviieiieee ettt s st 679
The Common Names MOAUIEooocviieiiiiii e 680

The Character Entities Modulecccceiveiiiiiiiiic e 684

The Intrinsic EVENtS MOAUIEoooviviiiiiiiii e 686

The Common Attributes MOdUIEScoocvviiiiiiie e 689

The Document Model MOAUIEeveeeiviiiiiiiieeeeeeeeeee e 695

The Inline Structural Module ... 704
Inline Presentational ModUIEccocoeiiiiiiiic e 706
INline Phrasal MOdUIEccvviiiiiiii et 709
Block Structural MOAUIEc.ceiiiiiiiiiiie e 711
Block-Presentational ModUIEccovvveiiiiiiiiceee e 712
Block-Phrasal MOAUIEcc.eveeiiiiiiiiceeeee ettt 714

The Scripting MOAUIEcoiiiie e 716

The Stylesheets ModUuIeccccoeiiiiiiieiec e 718

The IMage MOAUIEccoiiiiiicec e 719

The Frames MOAUIEoooiiviiiiiiii et 720

The LinKing MOAUIEcccooiiiiiieee e 723

The Client-side Image Map Modulecccocooiiiiiicienn s 725

The Object Element MOdUIE ... 726

The Java Applet Element Modulecccoceiieiiiiiiincc e 728

The LiStS MOAUIEooiiiiiii i 730

The FOrmS MOAUIEocveiiiiiiiec et 733

The Table MOAUIE ... 737

The Meta MOAUIE ... 742

The Structure ModUIEoocvviiiie e 743
Non-Standard MOAUIESocveviiiiiiiiiiie e 746

The XHTML ENTILY SES .voiiiiiiiicie ettt 746
The XHTML Latin-1 ENTItIeSocovviiiiiiie et 747

The XHTML Special Character ENtitiesc.ccoovvvvieienininenincceenns 752

The XHTML Symbol ENities ... 754
SIMplified SUDSEE DTDSccooiiiiieieeee e e 761
TechNiQUES 1O IMITALEcccveceeiice et 768
(0] 11410011 01 £ OO PERN 768

Parameter ENTITIEScoooviviiiiiiiie ettt 770

)()()(i | Contents

Chapter 21: Pushing Web Sites With CDFccccoevviiiiniininceseeens 775
WAL IS CDF? .ottt bbbt ettt 775
How Channels Are Created ... 776

Determining Channel Content ..o 776
Creating CDF Files and DOCUMENTScccevveiieiieiie e 777
Description of the Channel ... 780
THEI et bbbt et et 780
ADSTFACT ... 781
LOGOS .. 782
Information Update SChedules ... 783
Precaching and Web Crawlingccccccviiiviieiieiie e 787
[g=Tor= Vo] o1 oo [USSR 787
WED CrawliNg ...o.vooiiiiiiii s 788
REAAET ACCESS LOJ ..eiveiiieiiieiii ettt sttt nae e e s 789
The BASE ALEFDULE ... e 791
The LASTMOD AFBULE ...ccveeiiiecece et 792
The USAGE EIBMENTo.oiiiiiieieeee ettt nee 794
DesktopComponent VAIUEccccvoviiiiiiiiie e 795
EMAIl VAIUE ..o 796
NONE VAIUE ..ottt et 797
SCreenSAVEN VAIUEcccceiiiiiiiiii e 798
Softwareupdate Value ... 800

Chapter 22: The Vector Markup Languagecccccoveveeevnecsensnsennn, 805
WRAL IS VIMIL? ...ttt et e s e et e eta e e nnaeenteeeans 805
Drawing with @ Keyboardcccoiiiiiiie e 808

The shape EIEMENTooviiieecece s 808
The shapetype EIEMENTcccvoiiiiiii e 811
The group EIBMENT ..o 813
Positioning VML Shapes with Cascading Style Sheet Properties 814
The rotation PrOPEItYcocciiiiiiiiieneeee e 817
The flip PrOPEITY ..o 817
The center-x and center-y Properti€sccccoovevveveecenieesies s seese s 820
VML iN OFffiCE 2000coueiiiiiiitiiteseeiee s 821
SEELINGS eiotiiiicie e 821
A Simple Graphics Demonstration of a HOUSEccccevvviviieninnennnn, 822
A QUICK LOOK 8L SVG ..ttt 830

Chapter 23: Designing a New XML Applicationccccoevviiicnnnnn, 833

Organization Of the DAtAccceviiiieiieiie e 833
Listing the EIEMENTSccoveiiiiieece e 834
Identifying the Fundamental Elementsccccooveveieiiinccienicniece e 835
Establishing Relationships Among the Elementsccccccvevvvvennnn. 838

THE PErsON DTD ..ottt sb e bt ne 840

The FAMIIY DTD ..ot ettt 845

THE SOUICE DTD ..ottt ettt ettt e bt e e et ae e e s eabae e e s araeeean 847

Contents
The FamMily Tree DTD ..ottt sttt nee 848
Designing a Style Sheet for Family Treescccoccvviveviieiieiieie e 855
Appendix A: XML Reference Material ..o, 863
Appendix B: The XML 1.0 Specificationcccooevvvvviceeiiccsennns 921
Appendix C: What's on the CD-ROM ..o, 971
INAEX oot 975
End-User License AQreemMeENTcccccevvriennniinesssssesesessssssesesessnsens 1021

CD-ROM Installation INSITUCTIONSccvoeeee ettt 1022

XXXIi

An Eagle’s Eye =
View of XML

o 0O 0O

In This Chapter

This first chapter introduces you to XML. It explains in Whatis XML?
general what XML is and how it is used. It shows you how

the different pieces of the XML equation fit together, and how
an XML document is created and delivered to readers.

Why are developers
excited about XML?

The life of an XML
document

What Is XML?

XML stands for Extensible Markup Language (often written as

eXtensibleMarkup Language to justify the acronym). XML is a o o o 0O
set of rules for defining semantic tags that break a document

into parts and identify the different parts of the document. It

is a meta-markup language that defines a syntax used to define

other domain-specific, semantic, structured markup languages.

Related technologies

XML Is a Meta-Markup Language

The first thing you need to understand about XML is that it
isn’t just another markup language like the Hypertext Markup
Language (HTML) or troff. These languages define a fixed set
of tags that describe a fixed number of elements. If the markup
language you use doesn’t contain the tag you need —you’re
out of luck. You can wait for the next version of the markup
language hoping that it includes the tag you need; but then
you’re really at the mercy of what the vendor chooses to
include.

XML, however, is a meta-markup language. It’s a language
in which you make up the tags you need as you go along.
These tags must be organized according to certain general
principles, but they’re quite flexible in their meaning. For
instance, if you’re working on genealogy and need to desc-
ribe people, births, deaths, burial sites, families, marriages,
divorces, and so on, you can create tags for each of these.
You don’t have to force your data to fit into paragraphs, list
items, strong emphasis, or other very general categories.

4

Part| O Introducing XML

The tags you create can be documented in a Document Type Definition (DTD).
You’ll learn more about DTDs in Part Il of this book. For now, think of a DTD as a
vocabulary and a syntax for certain kinds of documents. For example, the MOL.DTD
in Peter Murray-Rust’s Chemical Markup Language (CML) describes a vocabulary
and a syntax for the molecular sciences: chemistry, crystallography, solid state
physics, and the like. It includes tags for atoms, molecules, bonds, spectra, and so
on. This DTD can be shared by many different people in the molecular sciences
field. Other DTDs are available for other fields, and you can also create your own.

XML defines a meta syntax that domain-specific markup languages like MusicML,
MathML, and CML must follow. If an application understands this meta syntax, it
automatically understands all the languages built from this meta language. A
browser does not need to know in advance each and every tag that might be used
by thousands of different markup languages. Instead it discovers the tags used by
any given document as it reads the document or its DTD. The detailed instructions
about how to display the content of these tags are provided in a separate style
sheet that is attached to the document.

For example, consider Schrodinger’s equation:

W) Uy

ih—5—=~2m 3 +V(r) Y(r, t)

Scientific papers are full of equations like this, but scientists have been waiting
eight years for the browser vendors to support the tags needed to write even the
most basic math. Musicians are in a similar bind, since Netscape Navigator and
Internet Explorer don’t support sheet music.

XML means you don’t have to wait for browser vendors to catch up with what you
want to do. You can invent the tags you need, when you need them, and tell the
browsers how to display these tags.

XML Describes Structure and

Semantics, Not Formatting

The second thing to understand about XML is that XML markup describes a
document’s structure and meaning. It does not describe the formatting of the
elements on the page. Formatting can be added to a document with a style sheet.
The document itself only contains tags that say what is in the document, not what
the document looks like.

Chapter 1 0 An Eagle’s Eye View of XML

By contrast, HTML encompasses formatting, structural, and semantic markup.
is a formatting tag that makes its content bold. is a semantic tag that
means its contents are especially important. <TD> is a structural tag that indicates
that the contents are a cell in a table. In fact, some tags can have all three kinds of
meaning. An <H1> tag can simultaneously mean 20 point Helvetica bold, a level-1
heading, and the title of the page.

For example, in HTML a song might be described using a definition title, definition
data, an unordered list, and list items. But none of these elements actually have
anything to do with music. The HTML might look something like this:

<dt>Hot Cop

<dd> by Jacques Morali, Henri Belolo, and Victor Willis

<1i>Producer: Jacques Morali

<1i>Publisher: PolyGram Records

<1i>Length: 6:20

Written: 1978

Artist: Village People

In XML the same data might be marked up like this:

<SONG>
<TITLE>Hot Cop</TITLE>
<COMPOSER>Jacques Morali</COMPOSER>
<COMPOSER>Henri Belolo</COMPOSER>
<COMPOSER>Victor Willis</COMPOSER>
<PRODUCER>Jacques Morali</PRODUCER>
<PUBLISHER>PolyGram Records</PUBLISHER>
<LENGTH>6:20</LENGTH>
<YEAR>1978</YEAR>
CARTIST>Village People</ARTIST>
</SONG>

Instead of generic tags like <dt> and <11 >, this listing uses meaningful tags like
<SONG>, <TITLE>, <COMPOSER>, and <YEAR>. This has a number of advantages,
including that it’s easier for a human to read the source code to determine what
the author intended.

XML markup also makes it easier for non-human automated robots to locate all of
the songs in the document. In HTML robots can’t tell more than that an element is
a dt. They cannot determine whether that dt represents a song title, a definition,
or just some designer’s favorite means of indenting text. In fact, a single document
may well contain dt elements with all three meanings.

XML element names can be chosen such that they have extra meaning in additional
contexts. For instance, they might be the field names of a database. XML is far more
flexible and amenable to varied uses than HTML because a limited number of tags
don’t have to serve many different purposes.

)

o Part | [Introducing XML

Why Are Developers Excited about XML?

XML makes easy many Web-development tasks that are extremely painful
using only HTML, and it makes tasks that are impossible with HTML, possible.
Because XML is eXtensible, developers like it for many reasons. Which ones
most interest you depend on your individual needs. But once you learn XML,
you're likely to discover that it's the solution to more than one problem
you’'re already struggling with. This section investigates some of the

generic uses of XML that excite developers. In Chapter 2, you’ll see some

of the specific applications that have already been developed with XML.

Design of Domain-Specific Markup Languages

XML allows various professions (e.g., music, chemistry, math) to develop their own
domain-specific markup languages. This allows individuals in the field to trade
notes, data, and information without worrying about whether or not the person on
the receiving end has the particular proprietary payware that was used to create
the data. They can even send documents to people outside the profession with a
reasonable confidence that the people who receive them will at least be able to
view the documents.

Furthermore, the creation of markup languages for individual domains does not
lead to bloatware or unnecessary complexity for those outside the profession. You
may not be interested in electrical engineering diagrams, but electrical engineers
are. You may not need to include sheet music in your Web pages, but composers
do. XML lets the electrical engineers describe their circuits and the composers
notate their scores, mostly without stepping on each other’s toes. Neither field will
need special support from the browser manufacturers or complicated plug-ins, as is
true today.

Self-Describing Data

Much computer data from the last 40 years is lost, not because of natural disaster or
decaying backup media (though those are problems too, ones XML doesn’t solve),
but simply because no one bothered to document how one actually reads the data
media and formats. A Lotus 1-2-3 file on a 10-year old 5.25-inch floppy disk may be
irretrievable in most corporations today without a huge investment of time and
resources. Data in a less-known binary format like Lotus Jazz may be gone forever.

XML is, at a basic level, an incredibly simple data format. It can be written in 100
percent pure ASCII text as well as in a few other well-defined formats. ASCII text is
reasonably resistant to corruption. The removal of bytes or even large sequences of
bytes does not noticeably corrupt the remaining text. This starkly contrasts with
many other formats, such as compressed data or serialized Java objects where the
corruption or loss of even a single byte can render the entire remainder of the file
unreadable.

[gg?:?énce"_l OFX is discussed in Chapter 2.

—r

Chapter 1 0 An Eagle’s Eye View of XML

At a higher level, XML is self-describing. Suppose you’re an information archaeologist
in the 23rd century and you encounter this chunk of XML code on an old floppy disk
that has survived the ravages of time:

<PERSON ID="pl1100" SEX="M">
<NAME>
<GIVEN>Judson</GIVEN>
<SURNAME> McDaniel</SURNAME>
</NAME>
<BIRTH>
<DATE>21 Feb 1834</DATE> </BIRTH>
<DEATH>
<DATE>9 Dec 1905</DATE> </DEATH>
</PERSON>

Even if you're not familiar with XML, assuming you speak a reasonable facsimile of
20th century English, you’ve got a pretty good idea that this fragment describes a
man named Judson McDaniel, who was born on February 21, 1834 and died on
December 9, 1905. In fact, even with gaps in, or corruption of the data, you could
probably still extract most of this information. The same could not be said for some
proprietary spreadsheet or word-processor format.

Furthermore, XML is very well documented. The W3C’s XML 1.0 specification and
numerous paper books like this one tell you exactly how to read XML data. There
are no secrets waiting to trip up the unwary.

Interchange of Data Among Applications

Since XML is non-proprietary and easy to read and write, it’s an excellent
format for the interchange of data among different applications. One such
format under current development is the Open Financial Exchange Format
(OFX). OFX is designed to let personal finance programs like Microsoft Money
and Quicken trade data. The data can be sent back and forth between programs
and exchanged with banks, brokerage houses, and the like.

-

As noted above, XML is a non-proprietary format, not encumbered by copyright,
patent, trade secret, or any other sort of intellectual property restriction. It has
been designed to be extremely powerful, while at the same time being easy for
both human beings and computer programs to read and write. Thus it’s an
obvious choice for exchange languages.

By using XML instead of a proprietary data format, you can use any tool that
understands XML to work with your data. You can even use different tools for
different purposes, one program to view and another to edit for instance. XML
keeps you from getting locked into a particular program simply because that’s what

8

Part| O Introducing XML

your data is already written in, or because that program’s proprietary format is all
your correspondent can accept.

For example, many publishers require submissions in Microsoft Word. This
means that most authors have to use Word, even if they would rather use
WordPerfect or Nisus Writer. So it’s extremely difficult for any other company

to publish a competing word processor unless they can read and write Word
files. Since doing so requires a developer to reverse-engineer the undocumented
Word file format, it’s a significant investment of limited time and resources. Most
other word processors have a limited ability to read and write Word files, but
they generally lose track of graphics, macros, styles, revision marks, and other
important features. The problem is that Word’s document format is undocu-
mented, proprietary, and constantly changing. Word tends to end up winning

by default, even when writers would prefer to use other, simpler programs. If

a common word-processing format were developed in XML, writers could use
the program of their choice.

Structured and Integrated Data

XML is ideal for large and complex documents because the data is structured. It not
only lets you specify a vocabulary that defines the elements in the document; it
also lets you specify the relations between elements. For example, if you’re putting
together a Web page of sales contacts, you can require that every contact have a
phone number and an email address. If you’re inputting data for a database, you
can make sure that no fields are missing. You can require that every book have an
author. You can even provide default values to be used when no data is entered.

XML also provides a client-side include mechanism that integrates data from
multiple sources and displays it as a single document. The data can even be

rearranged on the fly. Parts of it can be shown or hidden depending on user

actions. This is extremely useful when you’re working with large information
repositories like relational databases.

The Life of an XML Document

XML is, at the root, a document format. It is a series of rules about what XML
documents look like. There are two levels of conformity to the XML standard. The
first is well-formedness and the second is validity. Part | of this book shows you how
to write well-formed documents. Part Il shows you how to write valid documents.

HTML is a document format designed for use on the Internet and inside Web
browsers. XML can certainly be used for that, as this book demonstrates. However,
XML is far more broadly applicable. As previously discussed, it can be used as a
storage format for word processors, as a data interchange format for different
programs, as a means of enforcing conformity with Intranet templates, and as a way
to preserve data in a human-readable fashion.

mCross-— W
Reference ',
L

—r

Chapter 1 0 An Eagle’s Eye View of XML

However, like all data formats, XML needs programs and content before it’s useful. So it
isn’t enough to only understand XML itself which is little more than a specification for
what data should look like. You also need to know how XML documents are edited, how
processors read XML documents and pass the information they read on to applications,
and what these applications do with that data.

Editors

XML documents are most commonly created with an editor. This may be a basic
text editor like Notepad or vi that doesn’t really understand XML at all. On the
other hand, it may be a completely WYSIWYG editor like Adobe FrameMaker that
insulates you almost completely from the details of the underlying XML format. Or
it may be a structured editor like JUMBO that displays XML documents as trees. For
the most part, the fancy editors aren’t very useful yet, so this book concentrates on
writing raw XML by hand in a text editor.

Other programs can also create XML documents. For example, later in this book, in
the chapter on designing a new DTD, you’ll see some XML data that came straight out
of a FileMaker database. In this case, the data was first entered into the FileMaker
database. Then a FileMaker calculation field converted that data to XML. In general,
XML works extremely well with databases.

Specifically, you'll see this in Chapter 23, Designing a New XML Application.

In any case, the editor or other program creates an XML document. More often
than not this document is an actual file on some computer’s hard disk, but it
doesn’t absolutely have to be. For example, the document may be a record or
a field in a database, or it may be a stream of bytes received from a network.

Parsers and Processors

An XML parser (also known as an XML processor) reads the document and verifies
that the XML it contains is well formed. It may also check that the document is
valid, though this test is not required. The exact details of these tests will be
covered in Part Il. But assuming the document passes the tests, the processor
converts the document into a tree of elements.

Browsers and Other Tools

Finally the parser passes the tree or individual nodes of the tree to the end
application. This application may be a browser like Mozilla or some other
program that understands what to do with the data. If it's a browser, the data
will be displayed to the user. But other programs may also receive the data.
For instance, the data might be interpreted as input to a database, a series of
musical notes to play, or a Java program that should be launched. XML is extr-
emely flex-ible and can be used for many different purposes.

9

10

Part |

O Introducing XML

The Process Summarized

To summarize, an XML document is created in an editor. The XML parser reads the
document and converts it into a tree of elements. The parser passes the tree to the
browser that displays it. Figure 1-1 shows this process.

i . X
m L] i p—

i

[4
Editor writes Document is read by Browser displays to User

Figure 1-1: XML Document Life Cycle

It's important to note that all of these pieces are independent and decoupled from
each other. The only thing that connects them all is the XML document. You can
change the editor program independently of the end application. In fact you may
not always know what the end application is. It may be an end user reading your
work, or it may be a database sucking in data, or it may even be something that
hasn’t been invented yet. It may even be all of these. The document is independent
of the programs that read it.

