15

Class Hierarchies

Abstraction is selective ignorance.
— Andrew Koenig

Multiple inheritance— ambiguity resolution— inheritance andising-declaratios —

replicated base classes virtual base classes- uses of multiple inheritance- access
control — protected— access to base classes run-time type information—

dynamic_cast — static and dynamic casts- casting from virtual bases- typeid —

extended type informatioR- uses and misuses of run-time type informatiempointers
to members— free store— virtual constructors— advice— exercises.

15.1 Introduction and Overviewlhier.intro]

This chapter discusses how derived classes and virtual functions interact with other language facili-
ties such as access control, name lookup, free store management, constructors, pointers, and type
conversions. It has five main parts:

§15.2 Multiple Inheritance

§15.3 Access Control

§15.4 Run-time Type Identification

§15.5 Pointers to Members

§15.6 Free Store Use
In general, a class is constructed from a lattice of base classes. Because most such lattices histori-
cally have been trees,ctass latticeis often called alass hierarchy We try to design classes so
that users need not be unduly concerned about the way a class is composed out of other classes. In
particular, the virtual call mechanism ensures that when we call a furitioon an object, the
same function is called whichever class in the hierarchy provided the declaraf{pn used for
the call. This chapter focuses on ways to compose class lattices and to control access to parts of
classes and on facilities for navigating class lattices at compile time and run time.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

390 Class Hierarchies Chapter 15

15.2 Multiple Inheritance [hier.mi]

As shown in §2.5.4 and §12.3, a class can have more than one direct base class, that is, more than
one class specified after thein the class declaration. Consider a simulation in which concurrent
activities are represented by a claask and data gathering and display is achieved through a class
Displayed. We can then define a class of simulated entities, Sasflite;

class Satellite: public Task public Displayed {
/..

}

The use of more than one immediate base class is usually allégle inheritance In contrast,
having just one direct base class is cafliegjle inheritance

In addition to whatever operations are defined specifically fBatellite, the union of opera-
tions onTasks andDisplayeds can be applied. For example:

void f(Satellite& s)

{
s. draw() ; / | Displayed::draw()
s. delay(10); / / Task:delay()
s. transmit() ; / / Satellite::transmit()
}

Similarly, aSatellite can be passed to functions that expetask or aDisplayed. For example:

void highlight(Displayed*) ;
void suspend(Task*) ;
void g(Satellite* p)

highlight(p); / / pass a pointer to the Displayed part of the Satellite
suspend(p); / / pass a pointer to the Task part of the Satellite

The implementation of this clearly involves some (simple) compiler technique to ensure that func-
tions expecting &ask see a different part of Satellite than do functions expectingRisplayed
Virtual functions work as usual. For example:

class Task{
/...
virtual void pending() =0;
h
class Displayed {
/..
virtual void draw() =0;
h

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2 Multiple Inheritance 391

class Satellite: public Task public Displayed{

/..
void pending() ; /| override Task::pending()
void draw() ; /| override Displayed::draw()

k

This ensures thabatellite:: draw() and Satellite: : pending() will be called for aSatellite
treated as Bisplayed and aTask, respectively.

Note that with single inheritance (only), the programmer’s choices for implementing the classes
Displayed, Task, andSatellite would be limited. ASatellite could be arask or aDisplayed, but
not both (unlesFaskwas derived fronDisplayed or vice versa). Either alternative involves a loss
of flexibility.

Why would anyone want a claSatellite? Contrary to some people’s conjectures,Stellite
example is real. There really wasand maybe there still is a program constructed along the
lines used to describe multiple inheritance here. It was used to study the design of communication
systems involving satellites, ground stations, etc. Given such a simulation, we can answer ques-
tions about traffic flow, determine proper responses to a ground station that is being blocked by a
rainstorm, consider tradeoffs between satellite connections and Earth-bound connections, etc. Such
simulations do involve a variety of display and debugging operations. Also, we do need to store
the state of objects such Satellites and their subcomponents for analysis, debugging, and error
recovery.

15.2.1 Ambiguity Resolution [hier.ambig]

Two base classes may have member functions with the same name. For example:

class Task{

/...

virtual debug_info* get debug() ;
h
class Displayed {

/..

virtual debug_info* get_debug() ;
3

When aSatellite is used, these functions must be disambiguated:

void f(Satellite* sp)

{
debug_info* dip = sp-> get _debug() ;/ / error: ambiguous
dip = sp> Task : get_debug() ; /| ok
dip = sp-> Displayed : get debug() ; / / ok

}

However, explicit disambiguation is messy, so it is usually best to resolve such problems by defin-
ing a new function in the derived class:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

392 Class Hierarchies Chapter 15

class Satellite: public Task public Displayed{

/...
debug_info* get debug() / / override Task::getdebug() and Displayed::gedebug()
{
debug_info* dipl = Task : get debug() ;
debug_info* dip2 = Displayed : get_debug() ;
return dipl-> merge(dip2);
}

kh

This localizes the information abo&atellite's base classes. BecauSatellite: : get debug()
overrides theget debug() functions from both of its base class&aellite:: get debug() is
called whereveget debug() is called for e&Satellite object.

A qualified nameTelstar: : draw can refer to araw declared either ielstar or in one of its
base classes. For example:

class Telstar : public Satellite {

/...
void draw()
{
draw() ; /| oops!: recursive call
Satellite: : draw() ; /I finds Displayed::draw
Displayed : draw() ;
Satellite: : Displayed: : draw() ; / / redundant double qualification
}

kh

In other words, if éSatellite: : draw doesn’t resolve to draw declared inSatellite, the compiler
recursively looks in its base classes; that is, it looksTask : draw and Displayed: : draw. If
exactly one match is found, that name will be used. Other&aellite: : draw is either not found
or is ambiguous.

15.2.2 Inheritance and Using-Declarations [hier.using]

Overload resolution is not applied across different class scopes (87.4). In particular, ambiguities
between functions from different base classes are not resolved based on argument types.

When combining essentially unrelated classes, suchasde and Displayed in the Satellite
example, similarity in naming typically does not indicate a common purpose. When such name
clashes occur, they often come as quite a surprise to the programmer. For example:

class Task{
/...
void debug(double jp); / / printinfo only if priority is lower than p

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2.2 Inheritance and Using-Declarations 393

class Displayed {
/...
void debug(int v); / / the higher the ‘v,’ the more debug information is printed

h

class Saellite: public Task public Displayed {
...

h

void g(Satellite* p)

p-> debug(1); [| error: ambiguous. Displayed::debug(int) or Task::debug(double) ?
p-> Task : debug(1); [| ok
p-> Displayed : debug(1); // ok
}
What if the use of the same name in different base classes was the result of a deliberate design deci-

sion and the user wanted selection based on the argument types? In thatisagpdaclaration
(88.2.2) can bring the functions into a common scope. For example:

class A{
public:
int f(int);
char f(char);
/...
I3
class B{
public:
double f{ double);
/..
h
class AB: public A public B{
public:
using A : f;
using B:: f;
char f(char); / / hides A:f(char)
AB f(AB);
h
void g(AB& ab)
{
ab. f(1); [1 Azf(int)
ab. f(" @) ; [/ [/ AB:f(char)
ab. f(2.0); / [/ B:f(double)
ab. f(ab); ! | AB:f(AB)

}

Using-declarations allow a programmer to compose a set of overloaded functions from base classes
and the derived class. Functions declared in the derived class hide functions that would otherwise
be available from a base. Virtual functions from bases can be overridden as ever (§15.2.3.1).

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

394 Class Hierarchies Chapter 15

A using-declaration(§8.2.2) in a class definition must refer to members of a base class. A
using-declarationmay not be used for a member of a class from outside that class, its derived
classes, and their member functionsuging-directivg(88.2.3) may not appear in a class definition
and may not be used for a class.

A using-declarationcannot be used to gain access to additional information. It is simply a
mechanism for making accessible information more convenient to use (815.3.2.2).