-
Note HTML is also somewhat independent of the programs that read and write it, but it's
really only suitable for browsing. Other uses, like database input, are outside its

e

scope. For example, HTML does not provide a way to force an author to include cer-
tain required content, like requiring that every book have an ISBN number. In XML
you can require this. You can even enforce the order in which particular elements
appear (for example, that level-2 headers must always follow level-1 headers).

Related Technologies

XML doesn’t operate in a vacuum. Using XML as more than a data format requires
interaction with a number of related technologies. These technologies include
HTML for backward compatibility with legacy browsers, the CSS and XSL style-
sheet languages, URLs and URIs, the XLL linking language, and the Unicode
character set.

Hypertext Markup Language

Mozilla 5.0 and Internet Explorer 5.0 are the first Web browsers to provide some
(albeit incomplete) support for XML, but it takes about two years before most users
have upgraded to a particular release of the software. (In 1999, my wife Beth is still

Chapter 1 O An Eagle’s Eye View of XML 11

using Netscape 1.1.) So you're going to need to convert your XML content into
classic HTML for some time to come.

Therefore, before you jump into XML, you should be completely comfortable with
HTML. You don’t need to be an absolutely snazzy graphical designer, but you
should know how to link from one page to the next, how to include an image in a
document, how to make text bold, and so forth. Since HTML is the most common
output format of XML, the more familiar you are with HTML, the easier it will be to
create the effects you want.

On the other hand, if you’re accustomed to using tables or single-pixel GIFs to
arrange objects on a page, or if you start to make a Web site by sketching out its
appearance rather than its content, then you’re going to have to unlearn some bad
habits. As previously discussed, XML separates the content of a document from the
appearance of the document. The content is developed first; then a format is
attached to that content with a style sheet. Separating content from style is an
extremely effective technique that improves both the content and the appearance
of the document. Among other things, it allows authors and designers to work more
independently of each other. However, it does require a different way of thinking
about the design of a Web site, and perhaps even the use of different project-
management techniques when multiple people are involved.

Cascading Style Sheets

Since XML allows arbitrary tags to be included in a document, there isn’t any way
for the browser to know in advance how each element should be displayed. When
you send a document to a user you also need to send along a style sheet that tells
the browser how to format individual elements. One kind of style sheet you can use
is a Cascading Style Sheet (CSS).

CSS, initially designed for HTML, defines formatting properties like font size,
font family, font weight, paragraph indentation, paragraph alignment, and other
styles that can be applied to particular elements. For example, CSS allows HTML
documents to specify that all H1 elements should be formatted in 32 point cent-
ered Helvetica bold. Individual styles can be applied to most HTML tags that
override the browser’s defaults. Multiple style sheets can be applied to a single
document, and multiple styles can be applied to a single element. The styles
then cascade according to a particular set of rules.

- Cross- ﬂ'-_ CSS rules and properties are explored in more detail in Chapter 12, Cascading
Reference , gtyle Sheets Level 1, and Chapter 13, Cascading Style Sheets Level 2.

It's easy to apply CSS rules to XML documents. You simply change the names of the
tags you're applying the rules to. Mozilla 5.0 directly supports CSS style sheets
combined with XML documents, though at present, it crashes rather too frequently.

12

Reference ',
‘B

Part| O Introducing XML

Extensible Style Language

The Extensible Style Language (XSL) is a more advanced style-sheet language
specifically designed for use with XML documents. XSL documents are themselves
well-formed XML documents.

XSL documents contain a series of rules that apply to particular patterns of XML
elements. An XSL processor reads an XML document and compares what it sees to
the patterns in a style sheet. When a pattern from the XSL style sheet is recognized
in the XML document, the rule outputs some combination of text. Unlike cascading
style sheets, this output text is somewhat arbitrary and is not limited to the input
text plus formatting information.

CSS can only change the format of a particular element, and it can only do so on an
element-wide basis. XSL style sheets, on the other hand, can rearrange and reorder
elements. They can hide some elements and display others. Furthermore, they can
choose the style to use not just based on the tag, but also on the contents and
attributes of the tag, on the position of the tag in the document relative to other
elements, and on a variety of other criteria.

CSS has the advantage of broader browser support. However, XSL is far more
flexible and powerful, and better suited to XML documents. Furthermore, XML
documents with XSL style sheets can be easily converted to HTML documents with
CSS style sheets.

XSL style sheets will be explored in great detail in Chapter 14, XSL Transformations,
and Chapter 15, XSL Formatting Objects.

URLs and URIs

XML documents can live on the Web, just like HTML and other documents. When they
do, they are referred to by Uniform Resource Locators (URLS), just like HTML files. For
example, at the URL http://www.hypermedic.com/style/xml/tempest.xml you'll

find the complete text of Shakespeare’s Tempest marked up in XML.

Although URLSs are well understood and well supported, the XML specification
uses the more general Uniform Resource Identifier (URI). URIs are a more general
architecture for locating resources on the Internet, that focus a little more on the
resource and a little less on the location. In theory, a URI can find the closest copy
of a mirrored document or locate a document that has been moved from one site
to another. In practice, URIs are still an area of active research, and the only kinds
of URIs that are actually supported by current software are URLs.

Chapter 1 0 An Eagle’s Eye View of XML 13

XLinks and XPointers

As long as XML documents are posted on the Internet, you’re going to want to be
able to address them and hot link between them. Standard HTML link tags can be
used in XML documents, and HTML documents can link to XML documents. For
example, this HTML link points to the aforementioned copy of the Tempest
rendered in XML:

The Tempest by Shakespeare

-
Note Whether the browser can display this document if you follow the link, depends on
€ just how well the browser handles XML files. Most current browsers don’t handle

them very well.

However, XML lets you go further with XLinks for linking to documents and
XPointers for addressing individual parts of a document.

XLinks enable any element to become a link, not just an A element. Furthermore,
links can be bi-directional, multidirectional, or even point to multiple mirror sites
from which the nearest is selected. XLinks use normal URLs to identify the site
they’re linking to.

- Cross- -\'-_ XLinks are discussed in Chapter 16, XLinks.
Reference Az

- il

XPointers enable links to point not just to a particular document at a particular
location, but to a particular part of a particular document. An XPointer can refer to
a particular element of a document, to the first, the second, or the 17th such
element, to the first element that’s a child of a given element, and so on. XPointers
provide extremely powerful connections between documents that do not require
the targeted document to contain additional markup just so its individual pieces
can be linked to it.

Furthermore, unlike HTML anchors, XPointers don’t just refer to a pointin a
document. They can point to ranges or spans. Thus an XPointer might be used to
select a particular part of a document, perhaps so that it can be copied or loaded
into a program.

- Cross- _\'-_ XPointers are discussed in Chapter 17, XPointers.
Reference y

—

14

Reference ',
= L

Part| O Introducing XML

The Unicode Character Set

The Web is international, yet most of the text you’ll find on it is in English. XML is
starting to change that. XML provides full support for the two-byte Unicode
character set, as well as its more compact representations. This character set
supports almost every character commonly used in every modern script on Earth.

Unfortunately, XML alone is not enough. To read a script you need three things:

1. A character set for the script
2. A font for the character set

3. An operating system and application software that understands the
character set

If you want to write in the script as well as read it, you’ll also need an input method
for the script. However, XML defines character references that allow you to use
pure ASCII to encode characters not available in your native character set. This is
sufficient for an occasional quote in Greek or Chinese, though you wouldn’t want to
rely on it to write a novel in another language.

In Chapter 7, Foreign Languages and non-Roman Text, you'll explore how interna-
tional text is represented in computers, how XML understands text, and how you
can use the software you have to read and write in languages other than English.

How the Technologies Fit Together

XML defines a grammar for tags you can use to mark up a document. An XML
document is marked up with XML tags. The default encoding for XML documents
is Unicode.

Among other things, an XML document may contain hypertext links to other
documents and resources. These links are created according to the XLink
specification. XLinks identify the documents they’re linking to with URIs

(in theory) or URLs (in practice). An XLink may further specify the individual
part of a document it’s linking to. These parts are addressed via XPointers.

If an XML document is intended to be read by human beings —and not all XML
documents are —then a style sheet provides instructions about how individual
elements are formatted. The style sheet may be written in any of several style-sheet
languages. CSS and XSL are the two most popular style-sheet languages, though
there are others including DSSSL — the Document Style Semantics and Specification
Language — on which XSL is based.

Chapter 1 O An Eagle’s Eye View of XML 15

Caution I've outlined a lot of exciting stuff in this chapter. However, honesty compels me to
tell you that | haven’t discussed all of it yet. In fact, much of what I've described is
the promise of XML rather than the current reality. XML has a lot of people in the
software industry very excited, and a lot of programmers are working very hard to
turn these dreams into reality. New software is released every day that brings us
closer to XML nirvana, but this is all very new, and some of the software isn't fully
cooked yet. Throughout the rest of this book, I'll be careful to point out not only
what is supposed to happen, but what actually does happen. Depressingly these
are all too often not the same thing. Nonetheless with a little caution you can do
real work right now with XML.

Summary

In this chapter, you have learned some of the things that XML can do for you. In
particular, you have learned:

O XML is a meta-markup language that enables the creation of markup
languages for particular documents and domains.

0 XML tags describe the structure and semantics of a document’s content, not
the format of the content. The format is described in a separate style sheet.

O XML grew out of many users’ frustration with the complexity of SGML and the
inadequacies of HTML.

O XML documents are created in an editor, read by a parser, and displayed by a
browser.

O XML on the Web rests on the foundations provided by HTML, Cascading Style
Sheets, and URLs.

O Numerous supporting technologies layer on top of XML, including XSL style
sheets, XLinks, and XPointers. These let you do more than you can
accomplish with just CSS and URLSs.

O Be careful. XML isn’t completely finished. It will change and expand, and you
will encounter bugs in current XML software.

In the next chapter, you’ll see a number of XML applications, and learn about some
ways XML is being used in the real world today. Examples include vector graphics,
music notation, mathematics, chemistry, human resources, Webcasting, and more.

U U U

An Introduction
to XML
Applications

I n this chapter we’ll be looking at some examples of XML

applications, markup languages used to further refine XML,
and behind-the-scene uses of XML. It is inspiring to look at
some of the uses to which XML has already been put, even in
this early stage of its development. This chapter will give you
some idea of the wide applicability of XML. Many more XML
applications are being created or ported from other formats
as | write this.

- Cross- Part V covers some of the XML applications discussed in

Refere[“_:? . this chapter in more detail.

What Is an XML Application?

XML is a meta-markup language for designing domain-specific
markup languages. Each XML-based markup language is called
an XML application. This is not an application that uses XML
like the Mozilla Web browser, the Gnumeric spreadsheet, or
the XML Pro editor, but rather an application of XML to a
specific domain such as Chemical Markup Language (CML) for
chemistry or GedML for genealogy.

Each XML application has its own syntax and vocabulary. This
syntax and vocabulary adheres to the fundamental rules of
XML. This is much like human languages, which each have
their own vocabulary and grammar, while at the same time
adhering to certain fundamental rules imposed by human
anatomy and the structure of the brain.

CHAP E
e
O O O O

In This Chapter

What is an XML

application?
XML for XML
Behind-the-scene
uses of XML
o O O 0d

R

18

Part| O Introducing XML

XML is an extremely flexible format for text-based data. The reason XML was
chosen as the foundation for the wildly different applications discussed in this
chapter (aside from the hype factor) is that XML provides a sensible, well-
documented format that’s easy to read and write. By using this format for its data, a
program can offload a great quantity of detailed processing to a few standard free
tools and libraries. Furthermore, it’s easy for such a program to layer additional
levels of syntax and semantics on top of the basic structure XML provides.

Chemical Markup Language

Peter Murray-Rust’s Chemical Markup Language (CML) may have been the first
XML application. CML was originally developed as an SGML application, and
gradually transitioned to XML as the XML standard developed. In its most
simplistic form, CML is “HTML plus molecules”, but it has applications far beyond
the limited confines of the Web.

Molecular documents often contain thousands of different, very detailed objects.
For example, a single medium-sized organic molecule may contain hundreds of
atoms, each with several bonds. CML seeks to organize these complex chemical
objects in a straightforward manner that can be understood, displayed, and
searched by a computer. CML can be used for molecular structures and sequences,
spectrographic analysis, crystallography, publishing, chemical databases, and
more. Its vocabulary includes molecules, atoms, bonds, crystals, formulas,
sequences, symmetries, reactions, and other chemistry terms. For instance Listing
2-1is a basic CML document for water (H,0):

Listing 2-1: The water molecule H,O

<?xml version="1.0"7>

<CML>
<MOL TITLE="Water">
<ATOMS>
<ARRAY BUILTIN="ELSYM">H O H</ARRAY>
</ATOMS>
<BONDS>

<ARRAY BUILTIN="ATID1">1 2</ARRAY>
CARRAY BUILTIN="ATID2">2 3</ARRAY>
<ARRAY BUILTIN="ORDER">1 1</ARRAY>
</BONDS>
</MOL>
</CML>

The biggest improvement CML offers over traditional approaches to managing
chemical data is ease of searching. CML also enables complex molecular data to be
sent over the Web. Because the underlying XML is platform-independent, the
problem of platform-dependency that plagues the binary formats used by

Chapter 2 O An Introduction to XML Applications 19

traditional chemical software and documents like the Protein Data Bank (PDB)
format or MDL Molfiles, is avoided.

Murray-Rust also created JUMBO, the first general-purpose XML browser. Figure 2-1
shows JUMBO displaying a CML file. Jumbo works by assigning each XML element to
a Java class that knows how to render that element. To allow Jumbo to support new
elements, you simply write Java classes for those elements. Jumbo is distributed
with classes for displaying the basic set of CML elements including molecules,
atoms, and bonds, and is available at http://www.xml-cml.org/.

=0 = E
File Edid W Parsing Help

Canmnl WAL OO B e biap e nod 2l Edil=RET 10 change)

F Ehdaipibesn | Calomfs | Cﬁml L8 PET LT

: IC lemin ndHame: (2 neesus " Valmeak? Update

a i —

a ™ Al Alliiaile Hiide AriiElbibes Dbt AdliiDle

a I Figres [Ty Trpe |

o Ihmp e SOHaTA |

rihiaphenc

"J“‘*:.
o

An ad fab e 5 mphic Hode Fa e

Figure 2-1: The JUMBO browser displaying a CML file

Mathematical Markup Language

Legend claims that Tim Berners-Lee invented the World Wide Web and HTML

at CERN so that high-energy physicists could exchange papers and preprints.
Personally I've never believed that. | grew up in physics; and while I've wandered
back and forth between physics, applied math, astronomy, and computer science
over the years, one thing the papers in all of these disciplines had in common was
lots and lots of equations. Until now, nine years after the Web was invented, there
hasn’t been any good way to include equations in Web pages.

There have been a few hacks — Java applets that parse a custom syntax, converters
that turn LaTeX equations into GIF images, custom browsers that read TeX files—
but none of these have produced high quality results, and none of them have
caught on with Web authors, even in scientific fields. Finally, XML is starting to
change this.

20 Part | [Introducing XML

The Mathematical Markup Language (MathML) is an XML application for
mathematical equations. MathML is sufficiently expressive to handle pretty
much all forms of math — from grammar-school arithmetic through calculus
and differential equations. It can handle many considerably more advanced
topics as well, though there are definite gaps in some of the more advanced
and obscure notations used by certain sub-fields of mathematics. While there
are limits to MathML on the high end of pure mathematics and theoretical
physics, it is eloquent enough to handle almost all educational, scientific,
engineering, business, economics, and statistics needs. And MathML is likely
to be expanded in the future, so even the purest of the pure mathematicians
and the most theoretical of the theoretical physicists will be able to publish
and do research on the Web. MathML completes the development of the Web
into a serious tool for scientific research and communication (despite its long
digression to make it suitable as a new medium for advertising brochures).

Netscape Navigator and Internet Explorer do not yet support MathML. Nonetheless,
it is the fervent hope of many mathematicians that they soon will. The W3C has
integrated some MathML support into their test-bed browser, Amaya. Figure 2-2
shows Amaya displaying the covariant form of Maxwell’s equations written in
MathML.

83 the . Amaya is on the CD-ROM in the browsers/amaya directory.

Tl] 2] BISIR |l GolH W [W|E]i=E|w | E]
Address |D.‘L.'-QML||uma-pal.'lhnﬂ.'ﬁﬁndw;‘lhinmﬁam.xml |
Title |Fiat Luce |
Lnd God said,]

&7

b, PP - —F

[

vl there was Egj:l:i
a | o]
Teed " P5 BOOY % HTHL
Figure 2-2: The Amaya browser displaying the
covariant form of Maxwell’s equations written
in MathML

The XML file the Amaya browser is displaying is given in Listing 2-2:

Listing 2-2: Maxwell’s Equations in MathML

<?xml version="1.0"7>

<html xmins="http://www.w3.0rg/TR/REC-htm140"
xmins:m="http://www.w3.0rg/TR/REC-MathML/"

>

Chapter 2 O An Introduction to XML Applications 21

<head>

<title>Fiat Lux</title>

<meta name="GENERATOR" content="amaya V1.3b" />
</head>

<body>

<P>
And God said,
<P

<math>
<m:mrow>
<m:msub>
<m:mi>δ</m:mi>
<m:mi>α</m:mi>
</mimsub>
<m:msup>
<m:mi>F</m:mi>
<m:mi>αβ</m:mi>
</m:msup>
<m:mi></m:mi>
<m:mo>=</m:mo>
<m:mi></m:mi>
<m:mfrac>
<m:mrow>
<m:mn>4</m:mn>
<m:mi>π</m:mi>
</mimrow>
<m:mi>c</m:mi>
</m:mfrac>
<m:mi></m:mi>
<m:msup>
<m:mi>J</m:mi>
<m:mrow>
<m:mi>β</m:mi>
<m:mo></m:mo>
</mimrow>
</m:msup>
</m:mrow>
</math>

<P>

and there was light
</P>

</body>

</htm1>

Listing 2-2 is an example of a mixed HTML/XML page. The headers and paragraphs
of text (“Fiat Lux”, “Maxwell’s Equations”, “And God said”, “and there was light”) is
given in classic HTML. The actual equations are written in MathML, an application
of XML.

22

Part| O Introducing XML

In general, such mixed pages require special support from the browser, as is the
case here, or perhaps plug-ins, ActiveX controls, or JavaScript programs that parse
and display the embedded XML data. Ultimately, of course, you want a browser like
Mozilla 5.0 or Internet Explorer 5.0 that can parse and display pure XML files
without an HTML intermediary.

Channel Definition Format

Microsoft’s Channel Definition Format (CDF) is an XML application for defining
channels. Web sites use channels to upload information to readers who subscribe
to the site rather than waiting for them to come and get it. This is alternately called
Webcasting or push. CDF was first introduced in Internet Explorer 4.0.

A CDF document is an XML file, separate from, but linked to an HTML document on
the site being pushed. The channel defined in the CDF document determines which
pages are sent to the readers, how the pages are transported, and how often the
pages are sent. Pages can either be pushed by sending notifications, or even whole
Web sites, to subscribers; or pulled down by the readers at their convenience.

You can add CDF to your site without changing any of the existing content.