15.2.3 Replicated Base Classes [hier.replicated]

With the ability of specifying more than one base class comes the possibility of having a class as a
base twice. For example, h@idsk andDisplayed each been derived fromLank class, &Satellite
would have twd.inks:

struct Link{
Link* next;
h

class Task: public Link {
/1 the Link is used to maintain a list of all Tasks (the scheduler list)
/...

h

class Displayed: public Link{
/1 the Link is used to maintain a list of all Displayed objects (the display list)
/..

k

This causes no problems. Two sepatdtk objects are used to represent the links, and the two
lists do not interfere with each other. Naturally, one cannot refer to members lahkhelass
without risking an ambiguity (815.2.3.1). Satellite object could be drawn like this:

Link Link
| N
Task Displayed

Xellz

Examples of where the common base class shouldn’t be represented by two separate objects can be
handled using a virtual base class (§15.2.4).

Usually, a base class that is replicated the Wismk is here is an implementation detail that
shouldn’t be used from outside its immediate derived class. If such a base must be referred to from
a point where more than one copy of the base is visible, the reference must be explicitly qualified to
resolve the ambiguity. For example:

void mess with_links(Satellite* p)
{

p-> next = 0; /| error: ambiguous (which Link?)
p-> Link: : next = 0; /I error: ambiguous (which Link?)

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2.3 Replicated Base Classes 395

p-> Task : Link : next = 0; ! | ok
p-> Displayed : Link : next=0;/ / ok
/...

}

This is exactly the mechanism used to resolve ambiguous references to members (815.2.1).

15.2.3.1 Overriding [hier.override]

A virtual function of a replicated base class can be overridden by a (single) function in a derived
class. For example, one might represent the ability of an object to read itself from a file and write
itself back to a file like this:

class Sorable {
public:

virtual const char* get file() =0;

virtual void read() =0;

virtual void write() =0;

virtual ~Storable() { write() ; } // to be called from overriding destructors (see §15.2.4.1)
h

Naturally, several programmers might rely on this to develop classes that can be used indepen-
dently or in combination to build more elaborate classes. For example, one way of stopping and

restarting a simulation is to store components of a simulation and then restore them later. That idea
might be implemented like this:

class Transmitter : public Siorable {
public:

void write() ;

/..
h
class Receiver : public Storable {
public:

void write() ;

/...
3
class Radio : public Transmitter, public Receiver {
public:

const char* get file() ;

void read() ;

void write() ;

/...
h

Typically, an overriding function calls its base class versions and then does the work specific to the
derived class:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

396 Class Hierarchies Chapter 15

void Radio: : write()

{

Transmitter: : write() ;

Receiver: : write() ;

/1 write radio-specific information
}

Casting from a replicated base class to a derived class is discussed in §15.4.2. For a technique for
overriding each of therite() functions with separate functions from derived classes, see §25.6.

15.2.4 Virtual Base Classes [hier.vbase]

The Radio example in the previous subsection works because Stasable can be safely, conve-
niently, and efficiently replicated. Often, that is not the case for the kind of class that makes a good
building block for other classes. For example, we might deSfoeable to hold the name of the

file to be used for storing the object:

class Srable {
public:
Storable(const char* s);
virtual void read() =0;
virtual void write() =0;
virtual ~Storable() ;
private:
const char* store;

Storable(const Storable&);
Storable& operator=(const Stiorableg);

h

Given this apparently minor change Storable, we must must change the desigrRafdio. All

parts of an object must share a single copRtiofable; otherwise, it becomes unnecessarily hard to
avoid storing multiple copies of the object. One mechanism for specifying such sharing is a virtual
base class. Evemwirtual base of a derived class is represented by the same (shared) object. For
example:

class Transmitter : public virtual Storable {
public:

void write() ;

/...
h

class Receiver : public virtual Storable {
public:

void write() ;

...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2.4 Virtual Base Classes 397

class Radio : public Transmitter, public Receiver {

public:
void write() ;
/...

I3

Or graphically:

Compare this diagram with the drawing of t8atellite object in §815.2.3 to see the difference
between ordinary inheritance and virtual inheritance. In an inheritance graph, every base class of a
given name that is specified to be virtual will be represented by a single object of that class. On the
other hand, each base class not specifidal will have its own sub-object representing it.

15.2.4.1 Programming Virtual Bases [hier.vbase.prog]

When defining the functions for a class with a virtual base, the programmer in general cannot know
whether the base will be shared with other derived classes. This can be a problem when imple-
menting a service that requires a base class function to be called exactly once. For example, the
language ensures that a constructor of a virtual base is called exactly once. The constructor of a
virtual base is invoked (implicitly or explicitly) from the constructor for the complete object (the
constructor for the most derived class). For example:

class A{/ / no constructor

/...
I3
class B{
public:
B() ; // default constructor
/...
I8
class C{
public:
C(int); / / no default constructor
h
class D: virtual public A virtual public B, virtual public C
D) {7/ ..*} /| error: no default constructor for C
D(inmt i) : C(i) { * ...* }; |/ I ok
/...

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

398 Class Hierarchies Chapter 15

The constructor for a virtual base is called before the constructors for its derived classes.

Where needed, the programmer can simulate this scheme by calling a virtual base class function
only from the most derived class. For example, assume we have a\madaw class that knows
how to draw its contents:

class Window {

/] basic stuff

virtual void draw() ;
h

In addition, we have various ways of decorating a window and adding facilities:

class Window_with_border : public virtual Window {
/1 border stuff
void own draw() ; / / display the border
void draw() ;

h

class Window_with_menu : public virtual Window {
/1 menu stuff
void own_draw() ; / / display the menu
void draw() ;

h

Theown draw() functions need not be virtual because they are meant to be called from within a
virtual draw() function that “knows” the type of the object for which it was called.
From this, we can compose a plausiBleck class:

class Clock: public Window_with_border, public Window_with_menu {
/1 clock stuff
void own_draw() ; / / display the clock face and hands
void draw() ;

h

Or graphically:
Window

Window_with_border Window with_menu

Clock

Thedraw() functions can now be written using tben _draw() functions so that a caller of any
draw() getsWindow:: draw() invoked exactly once. This is done independently of the kind of
Window for whichdraw() is invoked:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2.4.1 Programming Virtual Bases 399

void Window_with_border: : draw()

{
Window: : draw() ;
own_draw() ; / / display the border
}
void Window_with_menu: : draw()
{
Window: : draw() ;
own draw() ; / / display the menu
}
void Clock: : draw()
{
Window: : draw() ;
Window_with_border: : own_draw() ;
Window_with_menu: : own_draw() ;
own_draw() ; / / display the clock face and hands
}

Casting from avirtual base class to a derived class is discussed in §15.4.2.

15.2.5 Using Multiple Inheritance [hier.using.mi]

The simplest and most obvious use of multiple inheritance is to “glue” two otherwise unrelated
classes together as part of the implementation of a third classSaldilite class built out of the
Task and Displayed classes in §15.2 is an example of this. This use of multiple inheritance is
crude, effective, and important, but not very interesting. Basically, it saves the programmer from
writing a lot of forwarding functions. This technique does not affect the overall design of a pro-
gram significantly and can occasionally clash with the wish to keep implementation details hidden.
However, a technique doesn't have to be clever to be useful.

Using multiple inheritance to provide implementations for abstract classes is more fundamental
in that it affects the way a program is designed. (Bdsgval_slider (§12.3) is an example:

class BB ival_slider
: public Ival_slider // interface
, protected BBslider // implementation

/1 implementation of functions required by ‘Ivalider’ and ‘BBslider’
/1 using the facilities provided by ‘BBslider’

k

In this example, the two base classes play logically distinct roles. One base is a public abstract
class providing the interface and the other is a protected concrete class providing implementation
“details.” These roles are reflected in both the style of the classes and in the access control pro-
vided. The use of multiple inheritance is close to essential here because the derived class needs to
override virtual functions from both the interface and the implementation.

Multiple inheritance allows sibling classes to share information without introducing a depen-
dence on a unique common base class in a program. This is the case in which the so-called

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

400 Class Hierarchies Chapter 15

diamond-shaped inheritanc®curs (for example, thRadio (815.2.4) andClock (§15.2.4.1)). A
virtual base class, as opposed to an ordinary base class, is needed if the base class cannot be repli-
cated.

| find that a diamond-shaped inheritance lattice is most manageable if either the virtual base
class or the classes directly derived from it are abstract classes. For example, consider again the
Ival_box classes from §12.4. In the end, | made alllrad_box classes abstract to reflect their
role as pure interfaces. Doing that allowed me to place all implementation details in specific imple-
mentation classes. Also, all sharing of implementation details was done in the classical hierarchy
of the windows system used for the implementation.

It would make sense for the class implementinBopup_ival_slider to share most of the
implementation of the class implementing a plaml_slider. After all, these implementation
classes would share everything except the handling of prompts. However, it would then seem natu-
ral to avoid replication ofval_slider objects within the resulting slider implementation objects.
Therefore, we could makwal_slider a virtual base:

class BB ival_slider : public virtual Ival_slider, protected BBslider { /* ...*/ };
class Popup_ival_slider : public virtual Ival_slider { /* ...*/ }
class BB_popup_ival_slider

. public virtual Popup_ival_slider, protected BB_ival_slider { /* ...*/ };

or graphically:

Ival_shider BBslider
7

Popup_ival_slider BB_jval_slider
7

BB _popup_iva]_slider

It is easy to imagine further interfaces derived fi@apup_ival_slider and further implementation
classes derived from such classes BBdpopup_slider.

If we take this idea to its logical conclusion, all of the derivations from the abstract classes that
constitute our application’s interfaces would become virtual. This does indeed seem to be the most
logical, general, and flexible approach. The reason | didn’t do that was partly historical and partly
because the most obvious and common techniques for implementing virtual bases impose time and
space overhead that make their extensive use within a class unattractive. Should this overhead
become an issue for an otherwise attractive design, note that an object represdntihgslider
usually holds only a virtual table pointer. As noted in 815.2.4, such an abstract class holding no
variable data can be replicated without ill effects. Thus, we can eliminate the virtual base in favor
of ordinary ones:

class BB ival_slider : public Ival_slider, protected BBslider { /* ...*/ };
class Popup_ival_slider : public Ival_slider { /* ...*/ };
class BB_popup_ival_slider

. public Popup_ival_slider, protected BB ival_slider { /* ...*/ };

or graphically:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.2.5 Using Multiple Inheritance 401

Ival_slider Ival_slider BBslider
7

Popup_ival_slider BB_ival_sfider
7

BB Jaopup_ivél_slider

This is most likely a viable optimization to the admittedly cleaner alternative presented previously.

15.2.5.1 Overriding Virtual Base Functions [hier.dominance]

A derived class can override a virtual function of its direct or indirect virtual base class. In particu-
lar, two different classes might override different virtual functions from the virtual base. In that
way, several derived classes can contribute implementations to the interface presented by a virtual
base class. For example, Mndow class might have functiorset _color() andprompt() . In

that caseWindow with border might overrideset color() as part of controlling the color
scheme an®indow_with_menu might overrideprompt() as part of its control of user interac-

tions:

class Window {
/...
virtual set color(Color) =0; / / setbackground color
virtual void prompt() =0;

I8

class Window_with_border : public virtual Window {
/...
set_color(Color); / / control background color

3

class Window_with_menu : public virtual Window {
/...
void prompt() ; // control user interactions

b

class My_window : public Window_with_menu, public Window_with_border {
/...

b

What if different derived classes override the same function? This is allowed if and only if some
overriding class is derived from every other class that overrides the function. That is, one function
must override all others. For exampMy window could overrideprompt() to improve on what
Window_with_menu provides:

class My _window : public Window_with_menu, public Window_with_border {
/...

void prompt() ; // don't leave user interactions to base

h
or graphically:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

402 Class Hierarchies Chapter 15

Window { set color(), prompt() }

Window_with_border { set color() } Window_with_ menu { prompt() }

My window { prompt() }

If two classes override a base class function, but neither overrides the other, the class hierarchy is
an error. No virtual function table can be constructed because a call to that function on the com-
plete object would have been ambiguous. For example, Raglib in §15.2.4 not declared
write() , the declarations ofvrite() in Receiver and Transmitter would have caused an error
when definingRadio. As with Radio, such a conflict is resolved by adding an overriding function
to the most derived class.

A class that provides somebut not all- of the implementation for a virtual base class is often
called a “mixin.”

15.3 Access Controjhier.access]

A member of a class can pdvate, protected, or public:
— If it is private, its name can be used only by member functions and friends of the class in
which it is declared.
— Ifitis protected, its name can be used only by member functions and friends of the class in
which it is declared and by member functions and friends of classes derived from this class
(see §11.5).
— Ifitis public, its name can be used by any function.
This reflects the view that there are three kinds of functions accessing a class: functions implement-
ing the class (its friends and members), functions implementing a derived class (the derived class’
friends and members), and other functions. This can be presented graphically:

general users
derived class’ member functions and friends

own member functions and friends

;r protected: !
private: v |

The access control is applied uniformly to names. What a hame refers to does not affect the control
of its use. This means that we can have private member functions, types, constants, etc., as well as
private data members. For example, an efficient non-intrusive (816.2.1) list class often requires
data structures to keep track of elements. Such information is best kept private:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.3 Access Control 403

template<class T> class List{

private:
struct Link{ T val; Link* nex; };
struct Chunk {
enum{ chunk size= 15};
Link v chunk_size ;
Chunk* next;
h

class Underflow{ };
Chunk* allocated:;

Link* free
Link* get freq) ;
_Link* head,
public:
void insert(T);
T get)) ;
..
2
template<class T> void List<T>:: insert(T val)
{
Link* Ink = get free) ;
Ink-> val = val,
Ink-> next = head;
head = Ink;
}
template<class T> List<T>:: Link* List<T>:: get free()
if (free==0) {
/1 allocate a new chunk and place its Links on the free list
}
Link* p = free
free = free-> next;
return p;
}
template<class T> T List<T>:: get()
{
if (head == 0) throw Underflow() ;
Link* p= head,
head = p-> next;
p-> next = free
free=p;
return p->val;
}

The List<T> scope is entered by sayihist<T>:: in a member function definition. Because the
return type ofget freg() is mentioned before the narhést<T>:: get freg) is mentioned, the
full nameList<T>:: Link must be used instead of the abbreviationk<T>.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

404 Class Hierarchies Chapter 15

Nonmember functions (except friends) do not have such access:
void would_be _meddler(List<T>* p)

{ List<T>:: Link* q=0; /| error: List<T>::Link is private
i:]/:“[.)-> free /| error: List<T>::free is private
{f/(.l-_.iﬁ<T>: : Chunk: : chunk_size> 31) { / / error: List<T>::Chunk::chunk size is private
}

}

In aclass a member is by default private; irstauct, a member is by default public (§10.2.8).

15.3.1 Protected Members [hier.protected]

As an example of how to ugrotected members, consider th&findow example from §15.2.4.1.

The own_draw() functions were (deliberately) incomplete in the service they provided. They
were designed as building blocks for use by derived classes (only) and are not safe or convenient
for general use. Thdraw() operations, on the other hand, were designed for general use. This
distinction can be expressed by separating the interface Wfitidow classes in two, thprotected

interface and thpublic interface:

class Window_with_border {
public:
virtual void draw() ;
...
protected:
void own_draw() ;
/1 other tool-building stuff
private:
/1 representation, etc.
h
A derived class can access a base class’ protected members only for objects of its own type:

class Buffer {
protected:
char af 128];
/...
h
class Linked buffer : public Buffer { /* ...*/ };
class Cyclic_buffer : public Buffer {

...
void f(Linked buffer* p) {
a0 =0; /| ok: access to cyclibuffer's own protected member
p->a[0] =0; / / error: access to protected member of different type
}

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.3.1 Protected Members 405

This prevents subtle errors that would otherwise occur when one derived class corrupts data
belonging to other derived classes.

15.3.1.1 Use of Protected Members [hier.protected.use]

The simple private/public model of data hiding serves the notion of concrete types (§810.3) well.
However, when derived classes are used, there are two kinds of users of a class: derived classes and
“the general public.” The members and friends that implement the operations on the class operate
on the class objects on behalf of these users. The private/public model allows the programmer to
distinguish clearly between the implementers and the general public, but it does not provide a way
of catering specifically to derived classes.

Members declaregrotected are far more open to abuse than members decfaiedte. In
particular, declaring data members protected is usually a design error. Placing significant amounts
of data in a common class for all derived classes to use leaves that data open to corruption. Worse,
protected data, like public data, cannot easily be restructured because there is no good way of find-
ing every use. Thus, protected data becomes a software maintenance problem.