You simply add an invisible link to a CDF file on your home page. Then when

a reader visits the page, the browser displays a dialog box asking them if they
want to subscribe to the channel. If the reader chooses to subscribe, the browser
downloads a copy of the CDF document describing the channel. The browser
then combines the parameters specified in the CDF document with the user’s
own preferences to determine when to check back with the server for new con-
tent. This isn’t true push, because the client has to initiate the connection, but

it still happens without an explicit request by the reader. Figure 2-3 shows the
IDG Active Channel in Internet Explorer 4.0.

-Cross- 4 CDF is covered in more detail in Chapter 21, Pushing Web Sites with CDF.
Reference
On the Internet Explorer 4.0 is on the CD-ROM in the browsers/ie4 directory.

CD-\REO}I}VI .

On the

Classic Literature

Jon Bosak has translated the complete plays of Shakespeare into XML. The
complete text of the plays is included, and XML markup is used to distinguish
between titles, subtitles, stage directions, speeches, lines, speakers, and more.

The complete set of plays is on the CD-ROM in the examples/shakespeare

CD'\R.E)/‘\}" . directory.

Chapter 2 O An Introduction to XML Applications 23

Chp'nSave B Faploem

e Edt Yew §o Faecite: Hep

L.t . @ B &4 Q@ @ 98 o
Bk Foarvead Shap Aebzsn Homs Geaguh Fowosbsy Hiloy Dhanrsle | Fulionesn
e (3] koo vy ret s fed el bire

i
(15
SR

®How fo wse IDG.net mFeedback @G met ® What is G mef 7 W Personalization &
" & Chrannel Gude
— Ginkal Personal Page IWipned | Global T Kews | Leam
o Tl | Search forar B iy
@S e IDG
- - [J
Net

L 1
k. Tl RE(E M N 8 Thi P e
-

E W7
SPOTLIGHT O

W Join WG sl

With or without DO, states
reportedly ready for Miorosolt Preparing fc
- SPECIAL MEWS CHANMEL . Aus, o disaster
ey Microsoft drops ‘Paim PO name; & pwar falure,
3Com drops suit, and more Fond, Or vins
Microdaft raws L-f maght; bAng your
BusirnaEs to it
Crystal Info expands to Lnis *":,‘“ '-""““md
e ek v wou're prapared.
ACOMPUTERHOKLD EEQE-:V?_ T MK VErEKan
of its Cryztal Info
entempris reporting tocl, code-named Ariver nans
Polaris, will be avalable in thres Ures threugh 1T
flavors — Sun's Solaris, Hewlstt-Packard's H“: an apparel .
o e rmskar racevarn
2 -1 ared 1BM's AT From & sudden
=] seluge that
o) irntemat ore

Figure 2-3: The IDG Active Channel in Internet Explorer 4.0

You may ask yourself what this offers over a book, or even a plain text file. To a
human reader, the answer is not much. But to a computer doing textual analysis,
it offers the opportunity to easily distinguish between the different elements into
which the plays have been divided. For instance, it makes it quite simple for the
computer to go through the text and extract all of Romeo’s lines.

Furthermore, by altering the style sheet with which the document is formatted,

an actor could easily print a version of the document in which all their lines were
formatted in bold face, and the lines immediately before and after theirs were
italicized. Anything else you might imagine that requires separating a play into the
lines uttered by different speakers is much more easily accomplished with the XML-
formatted versions than with the raw text.

Bosak has also marked up English translations of the old and new testaments, the
Koran, and the Book of Mormon in XML. The markup in these is a little different.
For instance, it doesn’t distinguish between speakers. Thus you couldn’t use these
particular XML documents to create a red-letter Bible, for example, although a
different set of tags might allow you to do that. (A red-letter Bible prints words
spoken by Jesus in red.) And because these files are in English rather than the
original languages, they are not as useful for scholarly textual analysis. Still, time
and resources permitting, those are exactly the sorts of things XML would allow
you to do if you wanted to. You’d simply need to invent a different vocabulary and
syntax than the one Bosak used that would still describe the same data.

24

Part| O Introducing XML

On the

The XML-ized Bible, Koran, and Book of Mormon are all on the CD-ROM in the

CD'\R%" . examples/religion directory.

Synchronized Multimedia Integration Language

The Synchronized Multimedia Integration Language (SMIL, pronounced “smile”) is a
W3C recommended XML application for writing “TV-like” multimedia presentations

for the Web. SMIL documents don’t describe the actual multimedia content (that is

the video and sound that are played) but rather when and where they are played.

For instance, a typical SMIL document for a film festival might say that the browser
should simultaneously play the sound file beethoven9.mid, show the video file
corange.mov, and display the HTML file clockwork.htm. Then, when it's done, it
should play the video file 2001.mov, the audio file zarathustra.mid, and display the
HTML file aclarke.htm. This eliminates the need to embed low bandwidth data like
text in high bandwidth data like video just to combine them. Listing 2-3 is a simple
SMIL file that does exactly this.

Listing 2-3: A SMIL film festival

<?xml version="1.0" encoding="1S0-8859-1"7>
<IDOCTYPE smil PUBLIC "-//W3C//DTD SMIL 1.0//EN"
"http://www.w3.0rg/TR/REC-smil/SMIL10.dtd">
<smil>
<body>
<{seq id="Kubrick">
<audio src="beethoven9.mid"/>
<video src="corange.mov"/>
<text src="clockwork.htm"/>
<audio src="zarathustra.mid"/>
<video src="2001.mov"/>
<{text src="aclarke.htm"/>
</seq>
</body>
</smil>

Furthermore, as well as specifying the time sequencing of data, a SMIL document
can position individual graphics elements on the display and attach links to media
objects. For instance, at the same time the movie and sound are playing, the text of
the respective novels could be subtitling the presentation.

Chapter 2 O An Introduction to XML Applications 25

HTML+TIME

SMIL operates independently of the Web page. The streaming media pushed
through SMIL has its own pane in the browser frame, but it doesn’t really

have any interaction with the content in the HTML on the rest of the page. For
instance, SMIL only lets you time SMIL elements like audio, video, and text. It
doesn’t let you add timing information to basic HTML tags like <P>, , or .
And SMIL duplicates some aspects of HTML, such as how elements are positioned
on the page.

Microsoft, along with Macromedia and Compag, has proposed a semi-competing
XML application called Timed Interactive Multimedia Extensions for HTML (or
HTML+TIME for short). HTML+TIME builds on SMIL to support timing for tradi-
tional HTML elements and features much closer integration with the HTML on the
Web page. For example, HTML+TIME lets you write a countdown Web page like
Listing 2-4 that adds to the page as time progresses.

Listing 2-4: A countdown Web page using HTML+TIME

<htm1>
<head><title>Countdown</title></head>
<body>
<p t:begin="0" t:dur="1">10</p>
<p t:begin="1" t:dur="1">9</p>
<p t:begin="2" t:dur="1">8</p>
<p t:begin="3" t:dur="1">7</p>
<p t:begin="4" t:dur="1">6</p>
<p t:begin="5" t:dur="1">5</p>
<p t:begin="6" t:dur="1">4</p>
<p t:begin="7" t:dur="1">3</p>
<p t:begin="8" t:dur="1">2</p>
<p t:begin="9" t:dur="1">1</p>
<p t:begin="10" t:dur="1">Blast Off!</p>
</body>
</htm1>

This is useful for slide shows, timed quizzes, and the like. In HTML+TIME, the film
festival example of Listing 2-3 looks like the following:

{t:seq id="Kubrick">
<{t:audio src="beethoven9.mid"/>
<t:video src="corange.mov"/>
{t:textstream src="clockwork.htm"/>
<t:audio src="zarathustra.mid"/>
<t:video src="2001.mov"/>
{t:textstream src="aclarke.htm"/>

</seq>

26 Part | [Introducing XML

It’s close to, though not quite exactly the same as, the SMIL version. The major
difference is that the SMIL version is intended to be stored in separate files and
rendered by special players like RealPlayer, whereas the HTML+TIME version is
supposed to be included in the Web page and rendered by the browser. Another
key difference is that there are several products that can play SMIL files now,
including RealPlayer G2, whereas HTML+TIME-enabled Web browsers do not exist
at the moment. However, it’s likely that future versions of Internet Explorer will
include HTML+TIME support.

There are some nice features and some good ideas in HTML+TIME. However, the
W3C had already given its blessing to SMIL several months before Microsoft
proposed HTML+TIME, and SMIL has a lot more momentum and support in the
third-party, content creator community. Thus it seems we’re in for yet another
knockdown, drag-out, Microsoft-vs.-everybody-else-in-the-known-universe battle
which will only leave third party developers bruised and confused. One can only
hope that the W3C has the will and energy to referee this fight fairly. Web
development really would be a lot simpler if Microsoft didn’t pick up its toys and go
home every time they don’t get their way.

Open Software Description

The Open Software Description (OSD) format is an XML application co-developed
by Marimba and Microsoft for updating software automatically. OSD defines XML
tags that describe software components. The description of a component includes
the version of the component, its underlying structure, and its relationships to and
dependencies on other components. This provides enough information for OSD to
decide whether a user needs a particular update or not. If they do need the update,
it can be automatically pushed to users, rather than requiring them to manually
download and install it. Listing 2-5 is an example of an OSD file for an update to
WhizzyWriter 1000:

Listing 2-5: An OSD file for an update to WhizzyWriter 1000

<?XML version="1.0"7>
<CHANNEL HREF="http://updates.whizzy.com/updateChannel.html">
KTITLE>WhizzyWriter 1000 Update Channel</TITLE>
<USAGE VALUE="SoftwareUpdate"/>
<SOFTPKG HREF="http://updates.whizzy.com/updateChannel.html"
NAME="{46181F7D-1C38-22A1-3329-00415C6A4D54}"
VERSION="5,2,3,1"
STYLE="MSAppLogo5"
PRECACHE="yes">
KTITLE>WhizzyWriter 1000</TITLE>
<ABSTRACT>
Abstract: WhizzyWriter 1000: now with tint control!
</ABSTRACT>

Chapter 2 O An Introduction to XML Applications

<IMPLEMENTATION>
<CODEBASE HREF="http://updates.whizzy.com/tinupdate.exe"/>
</IMPLEMENTATION>
</SOFTPKG>
</CHANNEL>

Only information about the update is kept in the OSD file. The actual update files
are stored in a separate CAB archive or executable and downloaded when needed.
There is considerable controversy about whether or not this is actually a good
thing. Many software companies, Microsoft not least among them, have a long
history of releasing updates that cause more problems than they fix. Many users
prefer to stay away from new software for a while until other, more adventurous
souls have given it a shakedown.

Scalable Vector Graphics

Vector graphics are superior to the bitmap GIF and JPEG images currently used on
the Web for many pictures including flow charts, cartoons, advertisements, and
similar images. However, many traditional vector graphics formats like PDF,
PostScript, and EPS were designed with ink on paper in mind rather than electrons
on a screen. (This is one reason PDF on the Web is such an inferior replacement for
HTML, despite PDF’s much larger collection of graphics primitives.) A vector
graphics format for the Web should support a lot of features that don’t make sense
on paper like transparency, anti-aliasing, additive color, hypertext, animation, and
hooks to enable search engines and audio renderers to extract text from graphics.
None of these features are needed for the ink-on-paper world of PostScript and PDF.

Several vendors have made a variety of proposals to the W3C for XML applications
for vector graphics. These include:

O The Precision Graphics Markup Language (PGML) from IBM, Adobe, Netscape,
and Sun.

0 The Vector Markup Language (VML) from Microsoft, Macromedia, Autodesk,
Hewlett-Packard, and Visio

O Schematic Graphics on the World Wide Web from the Central Laboratory of
the Research Councils

O DrawML from Excosoft AB

O Hyper Graphics Markup Language (HGML) from PRP and Orange PCSL
Each of these reflects the interests and experience of its authors. For example, not
surprisingly given Adobe’s participation, PGML has the flavor of PostScript but with

XML element-attribute syntax rather than PostScript’s reverse Polish notation.
Listing 2-6 demonstrates the embedding of a pink triangle in PGML.

27

28

Part| O Introducing XML

Listing 2-6: A pink triangle in PGML

<?xml version="1.0"7>
<IDOCTYPE pgml SYSTEM "pgml.dtd">
<pgml>
<group name="PinkTriangle" fillcolor="pink">
<path>
<moveto x="0" y="0"/>
<lineto x="100" y="173"/>
<lineto x="200" y="0"/>
<closepath/>
</path>
</group>
</pgml>

The W3C has formed a working group with representatives from the above vendors
to decide on a single, unified, scalable vector graphics specification called SVG. SVG
is an XML application for describing two-dimensional graphics. It defines three
basic types of graphics: shapes, images, and text. A shape is defined by its outline,
also known as its path, and may have various strokes or fills. An image is a
bitmapped file like a GIF or a JPEG. Text is defined as a string of text in a particular
font, and may be attached to a path, so it’s not restricted to horizontal lines of text
like the ones that appear on this page. All three kinds of graphics can be positioned
on the page at a particular location, rotated, scaled, skewed, and otherwise
manipulated. Since SVG is a text format, it’s easy for programs to generate
automatically; and it’s easy for programs to manipulate. In particular you can
combine it with DHTML and ECMAScript to make the pictures on a Web page
animated and responsive to user action.

Since SVG describes graphics rather than text—unlike most of the other XML
applications discussed in this chapter —it will probably need special display
software. All of the proposed style-sheet languages assume they’re displaying
fundamentally text-based data, and none of them can support the heavy graphics
requirements of an application like SVG. It's possible SVG support may be added to
future browsers, especially since Mozilla is open source code; and it would be even
easier for a plug-in to be written. However, for the time being, the prime benefit of
SVG is that it is likely to be used as an exchange format between different programs
like Adobe Illustrator and CorelDraw, which use different native binary formats.

SVG is not fully fleshed out at the time of this writing, and there are exactly zero
implementations of it. The first working draft of SVG was released by the World
Wide Web Consortium in February of 1999. Compared to other working drafts,
however, it is woefully incomplete. It’s really not much more than an outline of
graphics elements that need to be included, without any details about how exactly
those elements will be encoded in XML. | wouldn’t be surprised if this draft got
pushed out the door a little early to head off the adoption of competing efforts

like VML.

Chapter 2 O An Introduction to XML Applications 29

Vector Markup Language

Microsoft has developed their own XML application for vector graphics called the
Vector Markup Language (VML). VML is more finished than SVG, and is already
supported by Internet Explorer 5.0 and Microsoft Office 2000. Listing 2-7 is an HTML
file with embedded VML that draws the pink triangle. Figure 2-4 shows this file
displayed in Internet Explorer 5.0. However, VML is not nearly as ambitious a
format as SVG, and leaves out a lot of advanced features SVG includes such as
clipping, masking, and compositing.

Listing 2-7: The pink triangle in VML

<html xmIns:vml="urn:schemas-microsoft-com:vml">
<head>
<title>
A Pink Triangle, Listing 2-7 from the XML Bible
<Jtitle>
<object id="VMLRender"
classid="CLSID:10072CEC-8CC1-11D1-986E-00A0C955B42E">
</object>
{style>
vml\:* { behavior: url(§#VMLRender) }
{/style>
<{/head>
<body>

<div>

<vml:polyline
style="width: 200px; height: 200px"
stroke="false"
fill="true"
fillcolor="#fFFCCCC"
points="10pt, 275pt, 310pt, 275pt, 160pt, 45pt">
</vml:polyline>

</div>
</body>
</htm1>

There’s really no reason for there to be two separate, mutually incompatible vector
graphics standards for the Web, and Microsoft will probably grudgingly support
SVG in the end. However, VML is available today, even if its use is limited to
Microsoft products, whereas SVG is only an incomplete draft specification. Web
artists would prefer to have a single standard, but having two is not unheard of
(think Gif and JPEG). As long as the formats are documented and non-proprietary,

30 Part | O Introducing XML

it's not out of the question for Web browsers to support both. At the least, the
underlying XML makes it a lot easier for programmers to write converters that
translate files from one format to the other.

& o B [& @ & @B & T
Bk Forvwmd Sigp Aeiesh Home | Seach Favoies Hetoy = Wl Pl
Agdrme (] Do HLB b LD sourcet D202 7 i =] ~Ba
\ 5
\'\.
&
\-\.
N
b
1
N
N
\'-\.
\“'-\.
N
N
0
N
N
i8] Duorm 8 My Corpuls —

Figure 2-4: The pink triangle created with VML

- Cross- ﬂ'ﬁl VML is discussed in more detail in Chapter 22, The Vector Markup Language.
Reference ',
| _.--—'—_l

MusicML

The Connection Factory has created an XML application for sheet music called
MusicML. MusicML includes notes, beats, clefs, staffs, rows, rhythms, rests, beams,
rows, chords and more. Listing 2-8 shows the first bar from Beth Anderson’s Flute
Swale in MusicML.

|-

Listing 2-8: The first bar of Beth Anderson’s Flute Swale

<?xml version="1.0"7>
<IDOCTYPE sheetmusic SYSTEM "music.dtd">
{sheetmusic>

<musicrow size="one">

<entrysegment>

Chapter 2 O An Introduction to XML Applications 31

<entrypart cleff="bass" rythm="fourquarter"
position="one">
<molkruis level="plusl" name="f" notetype="sharp"/>
<molkruis Tevel="plusl" name="c" notetype="sharp"/>
</entrypart>
</entrysegment>

<{segment>

{subsegment position="one">
<beam size="double">
<note beat="sixteenth" name="a" level="zero"
dynamics="mf"/>
<note beat="sixteenth" name="b" Tlevel="zero"><{/note>
<note beat="sixteenth" name="c" level="plusl"></note>
<{note beat="sixteenth" name="a" level="zero"></note>
</beam>
<beam size="single">
<note beat="eighth" name="d" level="plusl"/>
<note beat="eighth" name="c" level="plusl"/>
</beam>
<note beat="quarter" name="b" level="zero"/>
{note beat="quarter" name="a" level="zero"/>
</subsegment>

</segment>

</musicrow>
<{/sheetmusic>

The Connection Factory has also written a Java applet that can parse and display

MusicML. Figure 2-5 shows the above example rendered by this applet. The applet
has a few bugs (for instance the last note is missing) but overall it’s a surprisingly

good rendition.

Figure 2-5: The first bar of Beth
Anderson’s Flute Swale in MusicML

===

* I I

}“
i

MusicML isn’t going to replace Finale or Nightingale anytime soon. And it really
seems like more of a proof of concept than a polished product. MusicML has a lot
of discrepancies that will drive musicians nuts (e.g., rhythm is misspelled, treble
and bass clefs are reversed, segments should really be measures, and so forth).

32

Part| O Introducing XML

Nonetheless something like this is a reasonable output format for music notation
programs that enables sheet music to be displayed on the Web. Furthermore, if
the various notation programs all support MusicML or something like it, then it
can be used as an interchange format to move data from one program to the other,
something composers desperately need to be able to do now.

VoxML

Motorola’s VoxML (http://www.voxml.com/) is an XML application for the spoken
word. In particular, it’'s intended for those annoying voice mail and automated
phone response systems (“If your hair turned green after using our product, please
press one. If your hair turned purple after using our product, please press two. If
you found an unidentifiable insect in the product, please press 3. Otherwise, please
stay on the line until your hair grows back to its natural color.”).

VoxML enables the same data that’s used on a Web site to be served up via
telephone. It’s particularly useful for information that’s created by combining small
nuggets of data, such as stock prices, sports scores, weather reports, and test
results. The Weather Channel and CBS MarketWatch.com are considering using
VoxML to provide more information over regular voice phones.