Fortunately, you don’t have to use protected dawate is the default in classes and is usually
the better choice. In my experience, there have always been alternatives to placing significant
amounts of information in a common base class for derived classes to use directly.

Note that none of these objections are significant for protected mémilotions protected is a
fine way of specifying operations for use in derived classes.|viheslider in §12.4.2 is an exam-
ple of this. Had the implementation class beeiwvate in this example, further derivation would
have been infeasible.

Technical examples illustrating access to members can be found in 8C.11.1.

15.3.2 Access to Base Classes [hier.base.access]

Like a member, a base class can be declgnisdte, protected, or public. For example:

class X: public B{ /* ..* };
class Y: protected B{ /* ...*/ };
class Z: private B{ /* ..* }

Public derivation makes the derived class a subtype of its base; this is the most common form of
derivation. Protected and private derivation are used to represent implementation details. Protected
bases are useful in class hierarchies in which further derivation is the norivalttelider from
812.4.2 is a good example of that. Private bases are most useful when defining a class by restrict-
ing the interface to a base so that stronger guarantees can be provided. For éxecrgudels
range checking to its private basgsetor (83.7.1) and théist of pointers template adds type check-
ing to itslist<void*> base (§13.5).

The access specifier for a base class can be left out. In that case, the base defaults to a private
base for a&lassand a public base forstruct. For example:

class XX: B{ I* ..* } / | Bis a private base
struct YY: B{ /* ..* } / | Bis a public base

For readability, it is best always to use an explicit access specifier.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

406 Class Hierarchies Chapter 15

The access specifier for a base class controls the access to members of the base class and the
conversion of pointers and references from the derived class type to the base class type. Consider a
classD derived from a base claBs

— If Bis aprivate base, its public and protected members can be used only by member func-

tions and friends dD. Only friends and members Dfcan convert &* to aB*.

— If B is aprotected base, its public and protected members can be used only by member

functions and friends dD and by member functions and friends of classes derived@rom
Only friends and members & and friends and members of classes derived ftboan
convert ab* to aB*.

— If Bis apublic base, its public members can be used by any function. In addition, its pro-

tected members can be used by members and frienBsaofd members and friends of

classes derived frod. Any function can convert@* to aB*.
This basically restates the rules for member access (§15.3). We choose access for bases in the same
way as for members. For example, | chose to nEBeindow a protected base oflval_slider
(812.4.2) becausBBwindow was part of the implementation val_slider rather than part of its
interface. However, | couldn’t completely hi@Bwindow by making it a private base because |
wanted to be able to derive further classes fheah_slider, and those derived classes would need
access to the implementation.

Technical examples illustrating access to bases can be found in §C.11.2.

15.3.2.1 Multiple Inheritance and Access Control [hier.mi.access]

If a name or a base class can be reached through multiple paths in a multiple inheritance lattice, it is
accessible if it is accessible through any path. For example:

struct B {
int m;
static int sm
Il ...

3

class D1: public virtual B{ /* ..* } ;
class D2: public virtual B{ /* ...*/ } ;
class DD : public D1, private D2{ /* ...* }

DD* pd = new DD;
B* pb = pd, /| ok: accessible through D1
int i1=pd->m; ! | ok: accessible through D1

If a single entity is reachable through several paths, we can still refer to it without ambiguity. For
example:

class X1: public B{ /* ...*/ };
class X2: public B{ /* ...*/ } ;
class XX: public X1, public X2{ /* ..* };

XX* pxx = new XX;
int i1=pxx->m; [| error, ambiguous: XX::X1::B::m or XX::X2::B::m
int i2=pxx->sm / / ok:there is only one B::smin an XX

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.3.2.1 Multiple Inheritance and Access Control 407

15.3.2.2 Using-Declarations and Access Control [hier.access.using]

A using-declaratiorcannot be used to gain access to additional information. It is simply a mecha-
nism for making accessible information more convenient to use. On the other hand, once access is
available, it can be granted to other users. For example:

class B{
private:
int a
protected:
int b;
public:
int c;
h
class D: public B{
public:
using B:: a; / / error: B::ais private
using B:: b; / / make B::b publically available through D
h

When ausing-declaratioris combined with private or protected derivation, it can be used to spec-
ify interfaces to some, but not all, of the facilities usually offered by a class. For example:

class BB: private B{ / / give access to B::b and B::c, but not B::a
using B:: b;
using B:: c;

k
See also §15.2.2.

15.4 Run-Time Type Information [hier.rtti]

A plausible use of théval_boxes defined in §12.4 would be to hand them to a system that con-
trolled a screen and have that system hand objects back to the application program whenever some
activity had occurred. This is how many user-interfaces work. However, a user-interface system
will not know about ourval_boxes. The system’s interfaces will be specified in terms of the
system’s own classes and objects rather than our application’s classes. This is necessary and
proper. However, it does have the unpleasant effect that we lose information about the type of
objects passed to the system and later returned to us.

Recovering the “lost” type of an object requires us to somehow ask the object to reveal its
type. Any operation on an object requires us to have a pointer or reference of a suitable type for the
object. Consequently, the most obvious and useful operation for inspecting the type of an object at
run time is a type conversion operation that returns a valid pointer if the object is of the expected
type and a null pointer if it isn't. Thdynamic_cast operator does exactly that. For example,
assume that “the system” invokesy event_handler() with a pointer to @Bwindow, where an
activity has occurred. | then might invoke my application code uviadgbox's do_something() :

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

408 Class Hierarchies Chapter 15

void my_event_handler(BBwindow* pw)

if (Ival_box* pb = dynamic_cast<lval_box*>(pw)) / / does pw pointto an Ivabox?
pb-> do_something() ;

else{
/1 Oops! unexpected event

}

}

One way of explaining what is going on is tllghamic_cast translates from the implementation-
oriented language of the user-interface system to the language of the application. It is important to
note what isnot mentioned in this example: the actual type of the object. The object will be a par-
ticular kind oflval_box, say anval_slider, implemented by a particular kind BBwindow, say a
BBdlider. It is neither necessary nor desirable to make the actual type of the object explicit in this
interaction between “the system” and the application. An interface exists to represent the essen-
tials of an interaction. In particular, a well-designed interface hides inessential details.

Graphically, the action of

pb = dynamic_cast<lval_box*>(pw)

can be represented like this:

pW-- ... = . BBwindow Ival box —<........ pb
BBindsr Ival_slider

BB _ival slider
The arrows fronpw and pb represent the pointers into the object passed, whereas the rest of the
arrows represent the inheritance relationships between the different parts of the object passed.
The use of type information at run time is conventionally referred to as “run-time type informa-
tion” and often abbreviated to RTTI.
Casting from a base class to a derived class is often callegrcasbecause of the convention
of drawing inheritance trees growing from the root down. Similarly, a cast from a derived class to

a base is called ampcast A cast that goes from a base to a sibling class, like the casBiBanim-
dowto Ival_box, is called arosscast

15.4.1 Dynamic cast [hier.dynamic.cast]

Thedynamic_cast operator takes two operands, a type bracketeddnyd>, and a pointer or refer-
ence bracketed by and) .
Consider first the pointer case:

dynamic_cast<T*>(p)

If pis of typeT* or an accessible base clasSpthe result is exactly as if we had simply assigned
pto aT*. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.4.1 Dynamiccast 409

class BB ival_slider : public Ival_slider, protected BBslider {

/..
h
void f(BB_ival_slider* p)
{
Ival_slider* pil = p; [| ok
Ival_slider* pi2 = dynamic_cast<Ival_slider*>(p); /| ok
BBdlider* pbbl = p; / | error: BBslider is a protected base
BBslider* pbb2 = dynamic_cast<BBslider*>(p); /| ok: pbb2 becomes 0
}

That is the uninteresting case. However, it is reassuring to knowlytharmic cast doesn't allow
accidental violation of the protection of private and protected base classes.

The purpose aoflynamic_cast is to deal with the case in which the correctness of the conversion
cannot be determined by the compiler. In that case,

dynamic_cast<T*>(p)

looks at the object pointed to Ipy(if any). If that object is of clasE or has a unique base class of
type T, thendynamic_cast returns a pointer of typ&* to that object; otherwisd is returned. If
the value ofp is 0, dynamic_cast<T*>(p) returnsO. Note the requirement that the conversion
must be to a uniquely identified object. It is possible to construct examples where the conversion
fails andO is returned because the object pointed t@ bas more than one sub-object representing
bases of typ& (see §15.4.2).