A small VoxML file for a shampoo company’s automated phone response system
might look something like the code in Listing 2-9.

Listing 2-9: A VoxML file

<?xml version="1.0"7>
<DIALOG>
<CLASS NAME="help_top">
<HELP>Welcome to TIC consumer products division.
For shampoo information, say shampoo now.
</HELP>
</CLASS>

{STEP NAME="init" PARENT="help_top">
<PROMPT>Welcome to Wonder Shampoo
<BREAK SIZE="large"/>
Which color did Wonder Shampoo turn your hair?
</PROMPT>
<INPUT TYPE="OPTIONLIST">
<OPTION NEXT="{#fgreen">green</0PTION>
<OPTION NEXT="#purple">purple</0OPTION>
<OPTION NEXT="#bald">bald</0OPTION>
<OPTION NEXT="{#bye">exit</OPTION>
</INPUT>
</STEP>

Chapter 2 O An Introduction to XML Applications 33

<STEP NAME="green" PARENT="help_top">
<PROMPT>
If Wonder Shampoo turned your hair green and you wish
to return it to its natural color, simply shampoo seven
times with three parts soap, seven parts water, four
parts kerosene, and two parts iguana bile.
</PROMPT>
<INPUT TYPE="NONE" NEXT="#bye"/>
</STEP>

<STEP NAME="purple" PARENT="help_top">
<PROMPT>
If Wonder Shampoo turned your hair purple and you wish
to return it to its natural color, please walk
widdershins around your local cemetery
three times while chanting "Surrender Dorothy".

</PROMPT>
<INPUT TYPE="NONE" NEXT="#bye"/>
</STEP>

{STEP NAME="bald" PARENT="help_top">
<PROMPT>
If you went bald as a result of using Wonder Shampoo,
please purchase and apply a three months supply
of our Magic Hair Growth Formula(TM). Please do not
consult an attorney as doing so would violate the
license agreement printed on inside fold of the Wonder
Shampoo box in 3 point type which you agreed to
by opening the package.
</PROMPT>
<INPUT TYPE="NONE" NEXT="#bye"/>
</STEP>

<STEP NAME="bye" PARENT="help_top">
<PROMPT>
Thank you for visiting TIC Corp. Goodbye.
</PROMPT>
CINPUT TYPE="NONE" NEXT="{fexit"/>
</STEP>

</DIALOG>

| can’t show you a screen shot of this example, because it’s not intended to be
shown in a Web browser. Instead, you would listen to it on a telephone.

34

Part| O Introducing XML

Open Financial Exchange

Software cannot be changed willy-nilly. The data that software knows how to read has
inertia. The more data you have in a given program’s proprietary, undocumented
format, the harder it is to change programs. For example, my personal finances for
the last five years are stored in Quicken. How likely is it that | will change to Microsoft
Money even if Money has features | need that Quicken doesn’t have? Unless Money
can read and convert Quicken files with zero loss of data, the answer is “NOT
BLOODY LIKELY!”

The problem can even occur within a single company or a single company’s
products. Microsoft Word 97 for Windows can’t read documents created by some
earlier versions of Word. And earlier versions of Word can’t read Word 97 files at all.
And Microsoft Word 98 for the Mac can’t quite read everything that’s in a Word 97
for Windows file, even though Word 98 for the Mac came out a year later!

As noted in Chapter 1, the Open Financial Exchange Format (OFX) is an XML
application used to describe financial data of the type you're likely to store in a
personal finance product like Money or Quicken. Any program that understands
OFX can read OFX data. And since OFX is fully documented and non-proprietary
(unlike the binary formats of Money, Quicken, and other programs) it’s easy for
programmers to write the code to understand OFX.

OFX not only allows Money and Quicken to exchange data with each other. It allows
other programs that use the same format to exchange the data as well. For
instance, if a bank wants to deliver statements to customers electronically, it only
has to write one program to encode the statements in the OFX format rather than
several programs to encode the statement in Quicken’s format, Money’s format,
Managing Your Money’s format, and so forth.

The more programs that use a given format, the greater the savings in development
cost and effort. For example, six programs reading and writing their own and each
other’s proprietary format require 36 different converters. Six programs reading
and writing the same OFX format require only six converters. Effort is reduced to
O(n) rather than O(n2). Figure 2-6 depicts six programs reading and writing their
own and each other’s proprietary format. Figure 2-7 depicts six programs reading
and writing the same OFX format. Every arrow represents a converter that has to
trade files and data between programs. In Figure 2-6, you can see the connections
for six different programs reading and writing each other’s proprietary binary
format. In Figure 2-7, you can see the same six different programs reading and
writing one open XML format. The XML-based exchange is much simpler and
cleaner than the binary-format exchange.

Chapter 2 O An Introduction to XML Applications

Quicken Money

CheckFree

Mutual Fund
Program

Managing Your Money BPrOIfEEtétlry
ank System

Figure 2-6: Six different programs reading and writing their own and each other’s formats

35

36 Part | [Introducing XML

Quicken Money
CheckFree
OFX
Format
Mutual Fund
Program
Managing Your Money Proprietary
Bank System

Figure 2-7: Six programs reading and writing the same OFX format

Extensible Forms Description Language

| went down to my local bookstore today and bought a copy of Armistead Maupin’s
novel Sure of You. | paid for that purchase with a credit card, and when | did so |
signed a piece of paper agreeing to pay the credit card company $14.07 when billed.
Eventually they will send me a bill for that purchase, and I'll pay it. If | refuse to pay
it, then the credit card company can take me to court to collect, and they can use
my signature on that piece of paper to prove to the court that on October 15, 1998 |
really did agree to pay them $14.07.

The same day | also ordered Anne Rice’s The Vampire Armand from the online
bookstore amazon.com. Amazon charged me $16.17 plus $3.95 shipping and
handling and again | paid for that purchase with a credit card. But the difference is

Chapter 2 O An Introduction to XML Applications 37

that Amazon never got a signature on a piece of paper from me. Eventually the
credit card company will send me a bill for that purchase, and I’ll pay it. But if | did
refuse to pay the bill, they don’t have a piece of paper with my signature on it
showing that | agreed to pay $20.12 on October 15, 1998. If | claim that | never made
the purchase, the credit card company will bill the charges back to Amazon. Before
Amazon or any other online or phone-order merchant is allowed to accept credit
card purchases without a signature in ink on paper, they have to agree that they will
take responsibility for all disputed transactions.

Exact numbers are hard to come by, and of course vary from merchant to
merchant, but probably a little under 10% of Internet transactions get billed back to
the originating merchant because of credit card fraud or disputes. This is a huge
amount! Consumer businesses like Amazon simply accept this as a cost of doing
business on the Net and work it into their price structure, but obviously this isn’t
going to work for six figure business-to-business transactions. Nobody wants to
send out $200,000 of masonry supplies only to have the purchaser claim they never
made or received the order. Before business-to-business transactions can move
onto the Internet, a method needs to be developed that can verify that an order was
in fact made by a particular person and that this person is who he or she claims to
be. Furthermore, this has to be enforceable in court. (It’s a sad fact of American
business that many companies won’t do business with anyone they can’t sue.)

Part of the solution to the problem is digital signatures —the electronic equivalent
of ink on paper. To digitally sign a document, you calculate a hash code for the
document using a known algorithm, encrypt the hash code with your private key,
and attach the encrypted hash code to the document. Correspondents can decrypt
the hash code using your public key and verify that it matches the document.
However, they can’t sign documents on your behalf because they don’t have your
private key. The exact protocol followed is a little more complex in practice, but the
bottom line is that your private key is merged with the data you’re signing in a
verifiable fashion. No one who doesn’t know your private key can sign the
document.

The scheme isn’t foolproof —it’s vulnerable to your private key being stolen, for
example-but it’s probably as hard to forge a digital signature as it is to forge a real
ink-on-paper signature. However, there are also a number of less obvious attacks on
digital signature protocols. One of the most important is changing the data that’s
signed. Changing the data that’s signed should invalidate the signature, but it
doesn’t if the changed data wasn’t included in the first place. For example, when
you submit an HTML form, the only things sent are the values that you fill into the
form’s fields and the names of the fields. The rest of the HTML markup is not
included. You may agree to pay $1500 for a new 450 MHz Pentium Il PC running
Windows NT, but the only thing sent on the form is the $1500. Signing this number
signifies what you’re paying, but not what you’re paying for. The merchant can then
send you two gross of flushometers and claim that’s what you bought for your
$1500. Obviously, if digital signatures are to be useful, all details of the transaction
must be included. Nothing can be omitted.

38

Part| O Introducing XML

The problem gets worse if you have to deal with the U.S. federal government.
Government regulations for purchase orders and requisitions often spell out the
contents of forms in minute detail, right down to the font face and type size. Failure
to adhere to the exact specifications can lead to your invoice for $20,000,000 worth
of depleted uranium artillery shells being rejected. Therefore, you not only need to
establish exactly what was agreed to; you also need to establish that you met all
legal requirements for the form. HTML's forms just aren’t sophisticated enough to
handle these needs.

XML, however, can. It is almost always possible to use XML to develop a markup
language with the right combination of power and rigor to meet your needs, and
this example is no exception. In particular UWI.COM has proposed an XML
application called the Extensible Forms Description Language (XFDL) for forms
with extremely tight legal requirements that are to be signed with digital signatures.
XFDL further offers the option to do simple mathematics in the form, for instance to
automatically fill in the sales tax and shipping and handling charges and total up
the price.

UWI.COM has submitted XFDL to the W3C, but it’s really overkill for Web brow-
sers, and thus probably won’t be adopted there. The real benefit of XFDL, if it
becomes widely adopted, is in business-to-business and business-to-government
transactions. XFDL can become a key part of electronic commerce, which is not
to say it will become a key part of electronic commerce. It’s still early, and there
are other players in this space.

Human Resources Markup Language

HireScape’s Human Resources Markup Language (HRML) is an XML application that
provides a simple vocabulary for describing job openings. It defines elements
matching the parts of a typical classified want ad such as companies, divisions,
recruiters, contact information, terms, experience, and more. A job listing in HRML
might look something like the code in Listing 2-10.

Listing 2-10: A Job Listing in HRML

<?xml version="1.0"7>
<HRML_JO0OB>

<COMPANY>

<CO_NAME>IDG Books</CO_NAME>

<CO_INTERNET_ADDR>
<CO_HOME_PAGE>http://www.idgbooks.com/</CO_HOME_PAGE>
<CO_JOBS_PAGE>

http://www.idgbooks.com/cgi-
bin/gatekeeper.pl?uidg4841:%2Fcompany%2Fjobs%2Findex.html

</CO_JOBS_PAGE>

</CO_INTERNET_ADDR>

Chapter 2 O An Introduction to XML Applications 39

</COMPANY>
<JoB>

<JOB_METADATA>
<JOB_LOADED_DT>09/10/1998</J0B_LOADED_DT>
<JOB_LOADED_URL>
http://www.idgbooks.com/cgi-
bin/gatekeeper.pl?uidg4841:%2Fcompany%2Fjobs%2Findex.htm]l
</JOB_LOADED_URL>
</JOB_METADATA>

<JOB_DATA>
<JOB_TITLE>Web Development Manager</JOB_TITLE>

<JOB_NUMBER_AVATL>1</JOB_NUMBER_AVAIL>

<JOB_YEARS_EXP>3</JOB_YEARS_EXP>

<JOB_DESC>
This position is responsible for the technical
and production functions of the Online
group as well as strategizing and implementing
technology to improve the IDG Books web sites.
Skills must include Perl, C/C++, HTML, SQL, JavaScript,
Windows NT 4, mod-perl, CGI, TCP/IP, Netscape servers
and Apache server. You must also have excellent
communication skills, project management, the ability
to communicate technical solutions to non-technical
people and management experience.

</JOB_DESC>

<JOB_KEYWORDS>
Perl, C/C++, HTML, SQL, JavaScript, Windows NT 4,
mod-perl, CGI, TCP/IP, Netscape server, Apache server
</JOB_KEYWORDS>

<JOB_TERMS PAY="Salaried" TYPE="Full-time">
$60,000
</JOB_TERMS>
<JOB_LOCATION CITY="Foster City" STATE="California"
STATE_ABBR="CA" POSTAL_CODE="94404" COUNTRY="USA">
</JOB_LOCATION>
</JOB_DATA>
</JoB>
<RESPONSE>

<RESP_EMAIL>cajobs@idgbooks.com</RESP_EMAIL>
<POSTAL_ADDR ENTITY_TYPE="Response">

Continued

40 Part | [Introducing XML

Listing 2-10 (continued)

<ADDR_LINE_1>Dee Harris, HR Manager</ADDR_LINE_1>
<ADDR_LINE_2>919 E. Hillsdale Blvd.</ADDR_LINE_2>
<ADDR_LINE_3>Suite 400</ADDR_LINE_3>
<CITY>Foster City</CITY>
{STATE>CA</STATE>
<POSTAL_CODE>94404</POSTAL_CODE>

</POSTAL_ADDR>

</RESPONSE>

</HRML_JOB>

Although you could certainly define a style sheet for HRML, and use it to place job
listings on Web pages, that’s not its main purpose. Instead HRML is designed to
automate the exchange of job information between companies, applicants,
recruiters, job boards, and other interested parties. There are hundreds of job
boards on the Internet today as well as numerous Usenet newsgroups and mailing
lists. It's impossible for one individual to search them all, and it’s hard for a
computer to search them all because they all use different formats for salaries,
locations, benefits, and the like.

But if many sites adopt HRML, then it becomes relatively easy for a job seeker to
search with criteria like “all the jobs for Java programmers in New York City paying
more than $100,000 a year with full health benefits.” The IRS could enter a search
for all full-time, on-site, freelance openings so they’d know which companies to go
after for failure to withhold tax and pay unemployment insurance.

In practice, these searches would likely be mediated through an HTML form just
like current Web searches. The main difference is that such a search would return
far more useful results because it can use the structure in the data and semantics of
the markup rather than relying on imprecise English text.

Resource Description Framework

XML adds structure to documents. The Resource Description Framework (RDF)

is an XML application that adds semantics. RDF can be used to specify anything
from the author and abstract of a Web page to the version and dependencies of a
software package to the director, screenwriter, and actors in a movie. What links

all of these uses is that what’s being encoded in RDF is not the data itself (the Web
page, the software, the movie) but information about the data. This data about data
is called meta-data, and is RDF’s raison d’étre.

Chapter 2 O An Introduction to XML Applications

An RDF vocabulary defines a set of elements and their permitted content that’s
appropriate for meta-data in a given domain. RDF enables communities of interest to
standardize their vocabularies and share those vocabularies with others who may
extend them. For example, the Dublin Core is an RDF vocabulary specifically designed
for meta-data about Web pages. Educom’s Instructional Metadata System (IMS) builds
on the Dublin Core by adding additional elements that are useful when describing
school-related content like learning level, educational objectives, and price.

Of course, although RDF can be used for print-publishing systems, video-store
catalogs, automated software updates, and much more, it’s likely to be adopted
first for embedding meta-data in Web pages. RDF has the potential to synchronize
the current hodge-podge of <META> tags used for site maps, content rating,
automated indexing, and digital libraries into a unified collection that all of these
tools understand. Once RDF meta-data becomes a standard part of Web pages,
search engines will be able to return more focused, useful results. Intelligent
agents can more easily traverse the Web to find information you want or conduct
business for you. The Web can go from its current state as an unordered sea of
information to a structured, searchable, understandable store of data.

As the name implies, RDF describes resources. A resource is anything that can be
addressed with a URI. The description of a resource is composed of a number of
properties. Each property has a type and a value. For example, <DC: Format>HTML
</DC:Format> has the type “DC:Format” and the value “HTML”. Values may be text
strings, numbers, dates, and so forth, or they may be other resources. These other
resources can have their own descriptions in RDF. For example, the code in Listing
2-11 uses the Dublin Core vocabulary to describe the Cafe con Leche Web site.

Listing 2-11: An RDF description of the Cafe con Leche home
page using the Dublin Core vocabulary

<RDF:RDF
xmlns:RDF="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:DC="http://purl.org/DC/">

<RDF:Description about="http://metalab.unc.edu/xml/">
<DC:Creator>Elliotte Rusty Harold</DC:Creator>
<DC:Language>en</DC:Language>
<DC:Format>HTMLL/DC:Format>
<DC:Date>1999-08-19</DC:date>
<DC:Type>home page</DC:Type>
<DC:Title>Cafe con Leche</DC:Title>
</RDF:Description>

</RDF:RDF>

41

42

Part| O Introducing XML

RDF will be used for version 2.0 of the Platform for Internet Content Selection (PICS)
and the Platform for Privacy Preferences (P3P) as well as for many other areas
where meta-data is needed to describe Web pages and other kinds of content.

XML for XML

XML is an extremely general-purpose format for text data. Some of the things it is
used for are further refinements of XML itself. These include the XSL style-sheet
language, the XLL-linking language, and the Document Content Description for XML.

XSL

XSL, the Extensible Style Language, is itself an XML application. XSL has two major
parts. The first part defines a vocabulary for transforming XML documents. This
part of XSL includes XML tags for trees, nodes, patterns, templates, and other
elements needed for matching and transforming XML documents from one markup
vocabulary to another (or even to the same one in a different order).

The second part of XSL defines an XML vocabulary for formatting the transformed
XML document produced by the first part. This includes XML tags for formatting
objects including pagination, blocks, characters, lists, graphics, boxes, fonts, and
more. A typical XSL style sheet is shown in Listing 2-12:

Listing 2-12: An XSL style sheet

<?xml version="1.0"7>
<{xsl:stylesheet
xmins:xsl="http://www.w3.0rg/TR/WD-xs1"
xmins:fo="http://www.w3.0rg/TR/WD-xs1/FQ"
result-ns="fo">
<xsT:template match="/">
<fo:basic-page-sequence >
<xsl:apply-templates/>
</fo:basic-page-sequence>
</xsl:template>

<xsl:template match="ATOM">
<fo:block font-size="10pt" font-family="serif"
space-before="12pt">
<xsl:value-of select="NAME"/>
</fo:block>
</xsl:template>

<{/xsl:stylesheet>

Chapter 2 O An Introduction to XML Applications 43

We’ll explore XSL in great detail in Chapters 14 and 15.

XLL

The Extensible Linking Language, XLL, defines a new, more general kind of link
called an XLink. XLinks accomplish everything possible with HTML's URL-based
hyperlinks and anchors. However, any element can become a link, not just A
elements. For instance a footnote element can link directly to the text of the note
like this:

{footnote xTink:form="simple" href="footnote7.xml1">7</footnote>

Furthermore, XLinks can do a lot of things HTML links can’t. XLinks can be bi-
directional so readers can return to the page they came from. XLinks can link to
arbitrary positions in a document. XLinks can embed text or graphic data inside a
document rather than requiring the user to activate the link (much like HTML'’s
 tag but more flexible). In short, XLinks make hypertext even more powerful.

~ Cross- _\'-.. XLinks are discussed in more detail in Chapter 16, XLinks.
Reference y

= i

DCD

XML’s facilities for declaring how the contents of an XML element should be
formatted are weak to nonexistent. For example, suppose as part of a date, you set
up MONTH elements like this:

<MONTH>9</MONTH>

All you can say is that the contents of the MONTH element should be character data.
You cannot say that the month should be given as an integer between 1 and 12.

A number of schemes have been proposed to use XML itself to more tightly restrict
what can appear in the contents of any given element. One such proposal is the
Document Content Description, (DCD). For example, here’s a DCD that declares that
MONTH elements may only contain an integer between 1 and 12:

<DCD>
<ElementDef Type="MONTH" Model="Data" Datatype="il"
Min="1" Max="12" />

</DCD>

There are more examples | could show you of XML used for XML, but the ones I've
already discussed demonstrate the basic point: XML is powerful enough to
describe and extend itself. Among other things, this means that the XML
specification can remain small and simple. There may well never be an XML 2.0
because any major additions that are needed can be built out of raw XML rather

44

Part| O Introducing XML

than becoming new features of the XML. People and programs that need these
enhanced features can use them. Others who don’t need them can ignore them. You
don’t need to know about what you don’t use. XML provides the bricks and mortar
from which you can build simple huts or towering castles.

Behind-the-Scene Uses of XML

Not all XML applications are public, open standards. A lot of software vendors are
moving to XML for their own data simply because it’s a well-understood, general-
purpose format for structured data that can be manipulated with easily available
cheap and free tools.

Microsoft Office 2000 promotes HTML to a coequal file format with its native binary
formats. However, HTML 4.0 doesn’t provide support for all of the features Office
requires, such as revision tracking, footnotes, comments, index and glossary
entries, and more. Additional data that can’t be written as HTML is embedded in
the file in small chunks of XML. Word’s vector graphics will be stored in VML. In this
case, embedded XML's invisibility in standard browsers is the crucial factor.

Federal Express uses detailed tracking information as a competitive advantage over
other shippers like UPS and the Post Office. First that information was available
through custom software, then through the Web. More recently FedEx has begun
beta testing an APl/library that third-party and in-house developers can use to
integrate their software and systems with FedEx’s. The data format used for this
service is XML.

Netscape Navigator 5.0 supports direct display of XML in the Web browser, but
Netscape actually started using XML internally as early as version 4.5. When you
ask Netscape to show you a list of sites related to the current one you’re looking it,
your browser connects to a CGl program running on a Netscape server. The data
that server sends back is XML. Listing 2-13 shows the XML data for sites related to
http://metalab.unc.edu/.

Listing 2-13: XML data for sites related to
http://metalab.unc.edu/

<?xml version="1.0"7>

<RDF:RDF>

<RelatedLinks>

<aboutPage
href="http://info.netscape.com/fwd/r1/http://metalab.unc.edu:80
/x>

Chapter 2 O An Introduction to XML Applications 45

</aboutPage>

<child instanceOf="Separatorl"></child>

<child
href="http://info.netscape.com/fwd/r1/http://www.sun.com/"
name="Sun Microsystems">

</child>

<child
href="http://info.netscape.com/fwd/r1/http://www.unc.edu/"
name="Unc">

</child>

<child
href="http://info.netscape.com/fwd/r1/http://sunsite.sut.ac.jp/
" name="SunSITE Japan">

</child>

<child
href="http://info.netscape.com/fwd/r1/http://sunsite.nus.sg/"
name="SunSITE Singapore">

</child>

<child
href="http://info.netscape.com/fwd/r1/http://sunsite.berkeley.e
du/" name="Berkeley Digital Library SunSITE">

</child>

<child
href="http://info.netscape.com/fwd/r1/http://www.sun.com/sunsit
e" name="SunSITE on the net">

</child>

<child
href="http://info.netscape.com/fwd/r1/http://www.sunsite.auc.dk
/" name="SunSITE Denmark">

</child>

<child
href="http://info.netscape.com/fwd/r1/http://sunsite.edu.cn/"
name="SunSITE China">

</child>

<child
href="http://info.netscape.com/fwd/r1/http://sunsite.stanford.o
rg/" name="Stanford University SunSITE">

</child>

<child
href="http://info.netscape.com/fwd/r1/http://www.cdromshop.com/
cdshop/desc/p.061590000085.htm1" name="SunSITE Archive">
</child>

<child instanceOf="Separatorl"></child>

<child instance0f="Separatorl"></child>

<child href="http://home.netscape.com/escapes/smart_browsing"
name="Learn About Smart Browsing...">

</child>

</RelatedLinks>

</RDF:RDF>

46

Part| O Introducing XML

This all happens completely behind the scenes. The users never know that the data
is being transferred in XML. The actual display is a menu in Netscape Navigator, not
an XML or HTML page.

This really just scratches the surface of the use of XML for internal data. Many
other projects that use XML are just getting started, and many more will be started
over the next year. Most of these won’t receive any publicity or write-ups in the
trade press, but they nonetheless have the potential to save their companies
thousands of dollars in development costs over the life of the project. The self-
documenting nature of XML can be as useful for a company’s internal data as for its
external data. For instance, many companies right now are scrambling to try and
figure out whether programmers who retired 20 years ago used two-digit dates. If
that were your job, would you rather be pouring over data that looked like this:

3c 79 65 61 72 3e 39 39 3c 2f 79 65 61 72 3e
or like this:
<YEAR>99</YEAR>

Unfortunately many programmers are now stuck trying to clean up data in the first
format. XML even makes the mistakes easier to find and fix.

Summary

This chapter has just begun to touch the many and varied applications to which
XML has been and will be put. Some of these applications like CML, MathML, and
MusicML are clear extensions to HTML for Web browsers. But many others, like
OFX, XFDL, and HRML, go into completely new directions. And all of these
applications have their own semantics and syntax that sits on top of the underlying
XML. In some cases, the XML roots are obvious. In other cases, you could easily
spend months working with it and only hear of XML tangentially. In this chapter,
you explored the following applications to which XML has been put to use:

O Molecular sciences with CML

O Science and math with MathML

O Webcasting with CDF

O Classic literature

O Multimedia with SMIL and HTML+TIME

O Software updates through OSD

O Vector graphics with both PGML and VML

Chapter 2 O An Introduction to XML Applications

O Music notation in MusicML

0 Automated voice responses with VoxML

O Financial data with OFX

O Legally binding forms with XFDL

0 Human resources job information with HRML

0 Meta-data through RDF

O XML itself, including XSL, XLL, and DCD, to refine XML

O Internal use of XML by various companies, including Microsoft, Federal
Express, and Netscape

In the next chapter, you will begin writing your own XML documents and displaying
them in Web browsers.

47

)
CHAP E R
N

Your First XML)
Document

o O 0O O

In This Chapter

. . Creating a simple
his chapter teaches you how to create simple XML doc- g a simp
: . XML document
uments with tags you define that make sense for your

document. You'll learn how to write a style sheet for the doc-
ument that describes how the content of those tags should
be displayed. Finally, you’ll learn how to load the documents
into a Web browser so that they can be viewed.

Exploring the Simple
XML Document

Assigning meaning to

Since this chapter will teach you by example, and not from XML tags

first principals, it will not cross all the t's and dot all the i’s.
Experienced readers may notice a few exceptions and special
cases that aren’t discussed here. Don’t worry about these;
you’ll get to them over the course of the next several chap-

Writing style sheets
for XML documents

ters. For the most part, you don’t need to worry about the Attaching style sheets
technical rules right up front. As with HTML, you can learn to XML documents
and do a lot by copying simple examples that others have

prepared and modifying them to fit your needs. o o o 0O

Toward that end | encourage you to follow along by typing in
the examples | give in this chapter and loading them into the
different programs discussed. This will give you a basic feel
for XML that will make the technical details in future chapters
easier to grasp in the context of these specific examples.

Hello XML

This section follows an old programmer’s tradition of introduc-
ing a new language with a program that prints “Hello World” on
the console. XML is a markup language, not a programming lan-
guage; but the basic principle still applies. It’s easiest to get
started if you begin with a complete, working example you can
expand on rather than trying to start with more fundamental
pieces that by themselves don’t do anything. And if you do
encounter problems with the basic tools, those problems are

50 Part |

- Cross-

O Introducing XML

a lot easier to debug and fix in the context of the short, simple documents used here
rather than in the context of the more complex documents developed in the rest of
the book.

In this section, you’ll learn how to create a simple XML document and save it in a
file. We’ll then take a closer look at the code and what it means.

Creating a Simple XML Document

In this section, you will learn how to type an actual XML document. Let’s start with
about the simplest XML document | can imagine. Here it is in Listing 3-1:

Listing 3-1: Hello XML

<?xml version="1.0" standalone="yes"?>
<FO0>

Hello XML!

</FO0>

That’s not very complicated, but it is a good XML document. To be more precise, it's
a well-formed XML document. (XML has special terms for documents that it considers
“good” depending on exactly which set of rules they satisfy. “Well-formed” is one of
those terms, but we’ll get to that later in the book.) This document can be typed in
any convenient text editor like Notepad, BBEdit, or emacs.

Well-formedness is covered in Chapter 6, Well-Formed XML Documents.

Reference ',
1

——

Saving the XML File

Once you've typed the preceding code, save the document in a file called hello.xml,
HelloWorld.xml, MyFirstDocument.xml, or some other name. The three-letter
extension .xml is fairly standard. However, do make sure that you save it in plain
text format, and not in the native format of some word processor like WordPerfect
or Microsoft Word.

-
Note If you're using Notepad on Windows 95/98 to edit your files, when saving the doc-
~ ument be sure to enclose the file name in double quotes, e.g. “Hello.xml”, not

merely Hello.xml, as shown in Figure 3-1. Without the quotes, Notepad will
append the .txt extension to your file name, naming it Hello.xml.txt, which is not
what you want at all.

Chapter 3 O Your First XML Document 51

[Untitind - Notepad | o
e [& gewch Heb
<#ml version="1,0" standalong="yas™7 = -‘—I
roo= » Y 7]
Hello Xk
</foo= Swapm [Qm j@mﬁﬂl
Flepmme: [Heboors goe |
LT e pe——r El Cancal
™ S s Uricods
.« |
Figure 3-1: A saved XML document in Notepad with the file name
in quotes

The Windows NT version of Notepad gives you the option to save the file in Unicode.
Surprisingly this will work too, though for now you should stick to basic ASCII. XML
files may be either Unicode or a compressed version of Unicode called UTF-8, which
is a strict superset of ASCII, so pure ASCII files are also valid XML files.

- Cross- ﬁ‘., UTF-8 and ASCII are discussed in more detail in Chapter 7, Foreign Languages and
| Reference’, y5-Roman Text.

.f__,..--"_

Loading the XML File into a Web Browser

Now that you’ve created your first XML document, you’re going to want to look at
it. The file can be opened directly in a browser that supports XML such as Internet
Explorer 5.0. Figure 3-2 shows the result.

What you see will vary from browser to browser. In this case it’s a nicely formatted
and syntax colored view of the document’s source code. However, whatever it is,
it's likely not to be particularly attractive. The problem is that the browser doesn’t
really know what to do with the FOO element. You have to tell the browser what it’s
expected to do with each element by using a style sheet. We’ll cover that shortly,
but first let’s look a little more closely at your first XML document.

52 Part | O Introducing XML

3 0 ML Biblet LD snure s P belln o - Bicioesdt Inbennet [uplaes

Ele Ede Yew Fawores Joos Help -
oo B [o A E | B & bl
ik Frasrand Skep Aeiesh Home Seawch Fawories Heawsy Had Piint
Agdmr [2] [oML b LD sourcet I Heb sl =] oBs
Hiello XML F
E
2] Diorm A Wy Compum

Figure 3-2: hello.xml in Internet Explorer 5.0

Exploring the Simple XML Document

Let’s examine the simple XML document in Listing 3-1 to better understand what
each line of code means. The first line is the XML declaration:

<?xml version="1.0" standalone="yes"?>

This is an example of an XML processing instruction. Processing instructions begin
with <? And end with ?>. The first word after the <? is the name of the processing
instruction, which is xm1 in this example.

The XML declaration has version and standalone attributes. An attribute is a
name-value pair separated by an equals sign. The name is on the left-hand side of
the equals sign and the value is on the right-hand side with its value given between
double quote marks.

Every XML document begins with an XML declaration that specifies the version of
XML in use. In the above example, the version attribute says this document con-
forms to XML 1.0. The XML declaration may also have a standalone attribute that
tells you whether or not the document is complete in this one file or whether it needs
to import other files. In this example, and for the next several chapters, all docu-
ments will be complete unto themselves so the standalone attribute is set to yes.

Now let’s take a look at the next three lines of Listing 3-1:
<FO0>

Hello XML!
</FOO>

Chapter 3 O Your First XML Document

Collectively these three lines form a FO0 element. Separately, <F00> is a start tag;
</F00> isan end tag; and He11o XML!is the content of the FOO element.

You may be asking what the <F00> tag means. The short answer is “whatever you
want it to.” Rather than relying on a few hundred predefined tags, XML lets you
create the tags that you need. The <F00> tag therefore has whatever meaning you
assign it. The same XML document could have been written with different tag
names, as shown in Listings 3-2, 3-3, and 3-4, below:

Listing 3-2: greeting.xml

<?xml version="1.0" standalone="yes"?>
<GREETING>
Hello XML!
</GREETING>

Listing 3-3: paragraph.xml

<?xml version="1.0" standalone="yes"?>
<P>

Hello XML!

</P>

Listing 3-4: document.xml

<?xml version="1.0" standalone="yes"?>
<DOCUMENT>

Hello XML!

</DOCUMENT>

The four XML documents in Listings 3-1 through 3-4 have tags with different names.
However, they are all equivalent, since they have the same structure and content.

53

54 Part| O Introducing XML

Assigning Meaning to XML Tags

Markup tags can have three kinds of meaning: structure, semantics, and style.
Structure divides documents into a tree of elements. Semantics relates the
individual elements to the real world outside of the document itself. Style specifies
how an element is displayed.

Structure merely expresses the form of the document, without regard for differences
between individual tags and elements. For instance, the four XML documents shown
in Listings 3-1 through 3-4 are structurally the same. They all specify documents with
a single non-empty, root element. The different names of the tags have no structural
significance.

Semantic meaning exists outside the document, in the mind of the author or
reader or in some computer program that generates or reads these files. For
instance, a Web browser that understands HTML, but not XML, would assign the
meaning “paragraph” to the tags <P> and </P> but not to the tags <GREETING>
and </GREETING>, <FO0> and </F00>, or <DOCUMENT> and </DOCUMENT>. An
English-speaking human would be more likely to understand <GREETING> and
</GREETING> or <DOCUMENT> and </DOCUMENT> than <F00> and </F00> or <P>
and </P>. Meaning, like beauty, is in the mind of the beholder.

Computers, being relatively dumb machines, can’t really be said to understand the
meaning of anything. They simply process bits and bytes according to predetermined
formula (albeit very quickly). A computer is just as happy to use <FO0> or <P> asitis
to use the more meaningful <GREETING> or <DOCUMENT> tags. Even a Web browser
can’t be said to really understand that what a paragraph is. All the browser knows is
that when a paragraph is encountered a blank line should be placed before the next
element.

Naturally, it's better to pick tags that more closely reflect the meaning of the
information they contain. Many disciplines like math and chemistry are working
on creating industry standard tag sets. These should be used when appropriate.
However, most tags are made up as you need them.

Here are some other possible tags:

<MOLECULE> <INTEGRAL>

<PERSON> <SALARY>
<author> <email>
<planet> <sign>

<Bil1> <plus/>

<Hillary> <plus/>

Chapter 3 O Your First XML Document 55

<Gennifer> <plus/>

<Paula> <plus/>
<Monica> <equals/>
<divorce>

The third kind of meaning that can be associated with a tag is style meaning. Style
meaning specifies how the content of a tag is to be presented on a computer screen
or other output device. Style meaning says whether a particular element is bold,
italic, green, 24 points, or what have you. Computers are better at understanding
style than semantic meaning. In XML, style meaning is applied through style sheets.

Writing a Style Sheet for an XML Document

XML allows you to create any tags you need. Of course, since you have almost com-
plete freedom in creating tags, there’s no way for a generic browser to anticipate your
tags and provide rules for displaying them. Therefore, you also need to write a style
sheet for your XML document that tells browsers how to display particular tags. Like
tag sets, style sheets can be shared between different documents and different peo-
ple, and the style sheets you create can be integrated with style sheets others have
written.

As discussed in Chapter 1, there is more than one style-sheet language available.
The one used here is called Cascading Style Sheets (CSS). CSS has the advantage of
being an established W3C standard, being familiar to many people from HTML, and
being supported in the first wave of XML-enabled Web browsers.

Note As noted in Chapter 1, another possibility is the Extensible Style Language. XSL is
~ currently the most powerful and flexible style-sheet language, and the only one
designed specifically for use with XML. However, XSL is more complicated than

CSS, not yet as well supported, and not finished either.

- Cross- q'-._ XSL will be discussed in Chapters 5, 14, and 15.
Reference y

= i

The greeting.xml example shown in Listing 3-2 only contains one tag, <GREETING>,
so all you need to do is define the style for the GREETING element. Listing 3-5is a
very simple style sheet that specifies that the contents of the GREETING element
should be rendered as a block-level element in 24-point bold type.

o6

Part| O Introducing XML

Listing 3-5: greeting.xsl

GREETING {display: block; font-size: 24pt; font-weight: bold;}

Listing 3-5 should be typed in a text editor and saved in a new file called greeting.css
in the same directory as Listing 3-2. The .css extension stands for Cascading Style
Sheet. Once again the extension, .css, is important, although the exact file name is
not. However if a style sheet is to be applied only to a single XML document it’s
often convenient to give it the same name as that document with the extension .css
instead of .xml.

Attaching a Style Sheet to an XML Document

After you’ve written an XML document and a CSS style sheet for that document, you
need to tell the browser to apply the style sheet to the document. In the long term
there are likely to be a number of different ways to do this, including browser-server
negotiation via HTTP headers, naming conventions, and browser-side defaults. How-
ever, right now the only way that works is to include another processing instruction
in the XML document to specify the style sheet to be used.

The processing instruction is <?xml-stylesheet?> and it has two attributes, type
and href. The type attribute specifies the style-sheet language used, and the href
attribute specifies a URL, possibly relative, where the style sheet can be found. In
Listing 3-6, the xm1-stylesheet processing instruction specifies that the style
sheet named greeting.css written in the CSS style-sheet language is to be applied
to this document.

Listing 3-6: styledgreeting.xml with an xml-stylesheet
processing instruction

<?xml version="1.0" standalone="yes"?>

<?xml-stylesheet type="text/css2" href="greeting.css"?>
<GREETING>

Hello XML!

</GREETING>

Chapter 3 O Your First XML Document

Now that you’ve created your first XML document and style sheet, you're going to
want to look at it. All you have to do is load Listing 3-6 into Mozilla or Internet
Explorer 5.0. Figure 3-3 shows styledgreeting in Internet Explorer 5.0. Figure 3-4
shows styledgreeting.xml in an early developer build of Mozilla.

Eile E,a: Hiew F‘:Ml'lw _'I.D-ch Help -
i < B = I - e I T A B
Esck Foivasid Sip Aeliesh Home Search Faworles Heston Hal Find
ﬁ#ﬂlﬂ g el st i dubi ook s ble e sanplen T s pedgaeeling e j ~'Ba
|
Hello XML!
—_ _I
£] Dore o Inieimet

Figure 3-3: styledgreeting.xml in Internet Explorer 5.0

] M 3
Fle Edli Yiems Sesch Go Boskmaks Taskes Hel

- - % B =
41 c} & U [xnLspinle/cns sonroe/0d st yladgreasting. sml | oo N r
Prina

llnlhulﬂﬂdnﬂd

iy Homa ﬂilhlmn I bl e B Tk 06 RS IR Baeln 3R Chael

Hello XML!