A dynamic_cast requires a pointer or a reference to a polymorphic type to do a downcast or a
crosscast. For example:

class My_slider: public Ival_slider {/ / polymorphic base (Ivaklider has virtual functions)

/...

h

class My _date: public Date{ / / base not polymorphic (Date has no virtual functions)
/...

h

void g(Ival_box* pb, Date* pd)

My_slider* pdl = dynamic_cast<My_slider*>(pb); / / ok
My_date* pd2 = dynamic_cast<My_date*>(pd); /| error: Date not polymorphic
}

Requiring the pointer’'s type to be polymorphic simplifies the implementaticoymdmic_cast
because it makes it easy to find a place to hold the necessary information about the object’s type. A
typical implementation will attach a “type information object” to an object by placing a pointer to
the type information in the object’s virtual function table (§82.5.5). For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

410 Class Hierarchies Chapter 15

My_box:
-
vptr L vibl: .
EEN N type_info:
7| "My_box" type _info:
bases .|—

“Ival_slider"

The dashed arrow represents an offset that allows the start of the complete object to be found given
only a pointer to a polymorphic sub-object. It is clear tymamic_cast can be efficiently imple-
mented. All that is involved are a few comparisonsypé_info objects representing base classes;

no expensive lookups or string comparisons are needed.

Restrictingdynamic_cast to polymorphic types also makes sense from a logical point of view.
This is, if an object has no virtual functions, it cannot safely be manipulated without knowledge of
its exact type. Consequently, care should be taken not to get such an object into a context in which
its type isn’'t known. If its typés known, we don’t need to usiynamic_cast.

The target type oflynamic_cast need not be polymorphic. This allows us to wrap a concrete
type in a polymorphic type, say for transmission through an object I/O system (see §25.4.1), and
then “unwrap” the concrete type later. For example:

class lo_obj { / | base class for object I/0 system
virtual lo_obj* clong() =0;

h

class lo_date: public Date, public lo_obj{ };

void f(lo_obj* pio)

Date* pd = dynamic_cast<Date*>(pio);
...
}

A dynamic_cast to void* can be used to determine the address of the beginning of an object of
polymorphic type. For example:

void g(Ival_box* pb, Date* pd)

{

void* pdl = dynamic_cast<void*>(pb); / / ok

void* pd2 = dynamic_cast<void*>(pd); / / error: Date not polymorphic
}

This is only useful for interaction with very low-level functions.

15.4.1.1 Dynamiccast of References [hier.re.cast]

To get polymorphic behavior, an object must be manipulated through a pointer or a reference.
When adynamic_cast is used for a pointer type,Gindicates failure. That is neither feasible nor
desirable for references.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.4.1.1 Dynamiccast of References 411

Given a pointer result, we must consider the possibility that the reddfttimt is, that the
pointer doesn’t point to an object. Consequently, the resuldghamic_cast of a pointer should
always be explicitly tested. For a poinferdynamic_cast<T*>(p) can be seen as the question,

“Is the object pointed to bp of typeT?”

On the other hand, we may legitimately assume that a reference refers to an object. Conse-
quently, dynamic_cast<T&>(r) of a reference is not a question but an assertion: “The object
referred to by is of typeT.” The result of adynamic_cast for a reference is implicitly tested by
the implementation alynamic_cast itself. If the operand of dynamic_cast to a reference isn’t of
the expected type,lzad_cast exception is thrown. For example:

void f(Ival_box* p, lval_box&r)

{ if (Ival_slider* is = dynamic_cast<lval_slider*>(p)) { / | does p point to an Ivaslider?
/1 use‘is’
}
else{
/1 *p not a slider
}
Ival_slider& is = dynamic_cast<lval_slider&>(r); /I rreferences an Ivaklider!
/1 use‘is’
}

The difference in results of a failed dynamic pointer cast and a failed dynamic reference cast
reflects a fundamental difference between references and pointers. If a user wants to protect against
bad casts to references, a suitable handler must be provided. For example:

void g()
{

try {
f(new BB_ival_slider,* new BB_ival_slider); / / arguments passed as Ivhbxs

f(new BBdial,* new BBdial); / | arguments passed as lvhbxs

}

catch (bad cast) { / / 814.10
...

}

}

The first call tof() will return normally, while the second will causébad_cast exception that
will be caught byg() .
Explicit tests againdd can be— and therefore occasionally will be accidentally omitted. If
that worries you, you can write a conversion function that throws an exception instead r&urning
(815.8[1]) in case of failure.

15.4.2 Navigating Class Hierarchies [hier.navigate]

When only single inheritance is used, a class and its base classes constitute a tree rooted in a single
base class. This is simple but often constraining. When multiple inheritance is used, there is no
single root. This in itself doesn’t complicate matters much. However, if a class appears more than

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

412 Class Hierarchies Chapter 15

once in a hierarchy, we must be a bit careful when we refer to the object or objects that represent
that class.

Naturally, we try to keep hierarchies as simple as our application allows (and no simpler).
However, once a nontrivial hierarchy has been made we soon need to navigate it to find an appro-
priate class to use as an interface. This need occurs in two variants. That is, sometimes, we want to
explicity name an object of a base class or a member of a base class; §15.2.3 and §15.2.4.1 are
examples of this. At other times, we want to get a pointer to the object representing a base or
derived class of an object given a pointer to a complete object or some sub-object; §15.4 and
815.4.1 are examples of this.

Here, we consider how to navigate a class hierarchy using type conversions (casts) to gain a
pointer of the desired type. To illustrate the mechanisms available and the rules that guide them,
consider a lattice containing both a replicated base and a virtual base:

class Component : public virtual Storable{ /* ...*/ };

class Receiver : public Component{ /* ..* };

class Transmitter : public Component{ /* ...*/ };

class Radio : public Receiver, public Transmitter { /* ...*/ };

Or graphically:

Stiorable
Component Component
Reoiiver Tranjnitter
adio

Here, aRadio object has two sub-objects of claG@emponent. Consequently, aynamic_cast
from Storable to Component within a Radio will be ambiguous and returnGa There is simply no
way of knowing whichComponent the programmer wanted:

void hl(Radio&r)

{

Storable* ps= &r;

/...

Component* pc = dynamic_cast<Component*>(ps); // pc=0
}

This ambiguity is not in general detectable at compile time:

void h2(Storable* ps) / / ps might or might not point to a Component

{
Component* pc = dynamic_cast<Component*>(ps);
/..

}

This kind of run-time ambiguity detection is needed only for virtual bases. For ordinary bases,

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.4.2 Navigating Class Hierarchies 413

there is always a unigue sub-object of a given cast (or none) when downcasting (that is, towards a
derived class; 815.4). The equivalent ambiguity occurs when upcasting (that is, towards a base;
815.4) and such ambiguities are caught at compile time.

15.4.2.1 Static and Dynamic Casts [hier.static.cast]

A dynamic_cast can cast from a polymorphic virtual base class to a derived class or a sibling class
(815.4.1). Astatic_cast (86.2.7) does not examine the object it casts from, so it cannot:

void g(Radio&r)

{
Receiver* prec = &r; /| Receiver is ordinary base of Radio
Radio* pr = static_cast<Radio*>(prec); / / ok, unchecked
pr = dynamic_cast<Radio*>(prec); /| ok, run-time checked
Storable* ps= &r; | | Storable is virtual base of Radio
pr = static_cast<Radio*>(ps); [| error: cannot cast from virtual base
pr = dynamic_cast<Radio*>(ps); /| ok, run-time checked

}

Thedynamic_cast requires a polymorphic operand because there is no information stored in a non-
polymorphic object that can be used to find the objects for which it represents a base. In particular,
an object of a type with layout constraints determined by some other langsagh as Fortran or

C — may be used as a virtual base class. For objects of such types, only static type information will
be available. However, the information needed to provide run-time type identification includes the
information needed to implement ttgnamic_cast.