L]
Figure 3-4: styledgreeting.xml in an early developer build of Mozilla

S7

58 Part | [Introducing XML

Summary

In this chapter you learned how to create a simple XML document. In particular you
learned:
0 How to write and save simple XML documents.

0 How to assign to XML tags the three kinds of meaning: structure, semantics,
and style.

O How to write a CSS style sheet for an XML document that tells browsers how
to display particular tags.

O How to attach a CSS style sheet to an XML document with an xm1 -
stylesheet processing instruction.

0 How to load XML documents into a Web browser.

In the next chapter, we’ll develop a much larger example of an XML document that
demonstrates more of the practical considerations involved in choosing XML tags.

g g g

Structuring Data @ —r

o o 0O O
I n this chapter, we will develop a longer example that shows .

how a large list of baseball statistics and other similar data In This Chapter
might be stored in XML. A document like this has several
potential uses. Most obviously it can be displayed on a Web Examining the data
page. It can also be used as input to other programs that want
to analyze particular seasons or lineup. Along the way, you'll XMLizing the data
learn, among other things, how to mark up the data in XML,
why XML tags are chosen, and how to prepare a CSS style The advantages of
sheet for a document. the XML format

Preparing a style
sheet for document

Examining the Data display

As | write this (October, 1998), the New York Yankees have just 0O O 0O 0O
won their 24th World Series by sweeping the San Diego Padres
in four games. The Yankees finished the regular season with

an American League record 114 wins. Overall, 1998 was an
astonishing season. The St. Louis Cardinals’ Mark McGwire
and the Chicago Cubs’ Sammy Sosa dueled through September
for the record, previously held by Roger Maris, for most home
runs hit in a single season since baseball was integrated. (The
all-time major league record for home runs in a single season
is still held by catcher Josh Gibson who hit 75 home runs in
the Negro league in 1931. Admittedly, Gibson didn’t have to
face the sort of pitching Sosa and McGwire faced in today’s
integrated league. Then again neither did Babe Ruth who was
widely (and incorrectly) believed to have held the record until
Roger Maris hit 61 in 1961.)

What exactly made 1998 such an exciting season? A cynic
would tell you that 1998 was an expansion year with three
new teams, and consequently much weaker pitching overall.
This gave outstanding batters like Sosa and McGwire and
outstanding teams like the Yankees a chance to really shine
because, although they were as strong as they’d been in
1997, the average opponent they faced was a lot weaker. Of
course true baseball fanatics know the real reason, statistics.

60

Part| O Introducing XML

That’s a funny thing to say. In most sports you hear about heart, guts, ability,
skill, determination, and more. But only in baseball do the fans get so worked

up about raw numbers. Batting average, earned run average, slugging average,
on base average, fielding percentage, batting average against right handed pitch-
ers, batting average against left handed pitchers, batting average against right
handed pitchers when batting left-handed, batting average against right handed
pitchers in Cleveland under a full moon, and so on.

Baseball fans are obsessed with numbers; the more numbers the better. Every
season the Internet is host to thousands of rotisserie leagues in which avid
netizens manage teams and trade players with each other and calculate how
their fantasy teams are doing based on the real-world performance of the players
on their fantasy rosters. STATS, Inc. tracks the results of each and every pitch
made in a major league game, so it’s possible to figure out that one batter does
better than his average with men in scoring position while another does worse.

In the next two sections, for the benefit of the less baseball-obsessed reader, we will
examine the commonly available statistics that describe an individual player’s
batting and pitching. Fielding statistics are also available, but I'll omit them to
restrict the examples to a more manageable size. The specific example I'm using is
the New York Yankees, but the same statistics are available for any team.

Batters

A few years ago, Bruce Bukiet, Jose Palacios, and myself, wrote a paper called “A
Markov Chain Approach to Baseball” (Operations Research, Volume 45, Number 1,
January-February, 1997, pp. 14-23, http://www.math.njit.edu/~bukiet/
Papers/ball.pdf). In this paper we analyzed all possible batting orders for all
teams in the 1989 National League. The results of that paper were mildly inter-
esting. The worst batter on the team, generally the pitcher, should bat eighth rather
than the customary ninth position, at least in the National League, but what
concerns me here is the work that went into producing this paper. As low grad
student on the totem pole, it was my job to manually re-key the complete batting
history of each and every player in the National League. That summer would have
been a lot more pleasant if | had had the data available in a convenient format like
XML. Right now, I'm going to concentrate on data for individual players. Typically
this data is presented in rows of numbers as shown in Table 4-1 for the 1998
Yankees offense (batters). Since pitchers rarely bat in the American League, only
players who actually batted are listed.

Each column effectively defines an element. Thus there need to be elements for
player, position, games played, at bats, runs, hits, doubles, triples, home runs, runs
batted in, and walks. Singles are generally not reported separately. Rather they’re
calculated by subtracting the total number of doubles, triples, and home runs from
the number of hits.

61

Chapter 4 O Structuring Data

swiel||im

T 18 v 16 9z S 0 69T TOT 667 82T p1Iayino aluleg

0 9T 4 € 0 0 0 6 9 85 o€ aseq 1si4 wiNans sleq

JanIH Auagmens

€ 06 1% /S 144 4 IT € 4% 562 TOT paleubiseq |Aure@

Jaouads

0 41 S lZ ot 0 9 gz 8T 19 12 plaino aueys

0 ST 14 T 0 T € Pe 9T T ¥S doisuoys olos sin

€ 61 et VA4 S T €T €6 €S TZE 60T playino saurey wi|

0 Z6 Ly €9 LT 0 € 96 95 85¢e TTT lsyojed epesod sbior

Z €0t /S 91T ve 4 oy 16T 56 209 ZST plIayino [118N.O Ined

9 €8 T9 Y4 8z T € 6Vl z6 TES 44" asegisil{ zZauiJen oull

0 T 0 0 0 0 0 1% T ST 8 aseg piyL [1BMOT SIN

0 62 L 45 T Z S 6T €T 6/ 4% playino a9pa Aary

8T aseg yone|qouy|

0L 9/ 79 LT 4 SZ 09T LTT €09 0ST puooss 3onyo

S 6Tl /S 78 6T 8 GZ €0z /et 929 67T doisuoys la18r 3ale@

Z 8¢ vT T€ € 14 IT oL 1€ 45T 8/ 1ayored IpJel sor

0 T 0 0 0 0 0 T T 1% T layared ebbi4 I

SENI]S]
0 8T vT 6 € 0 L 0€ TT €0T G pereubiseq sineq 111Iyo
L 08 S/ 95 oT T TZ TTT 6. 9SP TST playino siuNY peyo
aseg

0 6T S S T 0 € 2 LT T 1% puodas ysng JaWOH

ot 16 Zs 86 6T 0 7€ 6ST 98 0€S ZST esegpliyL snisoig nods

yold SN0 Sflem ul suny ss|dul ss|gno@ SUH suny sregly padeld uonisod auweN
Ag IS peneg oBwoH sawes

UH suny

asUaYJO S9XUBA 866T 9UL

T-v algel

62

Part| O Introducing XML

-
Note The data in the previous table and the pitcher data in the next section is actually a
s somewhat limited list that only begins to specify the data collected on a typical
baseball game. There are a lot more elements including throwing arm, batting
arm, number of times the pitcher balked (rare), fielding percentage, college
attended, and more. However, I'll stick to this basic information to keep the exam-
ples manageable.
Pitchers

Pitchers are not expected to be home-run hitters or base stealers. Indeed a pitcher
who can reach first on occasion is a surprise bonus for a team. Instead pitchers are
judged on a whole different set of numbers, shown in Table 4-2. Each column of this
table also defines an element. Some of these elements, such as name and position,
are the same for batters and pitchers. Others like saves and shutouts only apply to
pitchers. And a few — like runs and home runs — have the same name as a batter
statistic, but have different meanings. For instance, the number of runs for a batter
is the number of runs the batter scored. The number of runs for a pitcher is the
number of runs scored by the opposing teams against this pitcher.

Organization of the XML Data

XML is based on a containment model. Each XML element can contain text or
other XML elements called its children. A few XML elements may contain both
text and child elements, though in general this is bad form and should be avoided
wherever possible.

However, there’s often more than one way to organize the data, depending on your
needs. One of the advantages of XML is that it makes it fairly straightforward to
write a program that reorganizes the data in a different form. We’ll discuss this
when we talk about XSL transformations in Chapter 14.

To get started, the first question you’ll have to address is what contains what? For
instance, it is fairly obvious that a league contains divisions that contain teams that
contain players. Although teams can change divisions when moving from one city
to another, and players are routinely traded at any given moment in time, each
player belongs to exactly one team and each team belongs to exactly one division.
Similarly, a season contains games, which contain innings, which contain at bats,
which contain pitches or plays.

However, does a season contain leagues or does a league contain a season? The
answer isn’t so obvious, and indeed there isn’t one unique answer. Whether it
makes more sense to make season elements children of league elements or league
elements children of season elements depends on the use to which the data will be
put. You can even create a new root element that contains both seasons and
leagues, neither of which is a child of the other (though doing so effectively would
require some advanced techniques that won’t be discussed for several chapters
yet). You can organize the data as you like.

63

Chapter 4 O Structuring Data

panunuo)
Jayaud

g€ z¢ 0 z 8 /T 8T T vy TOV 6L€ 0O 0 0 S¥ G 413y UOSIdN Har

18yadd BZOPUBIN

95 0g 0 € 6 ¥ 08 6 TET TOET SZ€ T T +T Tv 0T o189y osnwey

1ayaud pAorn

0z 9 0 r4 z L 0T € 9z zle 19T 0O 0 0 oS € Ja1Ry awseln

18ydld osquuaziar

T 14 T T 0 6 6 4 6 T9 eL2T 0 0 2 ¢ 0 Bunreis AN

1ayond nqey|

9zT 9L T 9 6 8. 6. i 8YT €T 907 T ¢ 82 6¢ €T bBunieis apIH

Jaydud SOWI|OH

€ T 0 T Z 6T 6T 14 €6 TIS €g£¢€ 0 0 0 ve 0 318y uaied

1|aydlld zapueulsH

TET ¢S 4 S 9 67 €5 T €T TVT ETE T € Tz 1¢ 2T Buners opuelIo

Jayond sopJ3

o T o0 o0 o ¢ ¢ 0 S 'z 6 0 0 0 0 Jolsy ppoL

18aydd auo)

602 6S 0 9 GI 28 68 0z 98T Z7l0Z GS€ 0 € T1e 1€ 0z bunreis pireq

Jayond alppng

oz €T T 4 € 9z 62 S 9y ZTvr 129G 0 0 ¢ ve v Ja18y MIN
€ Jayoud

T 0 0 0 € € z 6 6 € 0 0 T ¢ T Jjol3y &ysnig wie

layold Ae|peig

€1 6 0 0 T 8 6 4 2l z2l 89§ 0 0 T S z o9y uehy

1ayodd smolog

L v 0 0 0 L L 0 IT 26 259 0O 0O o0 8 T o9y 801

OS am M9 dm gH ¥3 o dH H dl vd3 OHS 92 S9 9 M d aweN

SI9ydld SeeyUeA 866T SUL

¢-v 9lgelL

Part| O Introducing XML

64

13ydd SIIBM

€91 6¢ 0 @ T €8 098 62 S6T TV¥IZ 6VE S 8 0g€ O0¢ 0 ¥ 8r bunes pined
18ayadd JowIssa|

9 14 0 T 0 € € T 14 28 <¢T€ 0 0 0o 0O oO T 1918y Kep

J8ayod uojuels

69 9 0 0 vy 8y 19 €T T 6L V'S 0 0 0 /9 9 T 1% 3113y AN
Jayanud RIBNIY

9€ LT 0 0 T € €1 € 8y TT9 161 0 0 0O ¥ 9€ O € 19ll8y oueLeN
13yd1d anmad

cid" /8 0 S 9 ¢ TOT T 02 9¢¢ T91Z VCv 0 G ¢€ €€ 0 TT 9T bBunes Apuy
OS dam M9 dWM dgH d3 e dH H dl V43 OHS 90 S9 O S 1 M d sweN

(penunuod) z-v a|qeL

Chapter 4 [0 Structuring Data 65

-
Note Readers familiar with database theory may recognize XML's model as essentially a
- hierarchical database, and consequently recognize that it shares all the disadvan-

tages (and a few advantages) of that data model. There are certainly times when a
table-based relational approach makes more sense. This example certainly looks
like one of those times. However, XML doesn't follow a relational model.

On the other hand, it is completely possible to store the actual data in multiple
tables in a relational database, then generate the XML on the fly. Indeed, the larger
examples on the CD-ROM were created in that fashion. This enables one set of
data to be presented in multiple formats. Transforming the data with style sheets
provides still more possible views of the data.

Since my personal interests lie in analyzing player performance within a single
season, I’'m going to make season the root of my documents. Each season will
contain leagues, which will contain divisions, which will contain players. I'm
not going to granularize my data all the way down to the level of individual
games, innings, or plays — because while useful —such examples would be
excessively long.

You, however, may have other interests. If you choose to divide the data in some
other fashion, that works too. There’s almost always more than one way to organize
data in XML. In fact, we’ll return to this example in several upcoming chapters
where we’ll explore alternative markup vocabularies.

XMLizing the Data

Let’s begin the process of marking up the data for the 1998 Major League season in
XML with tags that you define. Remember that in XML we’re allowed to make up the
tags as we go along. We've already decided that the fundamental element of our
document will be a season. Seasons will contain leagues. Leagues will contain
divisions. Divisions will contain teams. Teams contain players. Players will have
statistics including games played, at bats, runs, hits, doubles, triples, home runs,
runs batted in, walks, and hits by pitch.

Starting the Document: XML Declaration
and Root Element

XML documents may be recognized by the XML declaration. This is a processing
instruction placed at the start of all XML files that identifies the version in use. The
only version currently understood is 1.0.

<?xml version="1.0"7>
Every good XML document (where the word good has a very specific meaning to be

discussed in the next chapter) must have a root element. This is an element that
completely contains all other elements of the document. The root element’s start

66

Part | O Introducing XML

tag comes before all other elements’ start tags, and the root element’s end tag
comes after all other element’s end tags. For our root element, we will use SEASON
with a start tag of <SEASON> and an end tag of </SEASON>. The document now
looks like this:

<?xml version="1.0"7>
<SEASON>
</SEASON>

The XML declaration is not an element or a tag. It is a processing instruction.
Therefore, it does not need to be contained inside the root element, SEASON. But
every element we put in this document will go in between the <SEASON> start tag
and the </SEASON> end tag.

This choice of root element means that we will not be able to store multiple
seasons in a single file. If you want to do that, however, you can define a new root
element that contains seasons. For example,

<?xml version="1.0"7>
<DOCUMENT>

<SEASON>

</SEASON>

<SEASON>

</SEASON>
</DOCUMENT>

Naming Conventions

Before we begin, I'd like to say a few words about naming conventions. As you'll see in the
next chapter, XML element names are quite flexible and can contain any number of letters
and digits in either upper- or lowercase. You have the option of writing XML tags that look
like any of the following:

<SEASON>
<Season>
<{season>
<seasonl998>
<Season98>
<{season_98>

There are several thousand more variations. | don't really care (nor does XML) whether you
use all uppercase, all lowercase, mixed-case with internal capitalization, or some other con-
vention. However, | do recommend that you choose one convention and stick to it.

Chapter 4 [0 Structuring Data o7

Of course we will want to identify which season we’re talking about. To do that, we
should give the SEASON element a YEAR child. For example:

<?xml version="1.0"7>
<SEASON>
<YEAR>
1998
</YEAR>
</SEASON>

I've used indentation here and in other examples to indicate that the YEAR element
is a child of the SEASON element and that the text 1998 is the contents of the YEAR
element. This is good coding style, but it is not required. White space in XML is not
especially significant. The same example could have been written like this:

<?xml version="1.0"7>
<SEASON>

<YEAR>1998</YEAR>
</SEASON>

Indeed, I'll often compress elements to a single line when they’ll fit and space is at a
premium. You can compress the document still further, even down to a single line,
but with a corresponding loss of clarity. For example:

<?xml version="1.0"?><SEASON><YEAR>1998</YEAR></SEASON>

Of course this version is much harder to read and understand which is why | didn’t
write it that way. The tenth goal listed in the XML 1.0 specification is “Terseness in
XML markup is of minimal importance.” The baseball example reflects this goal
throughout.

XMLizing League, Division, and Team Data

Major league baseball is divided into two leagues, the American League and
the National League. Each league has a name. The two names could be encoded
like this:

<?xml version="1.0"7>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National League</LEAGUE_NAME>
</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American League</LEAGUE_NAME>
</LEAGUE>
</SEASON>

68 Part | [Introducing XML

I've chosen to define the name of a league with a LEAGUE_NAME element, rather than
simply a NAME element because NAME is too generic and it’s likely to be used in
other contexts. For instance, divisions, teams, and players also have names.

-

rCross- 4 Elements from different domains with the same name can be combined using
| Reference), 5 mespaces. Namespaces will be discussed in Chapter 18. However, even with
- namespaces, you wouldn’t want to give multiple items in the same domain (for
example, TEAM and LEAGUE in this example) the same name.

e

Each league can be divided into east, west, and central divisions, which can be
encoded as follows:

<LEAGUE>
<LEAGUE_NAME>National League</LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>
</DIVISION>
<DIVISION>
<DIVISION_NAME>Central</DIVISION_NAME>
</DIVISION>
<DIVISION>
<DIVISTON_NAME>West</DIVISION_NAME>
</DIVISION>
</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American League</LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>
</DIVISION>
<DIVISION>
<DIVISION_NAME>Central</DIVISION_NAME>
</DIVISION>
<DIVISION>
<DIVISION_NAME>West</DIVISION_NAME>
</DIVISION>
</LEAGUE>

The true value of an element depends on its parent, that is the elements that
contain it as well as itself. Both the American and National Leagues have an East
division but these are not the same thing.

Each division is divided into teams. Each team has a name and a city. For example,
data that pertains to the American League East can be encoded as follows:

<DIVISION>

<DIVISION_NAME>East</DIVISION_NAME>

<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>

</TEAM>

<TEAM>
<TEAM_CITY>Boston</TEAM_CITY>

Chapter 4 O Structuring Data 69

<TEAM_NAME>Red Sox</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Yankees</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Tampa Bay</TEAM_CITY>
<TEAM_NAME>Devil Rays</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Toronto</TEAM_CITY>
<TEAM_NAME>Blue Jays</TEAM_NAME>
</TEAM>
</DIVISION>

XMLizing Player Data

Each team is composed of players. Each player has a first name and a last name. It’s
important to separate the first and last names so that you can sort by either one.
The data for the starting pitchers in the 1998 Yankees lineup can be encoded as
follows:

<TEAM>

<TEAM_CITY>New York</TEAM_CITY>

<TEAM_NAME>Yankees</TEAM_NAME>

<PLAYER>
<GIVEN_NAME>Orlando</GIVEN_NAME>
<SURNAME>Hernandez</SURNAME>

</PLAYER>

<PLAYER>
<GIVEN_NAME>David</GIVEN_NAME>
<SURNAME>Cone</SURNAME>

</PLAYER>

<PLAYER>
<GIVEN_NAME>David</GIVEN_NAME>
<SURNAME>We11s</SURNAME>

</PLAYER>

<PLAYER>
<GIVEN_NAME>Andy</GIVEN_NAME>
<SURNAME>Pettitte</SURNAME>

</PLAYER>

<PLAYER>
<GIVEN_NAME>Hideki</GIVEN_NAME>
<SURNAME>Irabu</SURNAME>

</PLAYER>
</TEAM>
g
Note The tags <GIVEN_NAME> and <SURNAME> are preferable to the more obvious
w <FIRST_NAME> and <LAST_NAME> or <FIRST_NAME> and <FAMILY_NAME>.

Whether the family name or the given name comes first or last varies from culture
to culture. Furthermore, surnames aren’t necessarily family names in all cultures.

70

Part| O Introducing XML

XMLizing Player Statistics

The next step is to provide statistics for each player. Statistics look a little different
for pitchers and batters, especially in the American League in which few pitchers
bat. Below are Joe Girardi’s 1998 statistics. He’s a catcher so we use batting
statistics:

<PLAYER>
<GIVEN_NAME>Joe </GIVEN_NAME>
<SURNAME>Girardi</SURNAME>
<POSITION>Catcher</POSITION>
<GAMES>78</GAMES>
<GAMES_STARTED>76</GAMES_STARTED>
<AT_BATS>254</AT_BATS>
<RUNS>31</RUNS>
<HITS>70</HITS>
<DOUBLES>11</DOUBLES>
<TRIPLES>4</TRIPLES>
<HOME_RUNS>3</HOME_RUNS>
<RBI>31</RBI>
{STEALS>2</STEALS>
<CAUGHT_STEALING>4</CAUGHT_STEALING>
<SACRIFICE_HITS>8</SACRIFICE_HITS>
<SACRIFICE_FLIES>1I</SACRIFICE_FLIES>
<ERRORS>3</ERRORS>
<WALKS>14</WALKS>
<STRUCK_OUT>38</STRUCK_OUT>
CHIT_BY_PITCH>2</HIT_BY_PITCH>

</PLAYER>

Now let’s look at the statistics for a pitcher. Although pitchers occasionally bat in
the American League, and frequently bat in the National League, they do so far less
often than all other players do. Pitchers are hired and fired, cheered and booed,
based on their pitching performance. If they can actually hit the ball on occasion
too, that’s pure gravy. Pitching statistics include games played, wins, losses, innings
pitched, earned runs, shutouts, hits against, walks given up, and more. Here are
Hideki Irabu’s 1998 statistics encoded in XML:

<PLAYER>
<GIVEN_NAME>Hideki</GIVEN_NAME>
<SURNAME>Irabu</SURNAME>
<POSITION>Starting Pitcher</POSITION>
<WINS>13</WINS>
<LOSSES>9</LOSSES>
<SAVES>Q</SAVES>
<GAMES>29</GAMES>
<GAMES_STARTED>28</GAMES_STARTED>
<COMPLETE_GAMES>2</COMPLETE_GAMES>
<SHUT_OUTS>1</SHUT_OUTS>

Chapter 4 O Structuring Data

<ERA>4.06</ERA>
CINNINGS>173</INNINGS>
<HOME_RUNS>148</HOME_RUNS>
<RUNS>27</RUNS>
<EARNED_RUNS>79</EARNED_RUNS>
<HIT_BATTER>78</HIT_BATTER>
<WILD_PITCHES>9</WILD_PITCHES>
<BALK>6</BALK>
<WALKED_BATTER>1</WALKED_BATTER>
<STRUCK_OUT_BATTER>76</STRUCK_QUT_BATTER>
</PLAYER>

Terseness in XML Markup is of Minimal Importance

Throughout this example, I've been following the explicit XML principal that “Terseness in
XML markup is of minimal importance.” This certainly assists non-baseball literate readers
who may not recognize baseball arcana such as the standard abbreviation for a walk BB
(base on balls), not W as you might expect. If document size is truly an issue, it's easy to
compress the files with zip or some other standard tool.

However, this does mean XML documents tend to be quite long, and relatively tedious to
type by hand. | confess that this example sorely tempts me to use abbreviations, clarity be
damned. If | were to do so, a typical PLAYER element might look like this:

<PLAYER>
<GIVEN_NAME>Joe</GIVEN_NAME>
<SURNAME>Girardi</SURNAME>
<P>CL/P>
<G>78</G>
<AB>254</AB>
<R>3L<L/R>
<H>70</H>
<D0>11</D0O>
<TR>4L/TR>
<HR>3</HR>
<RBI>31</RBI>
<BB>14</BB>
<S0>38</S0>
<SB>2</SB>
<CS>4</CS>
<HBP>2</HBP>
</PLAYER>

71

72 Part | [Introducing XML

Putting the XML Document Back Together Again

Until now, I've been showing the XML document in pieces, element by element.
However, it's now time to put all the pieces together and look at the complete
document containing the statistics for the 1998 Major League season. Listing 4-1
demonstrates the complete XML document with two leagues, six divisions, thirty
teams, and nine players.

Listing 4-1: A complete XML document

<?2xml version="1.0"7>
<SEASON>
<YEAR>1998</YEAR>
<LEAGUE>
<LEAGUE_NAME>National League</LEAGUE_NAME>
<DIVISION>
<DIVISION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>AtTanta</TEAM_CITY>
<TEAM_NAME>Braves</TEAM_NAME>
<PLAYER>
<SURNAME>MaTlToy</SURNAME>
<GIVEN_NAME>Marty</GIVEN_NAME>
<POSITION>Second Base</POSITION>
<GAMES>11</GAMES>
<GAMES_STARTED>8</GAMES_STARTED>
<AT_BATS>28</AT_BATS>
<RUNS>3</RUNS>
<HITS>5</HITS>
<DOUBLES>1</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>1</HOME_RUNS>
<RBI>1</RBI>
<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>0</ERRORS>
<WALKS>2</WALKS>
<STRUCK_OUT>2</STRUCK_OUT>
<HIT_BY_PITCH>O<K/HIT_BY_PITCH>
</PLAYER>
<PLAYER>
<SURNAME>Guillen</SURNAME>
<GIVEN_NAME>Ozzie </GIVEN_NAME>
<POSITION>Shortstop</POSITION>
<GAMES>83</GAMES>
<GAMES_STARTED>59</GAMES_STARTED>
<AT_BATS>264</AT_BATS>
<RUNS>35</RUNS>
<HITS>73</HITS>

Chapter 4 O Structuring Data 73

<DOUBLES>15</DOUBLES>
<TRIPLES>1</TRIPLES>
<HOME_RUNS>1</HOME_RUNS>
<RBI>22</RBI>
{STEALS>1</STEALS>
<CAUGHT_STEALING>4</CAUGHT_STEALING>
<SACRIFICE_HITS>4</SACRIFICE_HITS>
{SACRIFICE_FLIES>2</SACRIFICE_FLIES>
<ERRORS>6</ERRORS>
<WALKS>24</WALKS>
<STRUCK_OUT>25</STRUCK_OUT>
<HIT_BY_PITCH>1</HIT_BY_PITCH>

</PLAYER>

<PLAYER>

<SURNAME>Bautista</SURNAME>
<GIVEN_NAME>Danny</GIVEN_NAME>
<POSITION>Qutfield</POSITION>
<GAMES>82</GAMES>
<GAMES_STARTED>27</GAMES_STARTED>
<AT_BATS>144</AT_BATS>
<RUNS>17</RUNS>
<HITS>36</HITS>
<DOUBLES>11</DOUBLES>
<TRIPLES>O0</TRIPLES>
<HOME_RUNS>3</HOME_RUNS>
<RBI>17</RBI>
<STEALS>1</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
{SACRIFICE_HITS>3</SACRIFICE_HITS>
<SACRIFICE_FLIES>2</SACRIFICE_FLIES>
<ERRORS>2</ERRORS>
<WALKS>7</WALKS>
<STRUCK_OUT>21</STRUCK_OUT>
CHIT_BY_PITCH>O</HIT_BY_PITCH>

</PLAYER>

<PLAYER>
<SURNAME>Wi111iams</SURNAME>
<GIVEN_NAME>Gerald</GIVEN_NAME>
<POSITION>Qutfield</POSITION>
<GAMES>129</GAMES>
<GAMES_STARTED>51</GAMES_STARTED>
<AT_BATS>266</AT_BATS>
<RUNS>46</RUNS>
<HITS>81<K/HITS>
<DOUBLES>18</DOUBLES>
<TRIPLES>3</TRIPLES>
<HOME_RUNS>10</HOME_RUNS>
<RBI>44</RBI>
<STEALS>11</STEALS>
<CAUGHT_STEALING>5</CAUGHT_STEALING>
<SACRIFICE_HITS>2</SACRIFICE_HITS>
<SACRIFICE_FLIES>1I</SACRIFICE_FLIES>

Continued

74 Part| O Introducing XML

Listing 4-1 (continued)

<ERRORS>5</ERRORS>
<WALKS>17</WALKS>
<STRUCK_OUT>48</STRUCK_OUT>
<HIT_BY_PITCH>3</HIT_BY_PITCH>

</PLAYER>

<PLAYER>
<SURNAME>GTavine</SURNAME>
<GIVEN_NAME>Tom</GIVEN_NAME>
<POSITION>Starting Pitcher</POSITION>
<WINS>20</WINS>
<LOSSES>6</LOSSES>
<SAVES>0</SAVES>
<GAMES>33</GAMES>
<GAMES_STARTED>33</GAMES_STARTED>
<COMPLETE_GAMES>4</COMPLETE_GAMES>
<SHUT_QUTS>3</SHUT_OUTS>
<ERA>Z2.47</ERA>
<INNINGS>229.1</INNINGS>
<HOME_RUNS>202</HOME_RUNS>
<RUNS>13</RUNS>
<EARNED_RUNS>67</EARNED_RUNS>
<HIT_BATTER>63</HIT_BATTER>
<WILD_PITCHES>2</WILD_PITCHES>
<BALK>3</BALK>
<WALKED_BATTER>O</WALKED_BATTER>
<STRUCK_OUT_BATTER>74</STRUCK_OUT_BATTER>

</PLAYER>

<PLAYER>
<SURNAME>Lopez</SURNAME>
<GIVEN_NAME>Javier</GIVEN_NAME>
<POSITION>Catcher</POSITION>
<GAMES>133</GAMES>
<GAMES_STARTED>124</GAMES_STARTED>
<AT_BATS>489</AT_BATS>
<RUNS>73</RUNS>
<HITS>139</HITS>
<DOUBLES>21</DOUBLES>
<TRIPLES>1</TRIPLES>
<HOME_RUNS>34</HOME_RUNS>
<RBI>106</RBI>
CSTEALS>5<K/STEALS>
<CAUGHT_STEALING>3</CAUGHT_STEALING>
<SACRIFICE_HITS>1</SACRIFICE_HITS>
<SACRIFICE_FLIES>8</SACRIFICE_FLIES>
<ERRORS>5</ERRORS>
<WALKS>30</WALKS>
<STRUCK_OUT>85</STRUCK_OUT>
<HIT_BY_PITCH>6</HIT_BY_PITCH></PLAYER>

<PLAYER>
<SURNAME>KTesko</SURNAME>
<GIVEN_NAME>Ryan</GIVEN_NAME>

Chapter 4 O Structuring Data 75

<POSITION>Qutfield</POSITION>
<GAMES>129</GAMES>
<GAMES_STARTED>124</GAMES_STARTED>
<AT_BATS>427</AT_BATS>
<RUNS>69</RUNS>
CHITS>117</HITS>
<DOUBLES>29</DOUBLES>
<TRIPLES>1</TRIPLES>
<HOME_RUNS>18</HOME_RUNS>
<RBI>70</RBI>
(STEALS>5</STEALS>
<CAUGHT_STEALING>3</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>4</SACRIFICE_FLIES>
<ERRORS>2</ERRORS>
<WALKS>56</WALKS>
<STRUCK_QUT>66</STRUCK_QUT>
<HIT_BY_PITCH>3</HIT_BY_PITCH></PLAYER>
<PLAYER>
<SURNAME>GaTarraga</SURNAME>
<GIVEN_NAME>Andres</GIVEN_NAME>
<POSITION>First Base</POSITION>
<GAMES>153</GAMES>
<GAMES_STARTED>151</GAMES_STARTED>
<AT_BATS>555</AT_BATS>
<RUNS>103</RUNS>
CHITS>169</HITS>
<DOUBLES>27</DOUBLES>
<TRIPLES>1</TRIPLES>
<HOME_RUNS>44</HOME_RUNS>
<RBI>121</RBI>
(STEALS>7</STEALS>
<CAUGHT_STEALING>6</CAUGHT_STEALING>
<SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>5</SACRIFICE_FLIES>
<ERRORS>11</ERRORS>
<WALKS>63</WALKS>
<STRUCK_OQUT>146</STRUCK_OUT>
<HIT_BY_PITCH>25</HIT_BY_PITCH></PLAYER>
<PLAYER>
<SURNAME>HeTms</SURNAME>
<GIVEN_NAME>Wes</GIVEN_NAME>
<POSITION>Third Base</POSITION>
<GAMES>7</GAMES>
<GAMES_STARTED>2</GAMES_STARTED>
<AT_BATS>13</AT_BATS>
<RUNS>2</RUNS>
CHITS>4A</HITS>
<DOUBLES>1</DOUBLES>
<TRIPLES>0</TRIPLES>
<HOME_RUNS>1</HOME_RUNS>
<RBI>2</RBI>

Continued

76 Part | O Introducing XML

Listing 4-1 (continued)

<STEALS>0</STEALS>
<CAUGHT_STEALING>0</CAUGHT_STEALING>
{SACRIFICE_HITS>0</SACRIFICE_HITS>
<SACRIFICE_FLIES>0</SACRIFICE_FLIES>
<ERRORS>1</ERRORS>
<WALKS>O0</WALKS>
<STRUCK_OUT>4</STRUCK_OUT>
<HIT_BY_PITCH>O</HIT_BY_PITCH></PLAYER>
</TEAM>
<TEAM>
<TEAM_CITY>Florida</TEAM_CITY>
<TEAM_NAME>Mar1lins</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Montreal</TEAM_CITY>
<TEAM_NAME>Expos</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Mets</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Philadelphia</TEAM_CITY>
<TEAM_NAME>Phil11ies</TEAM_NAME>
</TEAM>
</DIVISION>
<DIVISION>
<DIVISION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>Cubs</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Cincinatti</TEAM_CITY>
<TEAM_NAME>Reds</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Houston</TEAM_CITY>
<TEAM_NAME>Astros</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Milwaukee</TEAM_CITY>
<TEAM_NAME>Brewers</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Pittsburgh</TEAM_CITY>
<TEAM_NAME>Pirates</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>St. Louis</TEAM_CITY>
<TEAM_NAME>Cardinals</TEAM_NAME>

Chapter 4 O Structuring Data

</TEAM>
</DIVISION>
<DIVISION>
<DIVISTION_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Arizona</TEAM_CITY>
<TEAM_NAME>Diamondbacks</TEAM_NAME>
</TEAM>
<TEAM>
{TEAM_CITY>Colorado</TEAM_CITY>
<TEAM_NAME>Rockies</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Los Angeles</TEAM_CITY>
<TEAM_NAME>Dodgers</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>San Diego</TEAM_CITY>
<TEAM_NAME>Padres</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>San Francisco</TEAM_CITY>
<TEAM_NAME>Giants</TEAM_NAME>
</TEAM>
</DIVISION>
</LEAGUE>
<LEAGUE>
<LEAGUE_NAME>American League</LEAGUE_NAME>
<DIVISION>
<DIVISTION_NAME>East</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Baltimore</TEAM_CITY>
<TEAM_NAME>Orioles</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Boston</TEAM_CITY>
<TEAM_NAME>Red Sox</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>New York</TEAM_CITY>
<TEAM_NAME>Yankees</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Tampa Bay</TEAM_CITY>
<TEAM_NAME>Devil Rays</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Toronto</TEAM_CITY>
<TEAM_NAME>BTue Jays</TEAM_NAME>
</TEAM>
</DIVISION>
<DIVISION>

Continued

77

78 Part | O Introducing XML

Listing 4-1 (continued)

<DIVISTION_NAME>Central</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Chicago</TEAM_CITY>
<TEAM_NAME>White Sox</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Kansas City</TEAM_CITY>
<TEAM_NAME>Royals</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Detroit</TEAM_CITY>
<TEAM_NAME>Tigers</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Cleveland</TEAM_CITY>
<TEAM_NAME>Indians</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Minnesota</TEAM_CITY>
<TEAM_NAME>Twins</TEAM_NAME>
</TEAM>
</DIVISTON>
<DIVISION>
<DIVISTON_NAME>West</DIVISION_NAME>
<TEAM>
<TEAM_CITY>Anaheim</TEAM_CITY>
<TEAM_NAME>Angels</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>O0akland</TEAM_CITY>
<TEAM_NAME>Athletics</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Seattle</TEAM_CITY>
<TEAM_NAME>Mariners</TEAM_NAME>
</TEAM>
<TEAM>
<TEAM_CITY>Texas</TEAM_CITY>
<TEAM_NAME>Rangers</TEAM_NAME>
</TEAM>
</DIVISION>
</LEAGUE>
</SEASON>

Figure 4-1 shows this document loaded into Internet Explorer 5.0.

On the

Chapter 4 O Structuring Data

T D :\ehL A Diblet LD s oure e'uld 1 Seekchostskats o - Microeoll Imbesned Eaplores

Fin Edé Yew Fpoie Tk Help

. %.0 D A @ @ 3|0
Bk Fomerrd Sicp Feesh Home | Sewch Fasorier Histos]
'a‘#“‘l #] O LB bkt DD souroe VW1 S5 shonstats sl

E 1998
1C = MNational Lesgue
\E=East

Albaita
= Braves

Malloy
Py
10N Becond Base-,T
ii

20

il] Do : : T Wy
Figure 4-1: The 1998 major league statistics displayed
in Internet Explorer 5.0

Even now this document is incomplete. It only contains players from one team (the
Atlanta Braves) and only nine players from that team. Showing more than that
would make the example too long to include in this book.

A more complete XML document called 1998statistics.xml with statistics for

ball directory.Furthermore, I've deliberately limited the data included to

CD'@%" | all players in the 1998 major league is on the CD-ROM in the examples/base-

make this a manageable example within the confines of this book. In reality
there are far more details you could include. I've already alluded to the pos-
sibility of arranging the data game by game, pitch by pitch. Even without
going to that extreme, there are a lot of details that could be added to indi-
vidual elements. Teams also have coaches, managers, owners (How can you
think of the Yankees without thinking of George Steinbrenner?), home stadi-
ums, and more.

I've also deliberately omitted numbers that can be calculated from other numbers
given here, such as batting average (number of hits divided by number of at bats).
Nonetheless, players have batting arms, throwing arms, heights, weights, birth
dates, positions, numbers, nicknames, colleges attended, and much more. And of
course there are many more players than I’'ve shown here. All of this is equally easy
to include in XML. But we will stop the XMLification of the data here so we can
move on; first to a brief discussion of why this data format is useful, then to the
techniques that can be used for actually displaying it in a Web browser.