Why would anyone want to usestatic_cast for class hierarchy navigation? There is a small
run-time cost associated with the use afyaamic_cast (815.4.1). More significantly, there are
millions of lines of code that were written befalygnamic _cast became available. This code relies
on alternative ways of making sure that a cast is valid, so the checking ddymanyic_cast is
seen as redundant. However, such code is typically written using the C-style cast (86.2.7); often
obscure errors remain. Where possible, use the daiamic_cast.

The compiler cannot assume anything about the memory pointed todigita This implies
that dynamic_cast — which must look into an object to determine its typeannot cast from a
void* . For that, sstatic_castis needed. For example:

Radio* f(void* p)
Storable* ps = static_cast<Storable*>(p);/ / trust the programmer
return dynamic_cast<Radio*>(ps);
Both dynamic_cast andstatic_cast respectonst and access controls. For example:

class Users: private set<Person>{ /* ...*/ }

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

414 Class Hierarchies Chapter 15

void f(Users* pu, const Receiver* pcr)

{
static_cast<set<Person>*>(pu); / | error: access violation
dynamic_cast<set<Person>*>(pu); / / error: access violation
static_cast<Receiver*>(pcr); /| error: can't cast away const
dynamic_cast<Receiver*>(pcr); | | error: can’t cast away const
Receiver* pr = const_cast<Receiver*>(pcr); / / ok
/...

}

It is not possible to cast to a private base class, and “casting @wat/ requires aconst_cast
(86.2.7). Even then, using the result is safe only provided the object wasn't originally declared
const (§10.2.7.1) .

15.4.3 Class Object Construction and Destruction [hier.class.obj]

A class object is more than simply a region of memory (84.9.6). A class object is built from “raw
memory” by its constructors and it reverts to “raw memory” as its destructors are executed. Con-
struction is bottom up, destruction is top down, and a class object is an object to the extent that it
has been constructed or destroyed. This is reflected in the rules for RTTI, exception handling
(814.4.7), and virtual functions.

It is extremely unwise to rely on details of the order of construction and destruction, but that
order can be observed by calling virtual functiotynamic_cast, or typeid (§15.4.4) at a point
where the object isn’t complete. For example, if the constructoCéomponent in the hierarchy
from 8§15.4.2 calls a virtual function, it will invoke a version definedSimrable or Component,
but not one fronReceiver, Transmitter, or Radio. At that point of construction, the object isn’t
yet aRadio; it is merely a partially constructed object. It is best to avoid calling virtual functions
during construction and destruction.

15.4.4 Typeid and Extended Type Information [hier.typeid]

The dynamic_cast operator serves most needs for information about the type of an object at run
time. Importantly, it ensures that code written using it works correctly with classes derived from
those explicitly mentioned by the programmer. Thdgnamic cast preserves flexibility and
extensibility in a manner similar to virtual functions.

However, it is occasionally essential to know the exact type of an object. For example, we
might like to know the name of the object’s class or its layout. tyieid operator serves this pur-
pose by yielding an object representing the type of its operandtypeid() been a function, its
declaration would have looked something like this:

class type info;
const type_info& typeid(type_name) throw(bad typeid); / / pseudo declaration
const type_info& typeid(expression) ; / | pseudo declaration

That is,typeid() returns a reference to a standard library type c&ylpe info defined in<type-
info>. Given atype-nameas its operandypeid() returns a reference totgpe info that repre-
sents thetype-name Given anexpressionas its operandtypeid() returns a reference to a

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.4.4 Typeid and Extended Type Information 415

type_info that represents the type of the object denoted byexpeession A typeid() is most
commonly used to find the type of an object referred to by a reference or a pointer:

void f(Sthape& r, Shape* p)
{
typeid(r); / | type of object referred to by r
typeid(* p); / / type of object pointed to by p
typeid(p); / / type of pointer, that is, Shape* (uncommon, except as a mistake)

If the value of a pointer or a reference operar@j fgpeid() throws abad typeid exception.
The implementation-independent partype info looks like this:

class type info {
public:
virtual ~type_info() ; / I is polymorphic

bool operator==(const type info&) const, // can be compared
bool operator!=(const type info&) const;
bool before(const type info&) const; /| ordering

const char* name() const [/| name of type
private:

type_info(const type info&); / | prevent copying

type_info& operator=(const type info&); / / prevent copying

/..

h

The before() function allowstype _infos to be sorted. There is no relation between the relation-
ships defined bpefore and inheritance relationships.

It is not guaranteed that there is only diype _info object for each type in the system. In fact,
where dynamically linked libraries are used it can be hard for an implementation to avoid duplicate
type_info objects. Consequently, we should use on type_info objects to test equality, rather
than== on pointers to such objects.

We sometimes want to know the exact type of an object so as to perform some standard service
on the whole object (and not just on some base of the object). Ideally, such services are presented
as virtual functions so that the exact type needn’'t be known. In some cases, no common interface
can be assumed for every object manipulated, so the detour through the exact type becomes neces-
sary (815.4.4.1). Another, much simpler, use has been to obtain the name of a class for diagnostic
output:

#include<typeinfo>

void g(Component* p)

cout << typeid(* p). name() ;
}

The character representation of a class’ name is implementation-defined. This C-style string
resides in memory owned by the system, so the programmer should not attdelgtefp it.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

416 Class Hierarchies Chapter 15

15.4.4.1 Extended Type Information [hier.extended]

Typically, finding the exact type of an object is simply the first step to acquiring and using more-
detailed information about that type.

Consider how an implementation or a tool could make information about types available to
users at run time. Suppose | have a tool that generates descriptions of object layouts for each class
used. | can put these descriptors intoap to allow user code to find the layout information:

map<const char*, Layout> layout table;

void f(B* p)
Layout& x = layout_table[typeid(* p). name()] ;
/1 use x
}
Someone else might provide a completely different kind of information:
struct Tl_eq({
bool operator()(const type info* p, const type info* q) { return*p==*q; }
h

struct TI_hash {
int operator()(const type info* p);/ / compute hash value (§17.6.2.2)

h
hash_map<type info*, Icon, hash fct, TI_hash, Tl_eg> icon table;, / / §17.6
void g(B* p)
Icon& i = icon_table[& typeid(* p)] ;
/] usei
}

This way of associatintypeids with information allows several people or tools to associate differ-
ent information with types totally independently of each other:

layout_table:
layout
icon_table:
&typeid NS PRURRREEE icon
ypeid(T) representation
e Of
type

This is most important because the likelihood is zero that someone can come up with a single set of
information that satisfies every user.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.4.5 Uses and Misuses of RTTI 417

15.4.5 Uses and Misuses of RTTI [hier.misuse]

One should use explicit run-time type information only when necessary. Static (compile-time)
checking is safer, implies less overhead, andhere applicable- leads to better-structured pro-
grams. For example, RTTI can be used to write thinly disgsisitdh-statemest

/1 misuse of run-time type information:

void rotate(const Sape& r)

{
if (typeid(r) == typeid(Circle)) {
/1 do nothing

}
else if (typeid(r) == typeid(Triangle)) {
/1 rotate triangle

}
else if (typeid(r) == typeid(Square)) {

/1 rotate square
}

/...
}

Usingdynamic_cast rather thartypeid would improve this code only marginally.

Unfortunately, this is not a strawman example; such code really does get written. For many
people trained in languages such as C, Pascal, Modula-2, and Ada, there is an almost irresistible
urge to organize software as a seswftch-statemest This urge should usually be resisted. Use
virtual functions (82.5.5, §12.2.6) rather than RTTI to handle most cases when run-time discrimina-
tion based on type is needed.

Many examples of proper use of RTTI arise when some service code is expressed in terms of
one class and a user wants to add functionality through derivation. Theluak béxin §15.4 is
an example of this. If the user is willing and able to modify the definitions of the library classes,
say BBwindow, then the use of RTTI can be avoided; otherwise, it is needed. Even if the user is
willing to modify the base classes, such modification may cause its own problems. For example, it
may be necessary to introduce dummy implementations of virtual functions in classes for which
those functions are not needed or not meaningful. This problem is discussed in some detail in
§24.4.3. A use of RTTI to implement a simple object I/0O system can be found in §25.4.1.