79

80 Part | [Introducing XML

The Advantages of the XML Format

mCross-— W
Reference ',
s

Table 4-1 does a pretty good job of displaying the batting data for a team in a
comprehensible and compact fashion. What exactly have we gained by rewriting
that table as the much longer XML document of Example 4-1? There are several
benefits. Among them:

0 The data is self-describing
0 The data can be manipulated with standard tools
0 The data can be viewed with standard tools

O Different views of the same data are easy to create with style sheets

The first major benefit of the XML format is that the data is self-describing. The
meaning of each number is clearly and unmistakably associated with the number
itself. When reading the document, you know that the 121 in <HITS>121</HITS>
refers to hits and not runs batted in or strikeouts. If the person typing in the
document skips a number, that doesn’t mean that every number after it is
misinterpreted. HITS is still HITS even if the preceding RUNS element is missing.

In Part Il you'll see that XML can even use DTDs to enforce constraints that certain
= elements like HITS or RUNS must be present.
The second benefit to providing the data in XML is that it enables the data to be
manipulated in a wide range of XML-enabled tools, from expensive payware like
Adobe FrameMaker to free open-source software like Python and Perl. The data
may be bigger, but the extra redundancy allows more tools to process it.

The same is true when the time comes to view the data. The XML document can be
loaded into Internet Explorer 5.0, Mozilla, FrameMaker 5.5.6, and many other tools,
all of which provide unique, useful views of the data. The document can even be
loaded into simple, bare-bones text editors like vi, BBEdit, and TextPad. So it’s at
least marginally viewable on most platforms.

Using new software isn’t the only way to get a different view of the data either. In
the next section, we’ll build a style sheet for baseball statistics that provides a
completely different way of looking at the data than what you see in Figure 4-1.
Every time you apply a different style sheet to the same document you see a
different picture.

Lastly, you should ask yourself if the size is really that important. Modern hard
drives are quite big, and can a hold a lot of data, even if it’s not stored very
efficiently. Furthermore, XML files compress very well. The complete major league
1998 statistics document is 653K. However, compressing the file with gzip gets that
all the way down to 66K, almost 90 percent less. Advanced HTTP servers like Jigsaw

Chapter 4 [0 Structuring Data 81

can actually send compressed files rather than the uncompressed files so that
network bandwidth used by a document like this is fairly close to its actual
information content. Finally, you should not assume that binary file formats,
especially general-purpose ones, are necessarily more efficient. A Microsoft Excel
file that contains the same data as the 1998statistics.xml actually takes up 2.37 MB,
more than three times as much space. Although you can certainly create more
efficient file formats and encoding of this data, in practice that simply isn’t often
necessary.

Preparing a Style Sheet for Document Display

The view of the raw XML document shown in Figure 4-1 is not bad for some uses.
For instance, it allows you to collapse and expand individual elements so you see
only those parts of the document you want to see. However, most of the time you'd
probably like a more finished look, especially if you're going to display it on the
Web. To provide a more polished look, you must write a style sheet for the
document.

In this chapter, we’ll use CSS style sheets. A CSS style sheet associates particular
formatting with each element of the document. The complete list of elements used
in our XML document is:

SEASON

YEAR

LEAGUE

LEAGUE_NAME

DIVISION

DIVISION_NAME

TEAM

TEAM_CITY

TEAM_NAME

PLAYER

SURNAME

GIVEN_NAME

POSITION

GAMES

GAMES_STARTED

AT_BATS

RUNS

82 Part | [Introducing XML

= Cross-

Reference ',
1

—

HITS

DOUBLES

TRIPLES

HOME_RUNS

RBI

STEALS

CAUGHT_STEALING

SACRIFICE_HITS

SACRIFICE_FLIES

ERRORS

WALKS

STRUCK_OUT

HIT_BY_PITCH
Generally, you’ll want to follow an iterative procedure, adding style rules for each of
these elements one at a time, checking that they do what you expect, then moving

on to the next element. In this example, such an approach also has the advantage of
introducing CSS properties one at a time for those who are not familiar with them.

Linking to a Style Sheet

The style sheet can be named anything you like. If it's only going to apply to one
document, then it’s customary to give it the same name as the document but with
the three-letter extension .css instead of .xml. For instance, the style sheet for the
XML document 1998shortstats.xml might be called 1998shortstats.css. On the other
hand, if the same style sheet is going to be applied to many documents, then it
should probably have a more generic name like baseballstats.css.

| Since CSS style sheets cascade, more than one can be applied to the same docu-
ment. Thus it's possible that baseballstats.css would apply some general format-
ting rules, while 1998shortstats.css would override a few to handle specific details
in the one document 1998shortstats.xml. We'll discuss this procedure in Chapter
12, Cascading Style Sheets Level 1.

To attach a style sheet to the document, you simply add an additional <?xm1 -
stylesheet?> processing instruction between the XML declaration and the root
element, like this:

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="baseballstats.css"?>
<SEASON>

-

Note
e

Chapter 4 O Structuring Data

This tells a browser reading the document to apply the style sheet found in the file
baseballstats.css to this document. This file is assumed to reside in the same
directory and on the same server as the XML document itself. In other words,
baseballstats.css is a relative URL. Complete URLs may also be used. For example:

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css"

href="http://metalab.unc.edu/xml/examples/baseballstats.css"?>

<SEASON>

You can begin by simply placing an empty file named baseballstats.css in the same
directory as the XML document. Once you’'ve done this and added the necessary
processing instruction to 1998shortstats.xml (Listing 4-1), the document now
appears as shown in Figure 4-2. Only the element content is shown. The collapsible
outline view of Figure 4-1 is gone. The formatting of the element content uses the
browser’s defaults, black 12-point Times Roman on a white background in this case.

R 0 -ehiL A Dibdet LT nounc el shylad] P shartelaty smil - Miciaod Intenset Caplons [To0 =]
Fio Edt Yew Fpoim Took Heb E
e o @ A A D Mo B S

Esck Foirisid Slep Asfieth Hone Sesch Faasites Hilog Kl Pl

Agdrmee | 2] [-o-HLBibie LD pumce Ml el BBhant ot ad =| e

B

1998 Mational Leagua East atlanta Braves Mallay Marty Sacond
Base 11828351011 00000 2 20 Guillen Dzzie Shortstop
3502643573151 1221 4426 24 251 Bautista Danny
Outfield 82 27 144 1736 11 03171 02 2 2 7 21 0 Williams
Gerald Outfisld 12251 26645 81 1231044 11 521 517 48 3
Glavine Tom Starting Pitcher 200610 33 33 4 3 2,47 229.1 202 13
67 63 230 74 Lopez Javier Catchar 133 124 489 73 139 21 1 34
106 531 8 5 30 85 & Klesko Ryan Outfield 129 124 427 62117 23
1187053042 5665 3 Galaraga Andras First Base 153 151
55510316227 144 121 760511 63 146 25 Helms Wes Third
Base 721324101200001 040 Florida Marlins Montraal
Expos Mew York Mets Philadelphila Phillies Central Chicago Cubs
Clncinatt! Reds Houston Astros Milwaukee Brewers Pittsbungh
Pirates %t. Louis Cardinals West arizona Diamondbacks Colorado
Rodkies Los Angeles Dodgers San Diego Padres San Franciscoo
Giants american League East Baltimore Orioles Boston Red Sox

-

Figure 4-2: The 1998 major league statistics displayed after a blank
style sheet is applied

You'll also see a view much like Figure 4-2 if the style sheet named by the xm1 -
stylesheet processing instruction can’t be found in the specified location.

83

84

Part| O Introducing XML

Assigning Style Rules to the Root Element

You do not have to assign a style rule to each element in the list. Many elements
can simply allow the styles of their parents to cascade down. The most important
style, therefore, is the one for the root element, which is SEASON in this example.
This defines the default for all the other elements on the page. Computer monitors
at roughly 72 dpi don’t have as high a resolution as paper at 300 or more dpi.
Therefore, Web pages should generally use a larger point size than is customary.
Let’s make the default 14-point type, black on a white background, as shown below:

SEASON {font-size: 14pt; background-color: white;
color: black; display: block}

Place this statement in a text file, save the file with the name baseballstats.css in
the same directory as Listing 4-1, 1998shortstats.xml, and open 1998shortstats.xml
in your browser. You should see something like what is shown in Figure 4-3.

TF 0 -\ehL A Dbl DA s oure Ul A shyded] Pilchortdale aml - Micsoeolt Intsinat eplom [[5] =]
Fie Edt Yew Fpoiem Jook Heb | & |
T IE e - R R e L Ay

Erack Fomwrd Sip Aefiesh Home Search Faworles Hatow Hal Fint

Agdruze [2] b ioHLBibie LD s crcsVihuipied] S shortitals v =] oBs

15998 National League East Atlanta Braves Malloy Marty
CSecond Base 11828351011 00000 2 20 Guillen
Ozzie Shortstop 83 59 264 3573151122144 26 24
25 1 Bautista Danny Qutfield 82 27 144 17 3611 0 3 17
103227210 Willlams Gerald Outfield 129 51 266 46
B11B 3104411521 517 48 3 Glavine Tom Starting
Pitcher 20 6 0 33 33 4 3 2.47 229.1 202 136763230

74 Lopez Javier Catcher 133 124 489 73 139 21 1 34

106 5318 5 30 856 Klesko Ryan Outfiald 129 124 427
69117 29118705304 2 55 66 3 Galarraga Andres
First Base 153 151 555103169 27 1 44121 760511
63 145 25 Helms Wes Third Base 7 21324101200
001040 Florida Marlins Montreal Expos New York

Mets Philadelphia Phillies Central Chicage Cubs Cincinatti
Reds Houston Astros Milwaukee Brewers Pittsburgh

Pirates St. Louis Cardinals West Arizona Diamondbacks .

Figure 4-3: Baseball statistics in 14-point type with a black-on-
white background

The default font size changed between Figure 4-2 and Figure 4-3. The text color and
background color did not. Indeed, it was not absolutely required to set them, since
black foreground and white background are the defaults. Nonetheless, nothing is
lost by being explicit regarding what you want.

Chapter 4 O Structuring Data 85

Assigning Style Rules to Titles

The YEAR element is more or less the title of the document. Therefore, let’s make it
appropriately large and bold — 32 points should be big enough. Furthermore, it
should stand out from the rest of the document rather than simply running
together with the rest of the content, so let’s make it a centered block element. All
of this can be accomplished by the following style rule.

YEAR {display: block; font-size: 32pt; font-weight: bold;
text-align: center}

Figure 4-4 shows the document after this rule has been added to the style sheet.
Notice in particular the line break after “1998.” That’s there because YEAR is now a
block-level element. Everything else in the document is an inline element. You can
only center (or left-align, right-align or justify) block-level elements.

EluLle e Ea
£ o @3 [4 [[2B 5 7

Erack Fosward Siop Asfiesh Home Semch Fewsiler Hiloy Ml Frirsl

gkt [2] oML e LT oo [Mat e Esontshate vl =] oGo

1998

Mational League East Atlanta Braves Malloy Marty Second
Base 11828351011000002 20 Guillen Ozzie
Shortstop B3 59 264 35731511221442624 251
Bautista Danny Cutfleld 82 27 14417 3611 031710 3
227 210 Willlams Gerald Outfleld 129 51 266 46 81 18
3104411521517 48 3 Glavine Tom Starting Pitcher
2060333343247 229.120213676323074

Lopez Javier Catcher 133 124 43973139211 34 106 5 ~
318530856 Klesko Ryan Outfield 129 124 427 69

117 291 18705304 2 56 66 3 Galarraga Andres First

Duca 183 484 EEE 407 460 37 4 A4 499 F & A E 44 &5

Figure 4-4: Stylizing the YEAR element as a title

In this document with this style rule, YEAR duplicates the functionality of HTML’s H1
header element. Since this document is so neatly hierarchical, several other
elements serve the role of H2 headers, H3 headers, etc. These elements can be
formatted by similar rules with only a slightly smaller font size.

For instance, SEASON is divided into two LEAGUE elements. The name of each
LEAGUE, that is, the LEAGUE_NAME element— has the same role as an H2 element in
HTML. Each LEAGUE element is divided into three DIVISION elements. The name of

86 Part | O Introducing XML

each DIVISION—that is, the DIVISION_NAME element—has the same role as an H3
element in HTML. These two rules format them accordingly:

LEAGUE_NAME {display: block; text-align: center; font-size:
28pt; font-weight: bold}

DIVISION_NAME {display: block; text-align: center; font-size:
24pt; font-weight: bold}

Figure 4-5 shows the resulting document.

TR 0 weibiL \Diblet CDsours e'uld Asted] Pishortstals sml - Micsnsolt Intsinat Eeplom [[5] x]
Fie Edt Yiew Fpoim I Hep | & |
o G [& a8 @ 2 B 5 "l

Etack F oowamed Siop Aehesh Home Geach Fawories Heww Hal Fiind:

Agdrmee [2] DL Bibie LD puros D8lpbed] Sshorhtals v =] oBs

1998

National League
East

Atlanta Braves Malloy Marty Second Base 11 828351 —

01100000220 Guillen Ozzie Shortstop 83 55 264

3573151122144 26 24 251 Bautista Danny

Outfield 82 27 144 17 36 110317103227 210

Williams Gerald Qutfield 129 51 266 46 81 18 3 10 44

11 521 517 48 3 Glavine Tom Starting Pitcher 206 0

333343247 229.1 2021367 6323074 Lopez

Javier Catcher 133124 4897313921134 106 531 8

5 30 85 6 Klesko Ryan Outfield 129 124 427 69 117 2%

118705304 2 56 66 2 Galarraga Andres First Base -
W My Compuisi

Figure 4-5: Stylizing the LEAGUE_NAME and DIVISION_NAME

elements as headings

o
Note One crucial difference between HTML and XML is that in HTML there’s generally
~ no one element that contains both the title of a section (the H2, H3, H4, etc.,

header) and the complete contents of the section. Instead the contents of a sec-
tion have to be implied as everything between the end of one level of header and
the start of the next header at the same level. This is particularly important for soft-
ware that has to parse HTML documents, for instance to generate a table of con-
tents automatically.

Divisions are divided into TEAM elements. Formatting these is a little trickier
because the title of a team is not simply the TEAM_NAME element but rather the
TEAM_CITY concatenated with the TEAM_NAME. Therefore these need to be inline
elements rather than separate block-level elements. However, they are still titles so
we set them to bold, italic, 20-point type. Figure 4-6 shows the results of adding
these two rules to the style sheet.

Chapter 4 O Structuring Data 87

TEAM_CITY {font-size: 20pt; font-weight: bold;
font-style: italic}

TEAM_NAME {font-size: 20pt; font-weight: bold;
font-style: italic}

i < BE R - W e RTS L R

Eack F ravasrd Skep Aehesh Homes Seach Fawirles Haston Hal Fird

Mg [] [oML B\ DD s curosV O igberd) S shortstals i =60

1998

National League

East

Atlanta Braves mMalloy Marty Second Base 11 8
2835101100000 2 20 Guillen Ozzie Shortstop
B3H0 264 3573151122144 26 24251 Bautista
Danny Cutfield 82 27 144 17 36 110317103227
21 0 Williams Gerald Outfield 129 51 266 46 81 18 3 10
4411521 517 48 3 Glavine Tom Starting Pitcher 20 6
0333343247 2291 2021367 6323074 Lopez
Javier Catcher 133 124 48973139211 34106531 8
5 30 85 6 Klesko Ryan Outfield 129 124 427 69 117 29
118705304 2 56 66 2 Galarraga Andres First Base =l
&7 Do W My Congraer

Figure 4-6: Stylizing Team Names

At this point it would be nice to arrange the team names and cities as a combined
block-level element. There are several ways to do this. You could, for instance, add
an additional TEAM_TITLE element to the XML document whose sole purpose is
merely to contain the TEAM_NAME and TEAM_CITY. For instance:

<TEAM>
<TEAM_TITLE>
<TEAM_CITY>Colorado</TEAM_CITY>
<TEAM_NAME>Rockies</TEAM_NAME>
</TEAM_TITLE>
</TEAM>

Next, you would add a style rule that applies block-level formatting to TEAM_TITLE:

TEAM_TITLE {display: block; text-align: center}

However, you really should never reorganize an XML document just to make the
style sheet work easier. After all, the whole point of a style sheet is to keep
formatting information out of the document itself. However, you can achieve much
the same effect by making the immediately preceding and following elements block-

Part| O Introducing XML

level elements; that is, TEAM and PLAYER respectively. This places the TEAM_NAME
and TEAM_CITY in an implicit block-level element of their own. Figure 4-7 shows the
result.

TEAM {display: block}
PLAYER {display: block}

YT T Miceasolt Infornel Explore i
w oo D [4| @ & P B S =

Eack Fuonssid Skep Aehesh Home Seach Fawirles Hastoy Hal Fid

Mghrwee [] [0 B\ DD s corneVilgheel) S shortstals and = 6

1998

National League
East

Atlanta Braves

Malloy Marty Second Base 11 828 35101100000
220

Guillen Ozzie Shortstop 83 59 264 357315112214 4
2624251

Bautista Danny Outfield 82 27 144 17 36110317103
227210

Williams Gerald Outfield 129 51 286 46 81 18 3 10 44
11521517483

Glavine Tom Starting Pitcher 206 0 33 33 4 3 2.47 |
] Doonm T Wy Conguis

Figure 4-7: Stylizing team names and cities as headers

Assigning Style Rules to Player
and Statistics Elements

The trickiest formatting this document requires is for the individual players and
statistics. Each team has a couple of dozen players. Each player has statistics. You
could think of a TEAM element as being divided into PLAYER elements, and place
each player in his own block-level section as you did for previous elements.
However, a more attractive and efficient way to organize this is to use a table. The
style rules that accomplish this look like this:

TEAM {display: table}

TEAM_CITY {display: table-caption}
TEAM_NAME {display: table-caption}
PLAYER {display: table-row}
SURNAME {display: table-cell}
GIVEN_NAME {display: table-cell}
POSITION {display: table-cell}

Chapter 4 O Structuring Data 89

GAMES {display: table-cell}
GAMES_STARTED {display: table-cell}
AT_BATS f{display: table-cell}

RUNS {display: table-cell}

HITS {display: table-cell}

DOUBLES {display: table-cell}

TRIPLES {display: table-cell}
HOME_RUNS {display: table-cell}

RBI {display: table-cell}

STEALS {display: table-cell}
CAUGHT_STEALING {display: table-cell}
SACRIFICE_HITS {display: table-cell}
SACRIFICE_FLIES {display: table-cell}
ERRORS {display: table-cell}

WALKS {display: table-cell}
STRUCK_OUT {display: table-cell}
HIT_BY_PITCH {display: table-cell}

Unfortunately, table properties are only supported in CSS Level 2, and this is not yet
supported by Internet Explorer 5.0 or any other browser available at the time of
this writing. Instead, since table formatting doesn’t yet work, I'll settle for just
making TEAM and PLAYER block-level elements, and leaving all the rest with the
default formatting.

Summing Up

Listing 4-2 shows the finished style sheet. CSS style sheets don’t have a lot of
structure beyond the individual rules. In essence, this is just a list of all the rules |
introduced separately above. Reordering them wouldn’t make any difference as
long as they’re all present.

Listing 4-2: baseballstats.css

SEASON {font-size: 14pt; background-color: white;
color: black; display: block}
YEAR {display: block; font-size: 32pt; font-weight: bold;
text-align: center}
LEAGUE_NAME {display: block; text-align: center;
font