For people with a background in languages that rely heavily on dynamic type checking, such as
Smalltalk or Lisp, it is tempting to use RTTI in conjunction with overly general types. Consider:

/1 misuse of run-time type information:
class Object { /* ...*/ }; // polymorphic
class Container : public Object {

public:
void put(Object*) ;
Object* get() ;
/..

h

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

418 Class Hierarchies Chapter 15

class Ship : public Object{ /* ...*/ }
Ship* f(Ship* ps, Container* c)
{

Cc-> put(ps);

/..

Object* p = c-> get() ;
if (Ship* q = dynamic_cast<Ship*>(p)) { // run-time check

return q;
}
else{

/1 do something else (typically, error handling)
}

}

Here, clas®Object is an unnecessary implementation artifact. It is overly general because it does
not correspond to an abstraction in the application domain and forces the application programmer
to use an implementation-level abstraction. Problems of this kind are often better solved by using
container templates that hold only a single kind of pointer:

Ship* f(Ship* ps, list<Ship*>& c)

c. push_front(ps);

/...

return c. pop_front() ;
}

Combined with the use of virtual functions, this technique handles most cases.

15.5 Pointers to Membershier.ptom]

Many classes provide simple, very general interfaces intended to be invoked in several different
ways. For example, many “object-oriented” user-interfaces define a set of requests to which every
object represented on the screen should be prepared to respond. In addition, such requests can be
presented directly or indirectly from programs. Consider a simple variant of this idea:

class Sd_interface {

public:
virtual void start() =0;
virtual void suspend() =0;
virtual void resumeg) =0;
virtual void quit() =0;
virtual void full_size() =0;
virtual void small() =0;

virtual ~Std_interface() {}
h

The exact meaning of each operation is defined by the object on which it is invoked. Often, there is
a layer of software between the person or program issuing the request and the object receiving it.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.5 Pointers to Members 419

Ideally, such intermediate layers of software should not have to know anything about the individual
operations such aesume() andfull_size() . If they did, the intermediate layers would have to

be updated each time the set of operations changed. Consequently, such intermediate layers simply
transmit some data representing the operation to be invoked from the source of the request to its
recipient.

One simple way of doing that is to sendtidng representing the operation to be invoked. For
example, to invoksuspend() we could send the strifguspend”. However, someone has to cre-
ate that string and someone has to decode it to determine to which operation it corresjponds
any. Often, that seems indirect and tedious. Instead, we might simply send an integer representing
the operation. For exampl2might be used to measuspend() . However, while an integer may
be convenient for machines to deal with, it can get pretty obscure for people. We still have to write
code to determine tha@tmeanssuspend() and to invokesuspend() .

C++ offers a facility for indirectly referring to a member of a class. A pointer to a member is a
value that identifies a member of a class. You can think of it as the position of the member in an
object of the class, but of course an implementation takes into account the differences between data
members, virtual functions, non-virtual functions, etc.

ConsiderStd_interface. If | want to invokesuspend() for some object without mentioning
suspend() directly, | need a pointer to member referringSid_interface: : suspend() . | also
need a pointer or reference to the object | want to suspend. Consider a trivial example:

typedef void (Std_interface: :* Pstd_mem)() ; / / pointer to member type
void f(Std_interface* p)

{

Pstd_mem s= &Stid_interface: : suspend;

p-> suspend() ; [[direct call

(p>* 90 ; /| call through pointer to member
}

A pointer to membecan be obtained by applying the address-of opefatior a fully qualified
class member name, for exam@&td interface : suspend. A variable of type “pointer to mem-
ber of clasX” is declared using a declarator of the fon* .

The use otypedef to compensate for the lack of readability of the C declarator syntax is typi-
cal. However, please note how #e* declarator matches the traditioriatieclarator exactly.

A pointer to membem can be used in combination with an object. The operattrsand.*
allow the programmer to express such combinations. For exapptem bindsm to the object
pointed to byp, andobj.* m bindsmto the objecbbj. The result can be used in accordance with
m's type. Itis not possible to store the result efa or a.* operation for later use.

Naturally, if we knew which member we wanted to call we would invoke it directly rather than
mess with pointers to members. Just like ordinary pointers to functions, pointers to member func-
tions are used when we need to refer to a function without having to know its name. However, a
pointer to member isn’'t a pointer to a piece of memory the way a pointer to a variable or a pointer
to a function is. It is more like an offset into a structure or an index into an array. When a pointer
to member is combined with a pointer to an object of the right type, it yields something that identi-
fies a particular member of a particular object.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

420 Class Hierarchies Chapter 15

This can be represented graphically like this:
vtbl:
- |

¥

X::start ‘

p—=

\‘ X::suspend ‘

Because a pointer to a virtual membein(this example) is a kind of offset, it does not depend on
an object’s location in memory. A pointer to a virtual member can therefore safely be passed
between different address spaces as long as the same object layout is used in both. Like pointers to
ordinary functions, pointers to non-virtual member functions cannot be exchanged between address
spaces.

Note that the function invoked through the pointer to function cawirtteal. For example,
when we calbuspend() through a pointer to function, we get the rigagpend() for the object to
which the pointer to function is applied. This is an essential aspect of pointers to functions.

An interpreter might use pointers to members to invoke functions presented as strings:

map<siring, Std_interface*> variable;
map<string, Pstd_mem> operation;
void call_member(string var, string oper)

(variable[var]->* operation[oper])() ; / / var.oper()
}

A critical use of pointers to member functions is founchem fun() (83.8.5, §18.4).
A static member isn't associated with a particular object, so a pointer to a static member is sim-
ply an ordinary pointer. For example:

class Task{
/...
static void schedule() ;
h
void (* p)() = &Task : schedule; ! | ok

void (Task :* pm)() = &Task: schedule;/ / error: ordinary pointer assigned
/1 to pointer to member

Pointers to data members are described in 8C.12.

15.5.1 Base and Derived Classes [hier.contravariance]

A derived class has at least the members that it inherits from its base classes. Often it has more.
This implies that we can safely assign a pointer to a member of a base class to a pointer to a mem-
ber of a derived class, but not the other way around. This property is oftencmaitesivariance

For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.5.1 Base and Derived Classes 421

class text : public Std_interface {
public:
void start() ;

void suspend() ;
/..

virtual void print() ;
private:
vector s;

h
void (Std_interface: :* pmi)() = &text:: print; / / error
void (text: :* pmt)() = &Sid_interface : start; / / ok

This contravariance rule appears to be the opposite of the rule that says we can assign a pointer to a
derived class to a pointer to its base class. In fact, both rules exist to preserve the fundamental
guarantee that a pointer may never point to an object that doesn’t at least have the properties that
the pointer promises. In this ca8i] interface :* can be applied to arfgtd _interface, and most

such objects presumably are not of tyiext. Consequently, they do not have the member

text: : print with which we tried to initializgomi. By refusing the initialization, the compiler saves

us from a run-time error.

15.6 Free Storghier.free]

It is possible to take over memory management for a class by debpeénator new() andopera-

tor delete() (86.2.6.2). However, replacing the gloloplerator new() andoperator delete() is

not for the fainthearted. After all, someone else might rely on some aspect of the default behavior
or might even have supplied other versions of these functions.

A more selective, and often better, approach is to supply these operations for a specific class.
This class might be the base for many derived classes. For example, we might like to have the
Employee class from §12.2.6 provide a specialized allocator and deallocator for itself and all of its
derived classes:

class Employee{
/...

public:
/...
void* operator new(size t);
void operator delete(void*, size t);
k
Memberoperator new() s andoperator delete() s are implicitlystatic members. Consequently,
they don't have #his pointer and do not modify an object. They provide storage that a constructor
can initialize and a destructor can clean up.

void* Employee : operator new(size t <)

/1 allocate ‘s’ bytes of memory and return a pointer to it

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

422 Class Hierarchies Chapter 15

void Employee : operator delete(void* p, size t)

{
/1 assume ‘p’ points to ‘s’ bytes of memory allocated by Employee::operator new()
/1 and free that memory for reuse

}

The use of the hitherto mysteriose t argument now becomes obvious. It is the size of the
object actually deleted. Deleting a “plain"Employee gives an argument value of
sizeof(Employee) ; deleting aManager gives an argument value aizeof(Manager). This
allows a class-specific allocator to avoid storing size information with each allocation. Naturally, a
class-specific allocator can store such information (like a general-purpose allocator must) and
ignore thesize t argument tmperator delete() . However, that makes it harder to improve signif-
icantly on the speed and memory consumption of a general-purpose allocator.

How does a compiler know how to supply the right sizeperator delete() ? As long as the
type specified in thelelete operation matches the actual type of the object, this is easy. However,
that is not always the case:

class Manager : public Employee{

int level,;
/..
I8
void f()
{
Employee* p = new Manager; / / trouble (the exact type is lost)
delete
}

In this case, the compiler will not get the size right. As when an array is deleted, the user must help.
This is done by adding a virtual destructor to the base &ajloyee

class Employee{
public:
void* operator new(size t);
void operator delete(void*, size t);

virtual ~Employee) ;
/..

h
Even an empty destructor will do:
Employee :~ Employee() { }

In principle, deallocation is then done from within the destructor (which knows the size). Further-
more, the presence of a destructoEmployeeensures that every class derived from it will be sup-
plied with a destructor (thus getting the size right), even if the derived class doesn’t have a user-
defined destructor. For example:

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.6 Free Store 423

void f()

{

Employee* p = new Manager;

delete | / | now fine (Employee is polymorphic)
}

Allocation is done by a (compiler-generated) call:
Employee : operator new(sizeof(Manager))

and deallocation by a (compiler-generated) call:
Employee : operator delete(p, sizeof(Manager))

In other words, if you want to supply an allocator/deallocator pair that works correctly for derived
classes, you must either supply a virtual destructor in the base class or refrain from wsireytthe
argument in the deallocator. Naturally, the language could have been designed to save you from
such concerns. However, that can be done only by also “saving” you from the benefits of the opti-
mizations possible in the less safe system.

15.6.1 Array Allocation [hier.array]

The operator new() and operator delete() functions allow a user to take over allocation and
deallocation of individual objecteperator new{]() andoperator delete[]() serve exactly the
same role for the allocation and deallocation of arrays. For example:

class Employee{
public:
void* operator new[](size t);
void operator delete[](void*, size t);

/...
I
void f(int <)
{
Employee* p = new Employed 5| ;
/...
delete]] p;
}

Here, the memory needed will be obtained by a call,
Employee : operator new{](sizeof(Employee* s+delta)

wheredelta is some minimal implementation-defined overhead, and released by a call:
Employee : operator delete[](p, s* sizeof(Employee)+ delta)

The number of elements)(is “remembered” by the system.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

424 Class Hierarchies Chapter 15

15.6.2 “Virtual Constructors” [hier.vctor]

After hearing about virtual destructors, the obvious question is, “Can constructors be virtual?”
The short answer is no; a slightly longer one is, no, but you can easily get the effect you are looking
for.

To construct an object, a constructor needs the exact type of the object it is to create. Conse-
quently, a constructor cannot be virtual. Furthermore, a constructor is not quite an ordinary func-
tion. In particular, it interacts with memory management routines in ways ordinary member func-
tions don't. Consequently, you cannot have a pointer to a constructor.

Both of these restrictions can be circumvented by defining a function that calls a constructor
and returns a constructed object. This is fortunate because creating a new object without knowing
its exact type is often useful. Theal box maker (§12.4.4) is an example of a class designed
specifically to do that. Here, | present a different variant of that idea, where objects of a class can
provide users with a clone (copy) of themselves or a new object of their type. Consider:

class Expr {

public:
Expr() ; /| default constructor
Expr(const Expr&); /| copy constructor

virtual Expr* new_expr() { return new Expr() ; }
virtual Expr* clone() { return new Expr(* this); }
/..

h
Because functions such asw _expr() andclone() are virtual and they (indirectly) construct
objects, they are often called “virtual constructors’by a strange misuse of the English language.
Each simply uses a constructor to create a suitable object.
A derived class can overricew _expr() and/orclone() to return an object of its own type:

class Cond: public Expr {
public:

Cond() ;

Cond(const Cond&);

Cond* new_expr() { return new Cond() ; }
Cond* clone() { return new Cond(* this); }
Il ...

3
This means that given an object of cl&r, a user can create a new object of “just the same
type.” For example:

void user(Expr* p)

{
Expr* p2 = p-> new_expr() ;
/..

}

The pointer assigned fi2 is of an appropriate, but unknown, type.
The return type oCond:: new_expr() andCond:: clong() wasCond* rather thanExpr*.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 15.6.2 “Virtual Constructors” 425

This allows aCond to be cloned without loss of type information. For example:

void user2(Cond* pc, Expr* pe)

{
Cond* p2 = pc-> clong() ;
Cond* p3=pe>clong) ;/ / error
/...

}

The type of an overriding function must be the same as the type of the virtual function it overrides,
except that the return type may be relaxed. That is, if the original return typB*wésen the
return type of the overriding function may Bé&, providedB is a public base dD. Similarly, a
return type oB& may be relaxed tD&.

Note that a similar relaxation of the rules for argument types would lead to type violations (see
§15.8 [12]).

15.7 Advicelhier.advice]

[1] Use ordinary multiple inheritance to express a union of features; §15.2, §15.2.5.

[2] Use multiple inheritance to separate implementation details from an interface; §15.2.5.

[3] Use avirtual base to represent something common to some, but not all, classes in a hierarchy;
§15.2.5.

[4] Avoid explicit type conversion (casts); §15.4.5.

[5] Usedynamic_cast where class hierarchy navigation is unavoidable; §15.4.1.

[6] Preferdynamic_cast overtypeid; 815.4.4.

[7] Preferprivate to protected; §15.3.1.1.

[8] Don't declare data membepsotected; §15.3.1.1.

[9] If a class definesperator delete() , it should have a virtual destructor; §15.6.

[10] Don't call virtual functions during construction or destruction; §15.4.3.

[11] Use explicit qualification for resolution of member names sparingly and preferably use it in
overriding functions; §15.2.1

15.8 Exerciseshier.exercises]

1. () Write a templatetr_cast that works likedynamic_cast, except that it throwbad cast
rather than returning.
2. (@) Write a program that illustrates the sequence of constructor calls at the state of an object
relative to RTTI during construction. Similarly illustrate destruction.
3. (8.5) Implement a version of a Reversi/Othello board game. Each player can be either a
human or the computer. Focus on getting the program correct and (then) getting the computer
player “smart” enough to be worth playing against.
((B) Improve the user interface of the game from §15.8[3].
() Define a graphical object class with a plausible set of operations to serve as a common base
class for a library of graphical objects; look at a graphics library to see what operations were

S

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

426 Class Hierarchies Chapter 15

~

8.

9.

supplied there. Define a database object class with a plausible set of operations to serve as a
common base class for objects stored as sequences of fields in a database; look at a database
library to see what operations were supplied there. Define a graphical database object with and
without the use of multiple inheritance and discuss the relative merits of the two solutions.

(2) Write a version of thelone() operation from 8§15.6.2 that can place its cloned object in

an Arena (see 810.4.11) passed as an argument. Implement a Fwnepia as a class derived

from Arena.

(C2) Without looking in the book, write down as manyt&eywords you can.

(C2) Write a standards-conforming-€program containing a sequence of at least ten consecu-
tive keywords not separated by identifiers, operators, punctuation characters, etc.

((».5) Draw a plausible memory layout foRadio as defined in 815.2.3.1. Explain how a vir-

tual function call could be implemented.

10. (2) Draw a plausible memory layout folRadio as defined in §15.2.4. Explain how a virtual

function call could be implemented.

11. (B) Consider howdynamic_cast might be implemented. Define and implemerdcast tem-

plate that behaves likdynamic_cast but relies on functions and data you define only. Make
sure that you can add new classes to the system without having to change the definitions of
dcast or previously-written classes.

12. (2) Assume that the type-checking rules for arguments were relaxed in a way similar to the

relaxation for return types so that a function takirigesived® could overwrite 88ase*. Then
write a program that would corrupt an object of classived without using a cast. Describe a
safe relaxation of the overriding rules for argument types.

The C++ Programming Language, Third Editiby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	15.1 Introduction and Overview
	15.2 Multiple Inheritance
	15.3 Access Control
	15.4 Run Time Type Information
	15.5 Pointers to Members
	15.6 Free Store
	15.7 Advice
	15.8 Exercises

	buy now:

