

WebWork in Action
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

WebWork in Action

PATRICK LIGHTBODY
JASON CARREIRA

M A N N I N G
Greenwich

(74° w. long.)
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax:(203) 661-9018
Greenwich, CT 06830 email: manning@manning.com

©2006 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-394932-53-2

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 10 09 08 07 06 05
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

brief contents
PART 1 INTRODUCTION TO WEBWORK 1

Chapter 1 ■ An overview of WebWork 3
Chapter 2 ■ HelloWorld, the WebWork way 19
Chapter 3 ■ Setting up WebWork 38

PART 2 CORE CONCEPTS....................................... 75
Chapter 4 ■ Implementing WebWork actions 77
Chapter 5 ■ Adding functionality with interceptors 112
Chapter 6 ■ Inversion of Control 137

PART 3 DISPLAYING CONTENT 175
Chapter 7 ■ Using results 177
Chapter 8 ■ Getting data with the expression language 209
Chapter 9 ■ Tag libraries 230

Chapter 10 ■ Velocity 254
Chapter 11 ■ UI components 271
v

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

vi BRIEF CONTENTS
PART 4 ADVANCED TOPICS.................................. 311
Chapter 12 ■ Type conversion 313
Chapter 13 ■ Validating form data 333
Chapter 14 ■ Internationalization 360
Chapter 15 ■ Best practices 384

Appendix ■ WebWork architecture 424
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

contents
foreword xv
preface xvii
acknowledgments xix
about this book xxi
a look at the future xxvi
about the title xxvii
about the cover illustration xxviii

PART 1 INTRODUCTION TO WEBWORK1

1 An overview of WebWork 3
1.1 Why MVC is important 5

Classic MVC becomes outdated 6 ■ Classic MVC gets an update:
the Front Controller 7 ■ MVC evolves: the Page Controller 7

1.2 Understanding frameworks and containers 9
What is a framework? 9 ■ What a container can do 11

1.3 WebWork: past, present, and future 13
The history of WebWork 13 ■ Understanding the XWork core 13
Future directions 15
vii

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

viii CONTENTS
1.4 The CaveatEmptor application 15
How CaveatEmptor is organized 16

1.5 Summary 17

2 HelloWorld, the WebWork way 19
2.1 Downloading WebWork 20

2.2 Preparing the skeleton 20
Creating the web.xml deployment file 21 ■ Creating the xwork.xml
configuration file 23 ■ Creating the webwork.properties
configuration file 23 ■ Tips for developing WebWork apps 24

2.3 Your first action 24
Saying hello, the WebWork way 25 ■ Displaying output to
the web browser 26 ■ Configuring your new action 27

2.4 Dealing with inputs 28

2.5 Advanced control flow 31

2.6 Letting WebWork do the work 33
Taking advantage of ActionSupport 34 ■ Intermediate modifications
to the JSP 35 ■ Exploring the UI tag library 36

2.7 Summary 37

3 Setting up WebWork 38
3.1 Configuring actions, results, and interceptors 39

Overview of terminology 39 ■ Actions 40
Results 46 ■ Interceptors 48

3.2 Advanced configuration 52
The xwork.xml DTD 52 ■ Namespaces and packages 53
Componentization using the include tag 57

3.3 Other configuration files 66
Web-app configuration: web.xml 66
Feature configuration: webwork.properties 67

3.4 Setting up your web app 70
General layout 70 ■ Required libraries 71 ■ Optional libraries 72

3.5 Summary 72
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

CONTENTS ix
PART 2 CORE CONCEPTS .. 75

4 Implementing WebWork actions 77
4.1 The Action interface 78

Result codes 78 ■ Handling exceptions 79
4.2 Using the ActionSupport base class 80

4.3 Understanding basic validation 80
Validating an action: Validateable 81
Displaying error messages: ValidationAware 82

4.4 Using localized message texts 86
Retrieving the user’s locale: LocaleProvider 86
Displaying the localized text: TextProvider 86
Providing messages for other languages 89

4.5 Advanced inputs 90
Intermediary objects 90 ■ Using domain objects directly 91

4.6 Working with ModelDriven actions 95
Implementing ModelDriven actions 96
Considerations when using ModelDriven 100

4.7 Accessing data through the ActionContext 102
CaveatEmptor: accessing the session 102
Example: accessing the request and response 105

4.8 Handling file uploads 107
Accessing uploaded files through the request wrapper 107
Automating file uploads 109 ■ Configuration settings 110

4.9 Summary 111

5 Adding functionality with interceptors 112
5.1 How interceptors are called 113

5.2 Using the prepackaged interceptors 114
Utility interceptors 117 ■ Setting parameters 119
Defining workflow 123

5.3 Using prepackaged interceptor stacks 126
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

x CONTENTS
5.4 Building your own interceptors 128
Using the AroundInterceptor as a base 129 ■ Looking at an example
custom interceptor 130 ■ Getting callbacks before the result is
executed with the PreResultListener 133 ■ Looking out for
interceptor interactions 134

5.5 Interceptors vs. servlet filters 135

5.6 Summary 136

6 Inversion of Control 137
6.1 Examining the pattern 138

Common patterns for active resource management 138 ■ Inverting
resource management 142 ■ How IoC helps with testing 145

6.2 IoC essentials 146
WebWork’s IoC history 146 ■ Dependencies 148
Scope and lifecycle 149

6.3 Using WebWork’s IoC framework 151
Configuration 151 ■ Creating a new component 154 ■ Using IoC
on any object 158 ■ Dealing with complex dependencies 159

6.4 An example from CaveatEmptor 162
The HibernateSessionFactory component 163 ■ The Persistence
Manager component 165 ■ Configuring the components 168
Using the new components 169

6.5 Alternatives 170
Alternative IoC containers 170 ■ Non-IoC alternatives 172

6.6 Summary 173

PART 3 DISPLAYING CONTENT175

7 Using results 177
7.1 Life after the action 178

A simple result 178 ■ Configuring a result 180
7.2 Common results 182

Dispatching to a page 182 ■ Redirecting to a page 188
Chaining to another action 192
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

CONTENTS xi
7.3 Other results 197
Streaming Velocity templates directly to the output 197
FreeMarker: an alternative to Velocity 202
Generating reports with JasperReports 203

7.4 Summary 207

8 Getting data with the expression language 209
8.1 What is an expression language? 210

Why an expression language? 210 ■ Why OGNL? 211
Other expression languages 212 ■ Key OGNL concepts 213

8.2 Basic expression language features 213
Accessing bean properties 214 ■ Literals and operators 215
Calling methods 217 ■ Setting values and expression lists 218
Accessing static methods and fields 218 ■ Accessing the OGNL
context and the ActionContext 218

8.3 Working with collections 220
Working with lists and arrays 220 ■ Working with maps 221
Filtering and projecting collections 222 ■ The multiple uses
of “#” 223

8.4 Advanced expression language features 224
Linking the value stack to the expression language 224
Data type conversion 226 ■ Handling null property access 227
Creating lambda expressions on the fly 228

8.5 Summary 228

9 Tag libraries 230
9.1 Getting started 231

9.2 An overview of WebWork tags 232
The WebWork tag syntax 233

9.3 Data tags 235
The property tag 235 ■ The set tag 236 ■ The push tag 237
The bean tag 238 ■ The action tag 240

9.4 Control tags 242
The iterator tag 242 ■ The if and else tags 245
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

xii CONTENTS
9.5 Miscellaneous tags 246
The include tag 246 ■ The URL tag 247 ■ The i18n
and text tags 250 ■ The param tag 252

9.6 Summary 253

10 Velocity 254
10.1 Introduction to Velocity 255

What is Velocity? 255 ■ Getting ready to use Velocity 257
10.2 Basic syntax and operations 259

Property access 259 ■ Method calls 261 ■ Control statements:
if/else and loops 261 ■ Assigning variables 265

10.3 Advanced techniques 265
The VelocityContext 265 ■ WebWork-supplied objects in
the context 266 ■ Customizing the Velocity context 267

10.4 Using JSP tags in Velocity 268

10.5 Loading Velocity templates 269

10.6 Summary 269

11 UI components 271
11.1 Why bother with UI tags? 272

Eliminating the pain 272 ■ More than just form elements 280
11.2 UI tag overview 283

Templates 283 ■ Themes 285 ■ Tag attributes 291
11.3 UI tag reference 291

Common attributes 291 ■ Simple tags 294
Collection-based tags 299 ■ Advanced tags 305

11.4 Summary 309

PART 4 ADVANCED TOPICS ..311

12 Type conversion 313
12.1 Why type conversion? 314

The Servlet specification 314 ■ An action without type
conversion 315 ■ A view without type conversion 317
What WebWork’s type conversion gives you 319
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

CONTENTS xiii
12.2 Configuration 320
Role of a type converter 321 ■ Global type converters 322
Class-level type converters 322

12.3 Simple type conversion 323
Basic type conversion 323 ■ Built-in type conversion 325
Handling null property access 326

12.4 Advanced topics 326
Handling null Collection access 326 ■ Handling conversion
errors 329 ■ An example that puts it all together 330

12.5 Summary 331

13 Validating form data 333
13.1 Manually validating data 336

Validating in the execute() method 336
Implementing the Validateable interface 337

13.2 Using the Validation Framework 340
Building your first *-validation.xml file 340 ■ Registering
validators 341 ■ Applying the validation interceptor 345 ■ Pulling
it all together 346 ■ Looking at some validation XML examples 348

13.3 Exploring the advanced features
of the Validation Framework 350
Implementing a custom validator 351 ■ Validating with
different contexts 353 ■ Short-circuiting validation 354
The ExpressionValidator 355 ■ Reusing validations with
the visitor field validator 356

13.4 Summary 359

14 Internationalization 360
14.1 Exploring a quick internationalization example 361

14.2 Sources for messages 362
Understanding the ResourceBundle search order 364 ■ Adding
default resource bundles 366 ■ The <ww:i18n> tag 366

14.3 Using internationalized messages 368
Parameterizing localized texts 368 ■ Using getText() in taglib
attributes 369 ■ Formatting dates and numbers 370 ■ Using
localized messages in validations 370 ■ Using internationalized
texts for type conversion messages 371
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

xiv CONTENTS
14.4 Tips and tricks 373
Programmatically setting the locale 373 ■ Implementing Resource-
Bundles as classes 375 ■ Using the <ww:param> tag to pass
dynamically generated text to message texts 378 ■ Setting the
encoding: here, there, and everywhere 381 ■ A note on Java
PropertyResourceBundles 382 ■ A final note 382

14.5 Summary 383

15 Best practices 384
15.1 Setting up your environment 385

Setting up your IDE 386 ■ Reloading resources 388
15.2 Unit-testing your actions 389

Using mock objects 389 ■ The advantage of IoC for testing 391
Handling statics and ThreadLocals 391

15.3 Putting the pieces together: integration testing 393
Testing your configuration 393
Seeing the configuration with the config browser 396

15.4 Testing validations 398
Testing programmatic validations 398
Testing validation.xml files 398

15.5 Advanced UI tag usage 402
Overriding existing templates 403 ■ Writing custom templates 406
Writing custom themes 407

15.6 Using form tokens to prevent
duplicate form submissions 409
Using the <ww:token> tag 410 ■ Applying the
TokenInterceptor 412 ■ Transparently re-rendering
pages with the TokenSessionStoreInterceptor 413

15.7 Displaying wait pages automatically 413

15.8 A Single action for CRUD operations 417
Creating new categories with newCategory 418 ■ Reading and
updating with viewCategory and editCategory 419 ■ Saving catego-
ries with saveCategory 420 ■ Setting the parentCategory 422

15.9 Summary 423

appendix WebWork architecture 424
index 439
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

foreword
Building a framework is difficult. On the one hand, the framework needs to be
flexible enough to cater to a wide variety of needs; on the other hand, it needs to
be solid enough that it doesn’t fall prey to the beast of complexity—the urge to
make it the solution to conquer all other solutions. In today’s development envi-
ronment, a multitude of frameworks is available to help you deal with various
aspects of creating complex and useful enterprise software. Each framework pro-
vides something unique that makes it cover its particular field of application in a
(more or less) human-friendly manner; in addition, each framework must work
within its boundaries, relating to other frameworks in a software ecology that is
constantly changing as needs and requirements change.

 In order to accomplish this seemingly impossible task, it is necessary to acknowl-
edge and study past efforts that a framework is supposed to replace and/or extend.
In the case of WebWork, there were, and still are, a number of different approaches
and frameworks that I looked at before I set to work. The idea was to create a new
framework that allowed developers to get their job done with as little work as pos-
sible and perform each task efficiently without needing an unnecessarily complex
framework to work against. Simple things should be simple to do while allowing
complex things to be possible.

 Another important aspect of WebWork is that it should allow developers as
much freedom as possible to use other technologies—for example, to render out-
put. A number of rendering alternatives are available, and it’s impossible—and
xv

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

xvi FOREWORD
futile—to determine which one is best in all situations; such an alternative simply
doesn’t, and can’t, exist. Being open minded in this regard is crucial, and it has
paid off: WebWork has now been successfully integrated with a wide variety of ren-
dering technologies, including some that don’t target HTML or the Web. It has
grown beyond its initial purpose, which is always gratifying for a parent.

 WebWork started as an itch that I needed to personally scratch. However, with
its second generation it has expanded into a fully grown community project,
where developers add and improve WebWork by leveraging the structure pro-
vided by the framework. No framework of this kind, in today’s competitive envi-
ronment, can be successful without the input and ideas of a multitude of
developers, because it’s important that it be able to handle the real issues that
people face in their daily work. As a result, WebWork now has a life of its own and
is growing steadily as a community effort.

 A book covering such a framework needs to be able to deal with all the intrica-
cies of framework construction and convey the reasoning behind why it works the
way it does; it must also demonstrate in action how all the theoretical stuff works in
practice. Theory has no point if it ain’t practically applicable. This book explains
in reasonable detail the rationale for how WebWork is constructed, but it’s mainly
focused on showing you in practical terms how to use WebWork, from the simple
to the complex. Time is always of the essence, and this book is a great investment
if you’re interested in learning about web framework construction, or if you want
to make a killer web app that blows everyone’s mind. Anything is possible!

 RICKARD ÖBERG
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

preface
It’s been almost 10 years since I developed my first web-based application. The
program was a simple online shopping cart written in Perl. I still have the code
lying around, and I look at it occasionally—I do this to remind myself of where I
was and to keep myself focused on where I want to go. The application was horri-
ble. It consisted of one extremely large Perl file (over 10,000 lines!), and it
printed out HTML using lots of print statements. Looking at it today, it’s impossi-
ble for me to understand.

 And yet, 10 years ago, I managed to put together something that not only was
functional but also made sense to me. This growth is typical of what most profes-
sional developers go through, Jason and me included. The “hacks” I wrote made
sense at the time, but as the months and years went on, the code became a rat’s
nest and maintenance was a nightmare. This problem is bad enough when you’re
developing non-GUI programs, but it’s worse when bad code that handles business
logic is mixed with bad code that handles the GUI. And it’s even worse when your
GUI is written in HTML, and you’re relying on linearly spitting out HTML tags
instead of using object orientation or componentization.

 Why is this important? Because, like all other developers, Jason and I have
grown from novice programmers hacking in Perl and PHP (and not really know-
ing what we were doing) to experienced developers with a deep understanding of
what it takes to build a maintainable web-based application.
xvii

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

xviii PREFACE
 Jason and I didn’t create WebWork. It was developed by Rickard Öberg, one of
the original authors of JBoss, after he decided there had to be a better way to
develop web applications. What came from Rickard was a framework built around
the philosophy that the correct way to do something should also be the easiest
option, that the path of least resistance is a good thing, and that there is a fine bal-
ance between too much flexibility and too little.

 Jason and I found WebWork through different means, but the end result was
the same: We were captivated by its functionality and grace. Over time, we evolved
from users to contributors to developers, and now to published authors. In the
process, we’ve learned better ways to do things. And similarly, WebWork has also
evolved. Jason and I spent endless nights creating version 2.0, which has become a
major upgrade and has set the groundwork for doing much more with the Web-
Work platform.

 Today, WebWork is much more than it was in the past. And tomorrow, it will be
even better. In this book, you’ll learn the techniques, best practices, and concepts
that go with the WebWork framework. You’ll see why we spent so much energy on
type conversion and how it relates to HTTP. You’ll learn about how common chal-
lenges in the world of HTML (such as the double-submit problem) were solved
using interceptors—a feature unique to WebWork. You’ll understand why build-
ing reusable templates that generate HTML is the best way to quickly create main-
tainable web applications.

 Mostly, though, you’ll learn a better way to build web applications. Whether
you’re already a WebWork user, or you use an alternative Java framework, or you
don’t use Java at all, this book provides the concepts and techniques that are the
foundation of WebWork. We hope this book serves as a WebWork reference and
also as a great tool for sharpening your development skills.

 PATRICK LIGHTBODY
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

acknowledgments
This book wouldn’t have been possible if it weren’t for the tremendous community
at OpenSymphony and all the software developers who continue to push for inno-
vation in the Java web space. To everyone who uses WebWork or other OpenSym-
phony projects: Thank you for the appreciation and support through the years;
with this book we’ll continue to drive innovation even further.

 Of course, this book also couldn’t have been possible without a publisher. To
everyone at Manning, thank you for believing in us and in WebWork. This experi-
ence has been the most fulfilling project we’ve ever completed. We’d like to rec-
ognize the tireless efforts of our editor, Jackie Carter. As we closed in on the final
weeks and months, we couldn’t have pulled it off without the amazing proofread-
ing, editing, marketing, and coordination provided by Liz Welch, Tiffany Taylor,
Karen Tegtmeyer, and Mary Piergies. And finally, thank you to Marjan Bace for
having the faith that, even through delays and setbacks, Manning could offer a
book that would benefit so many software developers.

 We also want to make a special mention of Carlos Whitt, who, with little notice,
was kind enough to step in and take on the role of technical editor at the last
minute. Thanks to Carlos’s diving catch, we received valuable feedback and
insightful comments. Carlos, your input was more valuable than we can possibly
describe. Thank you. In addition to Carlos’s heroic effort, we want to thank each
and every reviewer who provided feedback during the entire process: Jack Her-
rington, Drew McAuliffe, Bill Lynch, Dick Zetterberg, Steve Poll, Ryan Daigle,
xix

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

xx ACKNOWLEDGMENTS
Peter White, Luigi Viggiano, Matthew Payne, Joseph B. Ottinger, Hani Suilman,
Mark Woon, Berndt Hamboeck, Andrew Oswald, and Dag Liodden. Your feed-
back led to some major changes in how this book was structured, and we’re for-
ever in your debt for your wisdom. Finally, special thanks and words of
appreciation to Rickard Öberg for agreeing to write the foreword to our book.

 Patrick would also like to thank all his coworkers at Cisco Systems, Spoke Soft-
ware, and Jive Software. Without their support, both verbal and technical, he
could never have invested the time and energy in a project like WebWork and
would certainly have never written a book on the subject. He also thanks his
friends and family, who, no matter how much of a hermit he became, stood by his
side through the entire process. And finally, many thanks to his girlfriend and
best friend, Megan. Without her honesty, encouragement, and love, this book
would never have been realized.

 Jason would first and foremost like to thank his wife, Cyndy, without whose
love, support, and nagging, his work on WebWork and this book would not have
been possible. He would also like to thank his children, who had to spend too
much time watching their dad work on his laptop instead of playing with them.
He’d like to thank his former coworkers at Notiva and current coworkers at ePlus,
whose wise decision to use WebWork allowed him to put theory to practice in cre-
ating great web applications. Finally, he’d like to thank Patrick for picking up his
slack at the end when the real world intruded too heavily.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

about this book
This book is very much what the title says: a book about working on web-based appli-
cations, using real-world examples along the way. That’s what WebWork empha-
sizes: working on your project, not wrestling with your framework. Although it isn’t
the most-used web framework in the Java world, WebWork is widely known as the
most refined, and it’s gaining momentum every day. We’ll show you how you can
stop wrestling and get your framework to begin working for you.

 In this book, we’ll walk you through the basics of writing web applications,
starting with simple forms and form processing. However, we know you’ve proba-
bly done that stuff a million times, and you’re looking to sink your teeth into
meatier problems. As such, we quicken the pace and look at advanced features
such as validation, data-type conversion, resource dependencies, loose coupling
of web application components, and a treasure chest of ways to deal with common
challenges unique to the Web.

 This book stays focused on a single application: CaveatEmptor. This is a modi-
fied version of the same application used in Hibernate in Action (Christian Bauer
and Gavin King, Manning, 2004). By focusing on a tangible, growing application
that you can download and modify, you get the benefit of taking part of an evolu-
tionary process that goes beyond the pages of this book. You can expect that for
the years following the publication of this book, the CaveatEmptor application
will continue to lead the way for showcasing best practices for common web- and
persistence-related problems.
xxi

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

xxii ABOUT THIS BOOK
Roadmap

Chapter 1 provides a basic overview required to help you get started with Web-
Work. In addition to answering the hows, whys, and whats, we compare WebWork
to other frameworks and outline the philosophy set by Rickard Öberg when he
first created WebWork.

 In chapter 2, we run through several iterations of a basic “Hello, World” appli-
cation, starting from an extremely simple read-only example and going all the way
to a more advanced input workflow complete with data validation and error
reporting.

 In chapter 3, we begin to look at the configuration options WebWork provides.
This chapter covers how to configure individual actions, interceptors, and results,
as well as general framework-related options such as what URL pattern to bind to.

 Chapter 4 improves on the configuration lessons and hands-on experience
from the previous two chapters and provides concrete examples of how to create
your own WebWork actions. In this chapter we dive deeper into the basic form val-
idation, error handling, and localization provided by the ActionSupport base
class. We also look at handling alternative data elements in your actions, such as
file uploads.

 By this point, you’ll be comfortable writing applications in WebWork. In the
remaining chapters, our goal is to help you use the advanced WebWork features
that were created to address everyday problems. In chapter 5, we explore inter-
ceptors and how they can add behavior to your actions without your needing to
change the action classes or subclass.

 Chapter 6 explores the Inversion of Control (IoC) pattern and how WebWork
provides native support for it while also integrating into other popular IoC frame-
works, such as Spring.

 At this point, we shift gears and begin to focus on issues relating to user inter-
faces. We begin by looking at the concept of results in chapter 7. Results include
common technologies like JSP but also uncommon ones: template languages such
as Velocity and FreeMarker, and reporting engines such as JasperReports.

 Displaying results isn’t very useful if you can’t include your data. In chapter 8,
we take an in-depth look at Object Graph Navigation Language (OGNL): Web-
Work’s de facto expression language (EL). We also look at how EL shortcuts can
save you a ton of time when you’re rendering web-based forms.

 Chapter 9 covers all the utility JSP tags that come with WebWork, from the
familiar (if/elseif/else) to the unfamiliar (push, pop, action, and set). Even if
you choose to develop in a template language such as FreeMarker rather than in
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

ABOUT THIS BOOK xxiii
JSP, this chapter is still important, because similar concepts exist in those other
technologies.

 Now we’ll be almost ready to look at the other half of the JSP tags: the UI tags.
However, because they’re implemented in Velocity, we spend chapter 10 present-
ing the basics so that you’re well prepared. Chapter 10 is also a good way for you
to get up to speed on JSP alternatives.

 In chapter 11, we look at one of the most important features in WebWork: the
UI tags. These tags let you componentize your HTML elements in to easy-to-reuse
pieces. Building maintainable and scalable web applications hinges on use of
these tags.

 Chapter 12 examines common issues of type conversion—a challenge all web
developers face, regardless of what programming language you’re using. That’s
because HTTP is untyped, meaning all inputs are effectively Strings.

 Chapter 13 looks at advanced validation techniques, focusing on ways to get
data validation logic away from your code data manipulation logic.

 Chapter 14 discusses techniques and features related to internationalization
(i18), also known as localization.

 Finally, in chapter 15, we pull it all together and look at common problems
in the web environment and how everything you’ve learned can solve them. We
take on the double-submit problem many web developers have faced. We also
look at innovative ways to handle long-running processes rather than just asking
the user to please wait. In addition to these common problems, we explore test-
ing and debugging techniques that are useful when you’re building WebWork-
powered applications.

Who should read this book?

This book is for anyone who’s fed up with web development, or at least wondering
if there’s a better way. Specifically, we expect that readers have a basic understand-
ing of Java and the commonly used Java APIs, such as the Java Collections API.
Because WebWork is all about the Web, a minimum level of understanding of
HTML, JavaScript, and CSS is required.

 Those who don’t work on the web portion of their applications but have
coworkers who do are also encouraged to read this book. With advanced features
like type conversion, WebWork shows that you may not have to compromise on
the design of your application’s API just to appease the framework the web devel-
opers use.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

xxiv ABOUT THIS BOOK
 Our hope is that both novice and experienced software developers—even
those who aren’t from a primarily Java-based background—can pick up this book
and be productive right away.

Code conventions and downloads

This book provides many examples in various formats found in web applications
powered by WebWork: Java code, HTML, XML snippets, JSPs, and template files
written in Velocity. All source code in listings or in text is in a fixed-width font
like this to separate it from ordinary text. Additionally, Java method names, Java-
Bean properties, XML elements, and attributes in text are presented using this
same font.

 Java, HTML, and XML can be verbose. In many cases, the original source code
(available online) has been reformatted; we’ve added line breaks and reworked
indentation to accommodate the available page space in the book. In rare cases
even this was not enough, and listings include line-continuation markers. Addi-
tionally, many comments and JavaBean setters and getters have been removed
from the listings.

 Code annotations accompany some of the source code listings, highlighting
important concepts. In a few cases, numbered bullets link to explanations that fol-
low the listing.

 WebWork is an open source project released under the very liberal OpenSym-
phony License. Directions for downloading WebWork, in source or binary form, are
available from the WebWork web site: http://www.opensymphony.com/webwork.

 The source code for all the CaveatEmptor examples in this book is available from
http://www.manning.com/lightbody. The CaveatEmptor example application is a
derivative of the one used in Hibernate in Action, found at http://caveatemptor.hiber-
nate.org. You can find many versions of CaveatEmptor, using various deployment
techniques (EJB, non-EJB), but the one found at the Manning web site should be
the one you use as the companion to this book. Once you’re finished reading the
book, we highly recommend taking a peak at other versions of CaveatEmptor if
you’re at all curious about Hibernate or future versions of WebWork.

Author Online

Purchase of WebWork in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access
the forum and subscribe to it, point your web browser to http://www.man-
ning.com/lightbody. This page provides information on how to get on the forum
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

http://www.opensymphony.com/webwork
http://www.manning.com/lightbody
http://caveatemptor.hibernate.org
http://caveatemptor.hibernate.org

ABOUT THIS BOOK xxv
once you are registered, what kind of help is available, and the rules of conduct
on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the authors can
take place. It is not a commitment to any specific amount of participation on the
part of the authors, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest
their interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.

About the authors

PATRICK LIGHTBODY Heading up Jive Software's Professional Services organiza-
tion, Patrick has worked for various technology companies, ranging from well-estab-
lished giants such as Cisco Systems to tiny Silicon Valley startups. He is the author
of Java Open Source Programming and spends his spare time contributing to var-
ious OpenSymphony projects, including WebWork and OSWorkflow. While he
grew up in the heart of the Silicon Valley, Patrick now resides in Portland, Oregon.

JASON CARREIRA Jason has been developing and architecting J2EE applications
for six years. For the last five, he’s been designing and building enterprise finan-
cial software products from the ground up. He recently joined ePlus where he is
working on the next generation of eProcurement solutions. In his spare time,
Jason is a core developer of the XWork command pattern framework and Web-
Work MVC web framework at OpenSymphony. He lives in Rochester, New York,
with his wife Cyndy and three children.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

a look at the future
In the open source world, innovation never stops. Although this can be a great
thing, it can make it terribly difficult for people to keep up—even more so in the
printed media. When we began working on this book over a year ago, WebWork 2.1
was just coming out and had huge momentum behind it. Today, WebWork 2.2 is just
around the corner, and many new things are coming with it.

 With that in mind, we specifically focused this book on things we knew would be
important no matter what version of WebWork you’re using—or even if you aren’t
using WebWork at all. The concepts and techniques introduced here—such as
decoupled validation and type conversion—are important in any web environment.

 This book is based on WebWork 2.1.7, but we took several steps to prepare you
for the upgrade to 2.2. Most important, we use the optional altSyntax feature in
WebWork 2.1.7 that will become standard in 2.2 and beyond. This feature simpli-
fies how the tag libraries work. Because this feature was optional in 2.1, it’s
extremely important that you enable it before attempting to use any of the exam-
ples in this book. In chapter 3, “Setting up WebWork,” we show you how to enable
this feature.

 Another step we took to make sure concepts learned here can be taken beyond
the pages of this book is to use derivative of the sample application used in Hiber-
nate in Action. Both the Hibernate and WebWork teams have committed to
improving and evolving CaveatEmptor; so, after you’re finished reading this book,
you can look at new versions of CaveatEmptor to see how the same application
was built using WebWork 2.2 features.
xxvi

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

about the title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or to solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when
they want it. They need books that aid them in action. The books in this series are
designed for such readers.
xxvii

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

about the cover illustration
The figure on the cover of WebWork in Action is a “Dancer from Constantinople.”
The illustration is taken from a collection of costumes of the Ottoman Empire
published on January 1, 1802, by William Miller of Old Bond Street, London. The
title page is missing from the collection and we have been unable to track it down
to date. The book’s table of contents identifies the figures in both English and
French, and each illustration bears the names of two artists who worked on it,
both of whom would no doubt be surprised to find their art gracing the front
cover of a computer programming book...two hundred years later.

 The collection was purchased by a Manning editor at an antiquarian flea mar-
ket in the “Garage” on West 26th Street in Manhattan. The seller was an American
based in Ankara, Turkey, and the transaction took place just as he was packing up
his stand for the day. The Manning editor did not have on his person the substan-
tial amount of cash that was required for the purchase and a credit card and
check were both politely turned down.

 With the seller flying back to Ankara that evening the situation was getting
hopeless. What was the solution? It turned out to be nothing more than an old-
fashioned verbal agreement sealed with a handshake. The seller simply proposed
that the money be transferred to him by wire and the editor walked out with the
bank information on a piece of paper and the portfolio of images under his arm.
Needless to say, we transferred the funds the next day, and we remain grateful and
xxviii

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

ABOUT THE COVER ILLUSTRATION xxix
impressed by this unknown person’s trust in one of us. It recalls something that
might have happened a long time ago.

 The pictures from the Ottoman collection, like the other illustrations that
appear on our covers, bring to life the richness and variety of dress customs of two
centuries ago. They recall the sense of isolation and distance of that period‹and of
every other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago, brought back to life by the pictures from this collection.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Part 1

Introduction to WebWork

This part of the book eases you into the basics of WebWork and the problems it
tries to solve. Chapter 1 looks at the high-level architecture of WebWork and why
the Model-View Controller design pattern helps when you’re building web appli-
cations. In chapter 2, we apply these concepts in a concrete manner and walk you
through the creation of a simple read-only WebWork example. We then modify
that example and add data input and validation and the corresponding page
workflow. Once you’re comfortable building basic web apps, we examine the vari-
ous forms of configuration you can use to build your own applications.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

 An overview of WebWork
This chapter covers
■ Why MVC is important
■ Frameworks and containers
■ WebWork’s background and future
■ The CaveatEmptor sample application
3

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

4 CHAPTER 1

An overview of WebWork
Imagine you just built an entire web application and shipped version 1.0. Your
biggest customer is now demanding that in version 1.1, the user interface must
change dramatically to fit with their corporate usability standards—everything
from the number of fields in data-entry forms to button and image locations to
the number of steps in various wizards. And the customer wants the changes made
by next week.

 Depending on how your web application was built, you might not even break a
sweat. Or, you might be beefing up your resume. In the early days of building web
applications, developers often used scripting languages like Perl and printed out
content they wanted to display directly within their scripts—the same place where
critical business logic was located. It soon became clear that this technique too
tightly coupled the core business code with the presentation.

 These days, libraries exist for Perl, PHP, JSP, ASP, and every other web-enabled pro-
gramming language, to try to solve the problem of separating business code from
presentation code. Depending on the library you use and how well you’ve taken
advantage of it, fulfilling your customer’s demands might be a walk in the park.

 In this book, you’ll learn how to use one of Java’s most popular web frame-
works: WebWork. WebWork is an advanced framework based on the philosophy
that common tasks should be easy to do and advanced designs should be possible
to build. More than anything, the developers of WebWork wanted to provide a
framework that works for you, not against you.

 To help you learn WebWork, we’ll show you how we utilized its basic and
advanced features to build a second-generation version of the sample application
used in the book Hibernate in Action (Manning Publications, 2004, www.man-
ning.com/bauer). Hibernate is an Object-Relational Mapping (ORM) framework
that provides easy database access. The authors, Christian Bauer and Gavin King,
demonstrated the features of Hibernate using an online auction application
named CaveatEmptor. Although CaveatEmptor is a complete application, it lacks
any sort of web-based interface.

 In this book, we’ll demonstrate how we used the features of WebWork to add a
web front end on top of the original CaveatEmptor code. We chose to introduce
WebWork and its features this way for several reasons. First, many WebWork users
also use Hibernate, so expanding on CaveatEmptor allows the community to see
optimal ways to integrate the two. In addition, the original CaveatEmptor applica-
tion contains no web user interface, and many readers of Hibernate in Action might
want to learn how to add one. Those who know how to write back-end code quite
well but aren’t experts with the front end can consult this book to see how it’s done.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Why MVC is important 5
 However, before we can explore WebWork’s features and CaveatEmptor, we’ll
first examine the general ideas behind web application frameworks. In chapter 2,
“HelloWorld, the WebWork way,” we’ll walk through the familiar “Hello, World”
tutorial to show you the basics of using WebWork. For the remainder of the book,
we’ll focus entirely on WebWork’s features and how we used them in the
CaveatEmptor application.

 But before we can do that, you need to understand what WebWork is and what
it’s trying to accomplish. At the core, WebWork solves the problem of separating
presentation logic from domain logic. But what does that mean? Why is it impor-
tant? Where did this concept come from? More to the point, what is MVC, the pat-
tern on which WebWork is based?

1.1 Why MVC is important

The issue of separating the domain model from presentation isn’t unique to web
applications. The Model-View-Controller (MVC) pattern was originally developed by
the SmallTalk community to solve this problem for desktop GUI applications. MVC
seeks to break an application into three parts and define the interactions between
these components, thereby limiting the coupling between them and allowing each
one to focus on its specific responsibilities without worrying about the others.

 Although the original MVC pattern worked well for desktop GUI applications,
it failed to map directly to the World Wide Web. As developers continued to refine
their web development techniques, MVC variations evolved to address the behav-
iors specific to the request/response model that makes up the HyperText Trans-
port Protocol (HTTP). The core concerns of MVC haven’t changed as these
evolutions have taken place, and WebWork continues to champion the same moti-
vations that SmallTalk developers faced decades ago.

 MVC tries to keep the more generally reusable domain model code and the
view-specific code from being too aware of each other. It does this by introducing
a controller to sit between the view and the model. The controller handles events
from the view, such as button clicks, and maps them to model changes. The con-
troller also registers the view to receive notifications of changes to the domain
model, so that the view can refresh. This allows, for instance, a different view to be
applied without changing the underlying model or controller layers.

 MVC frameworks have become the dominant architecture for web application
development. WebWork is an MVC framework. Other popular Java-based MVC web
application frameworks include Struts (no longer in active development), Tapes-
try, RIFE, and JavaServer Faces (JSF). Before we look at web-based MVC designs,
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

6 CHAPTER 1

An overview of WebWork
let’s briefly examine the original MVC design that was used for desktop GUI appli-
cations. Knowing the flow of the original MVC will help you understand the
importance of the changes and updates MVC has faced as it has been applied to
WebWork—and, specifically, as it’s implemented in WebWork.

1.1.1 Classic MVC becomes outdated

Figure 1.1 shows the event flow in classic MVC. The user interacts with the view,
filling in data and clicking buttons. The controller receives events from the view
and performs actions on the model, updating it with the data the user has pro-
vided. The view is notified of model-change events so that it can refresh from the
model, showing the result of their work back to the user. Multiple views and con-
trollers may be configured to use the same shared model by registering more
event listeners. This pattern works well for applications where the entire applica-
tion runs on the user’s machine and everything runs and is refreshed in real time.
The classic MVC pattern breaks down, however, in the Web world, where the view
is rendered in a browser on the client side while the controller and model are on
the server. Figure 1.1 shows a very clean design approach. Unfortunately, it
doesn’t work in the world of HTTP and HTML. Instead, web applications, using an
HTTP request/response model, require a very different dwesign that borrows its
name and some aspects from classic MVC.

Controller View

Model

View Event

Client

R
ef

re
sh

 V
ie

w

State Change Event

C
hange

M
odel

Interact

Figure 1.1 Event flow for the classic MVC pattern
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Why MVC is important 7
1.1.2 Classic MVC gets an update: the Front Controller

In the web version of MVC, views
can’t make direct calls to controllers,
as shown in figure 1.1, but are
mapped based on web requests to
URLs. The view isn’t an object to be
updated, but a web page that is
redrawn only when the client makes a
new request. The model also can’t
notify the view about changes,
because it’s rendered in the user’s
browser on a different machine; so,
the view is forced to re-render every
time for all the latest data.

 Figure 1.2 shows the event flow in
MVC as it’s applied to web application
frameworks. The classic application
of MVC to the Web world is imple-
mented using the Front Controller pat-
tern. This involves a dispatcher
(implemented as a servlet in Java web
MVC implementations) that maps
request URLs to command instances to be executed. The command instances,
which are actions in WebWork or Struts, interact with backend services of the sys-
tem, which can be generally grouped together as the model. The command
instance returns a return code after doing its processing, which is mapped to a
view (usually a web page template such as a JSP). The view is provided with the
controller and model to render for the user and often uses custom tag libraries to
easily access these values.

1.1.3 MVC evolves: the Page Controller

A somewhat different implementation of MVC has been popularized by frame-
works like Microsoft’s ASP.NET1. Rather than have requests go through a dispatcher
to look up a controller to execute, the view is hit directly and calls its controller
before continuing to render. Although this pattern gives up some of the decoupled
nature of a more classic MVC implementation, it should gain in productivity and
tool support (especially in Microsoft Visual Studio). This type of development can

Controller

View

Model

Client

Dispatcher

Request

Render

E
xe

cu
te

C
ha

ng
e

M
od

el

Refresh
V

iew

Figure 1.2
Event flow for MVC in a web
application framework
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

8 CHAPTER 1

An overview of WebWork
also be supported by WebWork by using the <webwork:action> custom tag (see
chapter 9, “Tag libraries,” for a discussion of the WebWork tag library).

Front Controller versus Page Controller
Figures 1.3 and 1.4 show how a dashboard might be implemented differently using
the Front Controller or Page Controller design. The Page Controller may look
more modular due to the split of the X, Y, and Z responsibilities, but good use of
object-oriented design could allow for a modular Front Controller design as well.
If you’re familiar with Struts, the Front Controller pattern will look very familiar.
Even if you aren’t familiar with other web frameworks, this technique should seem
to be the most linear way to gather data and present it. However, some frame-
works are embracing the Page Controller, shown in figure 1.4, because of the way
it encourages encapsulation. Fortunately, WebWork supports both implementa-
tions, giving you the best of both worlds.

 In our experience, frameworks can greatly increase your productivity. In order
to meet your customers’ requirements and be ready for all the challenges an

1 Microsoft has an interesting discussion of presentation tier design patterns at http://msdn.mi-
crosoft.com/practices/type/Patterns/Enterprise/EspWebPresentationPatterns/. They include both
the Page Controller and Front Controller patterns; but the Page Controller is built into their frame-
work, whereas a Front Controller implementation must be built from scratch.

Dashboard

Web
Browser XYZ Action

Request

Response

Push Push

Push

Figure 1.3 A dashboard implemented using the Front Controller MVC design
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Understanding frameworks and containers 9
ever-changing business world throws at you, we recommend that you take advantage
of the MVC design pattern when building web applications. Rather than build an
MVC framework from scratch, most developers choose to leverage an existing one,
such as WebWork.

1.2 Understanding frameworks and containers

WebWork is, at its very heart, an MVC framework. But it’s also a lightweight con-
tainer. To help you better understand the difference between a framework and a
container, we’re going to look at the functionality each one provides as well as sev-
eral alternative or related technologies for both categories.

1.2.1 What is a framework?

When he was building the original version of WebWork, Rickard Öberg (the cre-
ator of WebWork and co-founder of JBoss) said, “A framework’s power comes not
from what it allows, but from what it does not allow.” What Rickard meant
explains what a framework is: Frameworks are meant to bring structure to what
would otherwise be chaos. In the case of web application frameworks, the goal is
to encourage developers to use a supplied set of base classes and tag libraries,
thereby avoiding a potential mess of tangled JSPs.

view.jspWeb
Browser

Y Action

Request

Z
Action

X
Action

Request

Request Request

Response

Response

Response

Response

Figure 1.4 A dashboard implemented using the Page Controller MVC design
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

10 CHAPTER 1

An overview of WebWork
 In the framework of a house, too many wooden beams will leave you with no
options when expanding your home with new rooms, adding new windows and
doorways, or accessorizing your living room with a fireplace. Too few beams and
too little structure will leave you with many options, but you probably won’t feel
safe keeping your family under that roof during the middle of a storm or an earth-
quake. Frameworks are a delicate balance between structure and creativity.

 As a framework mandates more structure, your creativity wiggle room begins
to shrink. One extreme is the absence of a framework: chaos. The other extreme
is a framework that restricts you to so few choices that you can’t finish your appli-
cation. Clearly, a middle ground exists somewhere between these two extremes,
and that is what WebWork and all other MVC frameworks are trying to find.

WebWork encourages creativity
Struts, a popular Java web framework, shares many similarities with WebWork.
However, it doesn’t offer the amount of wiggle room that is often needed when
you’re building large-scale web applications. For example, consider the case of
comparing the tags that both frameworks use to print out an internationalized
message. In both frameworks, internationalized text can be parameterized with
dynamic values such as a price, number, and date.

 Suppose we wish to display an airplane ticket confirmation in the following form:

Your {0} ticket(s) for flight {1} have been booked.
The total cost is {2}. Your confirmation number is {3}.
Your flight leaves at {4} and arrives at {5}

In Struts, <bean:message> is the tag used to do this. Unfortunately, Struts only
allows messages to be parameterized with five values, meaning our message must
be split into two parts:

 <bean:message key="confirmation.msg1"
 arg0="count" arg1="flightNumber" arg2="cost"/>
 <bean:message key="confirmation.msg2"
 arg0="confirmation" arg1="departure" arg2="arrival"/>

In WebWork, we use the <ww:text> tag. However, rather than limit messages to a
fixed number of parameters, WebWork allows unlimited parameters:

<ww:text name="confirmation.msg">
 <ww:param value="count"/>
 <ww:param value="flightNumber"/>
 <ww:param value="cost"/>
 <ww:param value="confirmation"/>
 <ww:param value="departure"/>
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Understanding frameworks and containers 11
 <ww:param value="arrival"/>
</ww:text>

This may seem like an extremely trivial difference—and it is. But it helps show
how a framework can provide more options without falling closer to the chaos
that no framework leaves us with. A good framework provides certain features that
restrict what the developer can do but is also careful to give as many good options
as possible. As any veteran developer can attest, some tremendous software devel-
opment achievements can be accomplished by making a lot of minor but intelli-
gent decisions. Frameworks can assist by making many of these decisions for you.

WebWork strikes a balance
Through years of experience in building web applications, the authors of this
book have found that WebWork provided the best compromise, but some other
frameworks are worth looking at—if not to be used, at least to be learned from.

NOTE We recommend that if you wish to explore other frameworks, the most
interesting are JSF and Tapestry. You can learn more about Tapestry
from Tapestry in Action by Howard Lewis-Ship (Manning Publications,
2004, www.manning.com/catalog/view.php?book=lewisship).

1.2.2 What a container can do

Frameworks are often defined by what they can’t do. Containers, on the other hand,
are most often defined by what they can do. Let’s look at the container most web
application developers are familiar with: the servlet container. Many different serv-
let containers have been built: Tomcat, Orion, Resin, WebLogic, WebSphere …
the list goes on. They differ in many ways: cost, performance, support, and so
forth. But beyond economics, each container provides its own unique value-added
features. Some do clustering better than others. Some provide better support for
developers. Some support the 2.3 specification, whereas others support the newer
2.4 spec.

 The point is that a container is designed to contain some of your code and provide
unique features to that code. The more useful features, the better the container.
What does it mean when we say that WebWork is both a framework and a container?

WebWork’s lightweight container
Servlet containers provide features that the specification requires or that the devel-
opers of the container provided. The same goes for other J2EE containers, such as
the EJB container. A lightweight container is different—it gives you the ability to add
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

12 CHAPTER 1

An overview of WebWork
features to a generic container, thereby making a unique container that fits the
needs of your application.

 Let’s consider a more concrete example. Suppose you aren’t using EJB but you
still want to provide simple transactional support to developers who are working
on your project. You could build into a lightweight container transactional support
for any object that is contained. Now you have a unique container that provides
some of the benefits of EJB. It gets much more interesting when you start providing
features unique to your application that EJB or other specifications would never
have dreamed of.

 In addition to being an MVC framework, WebWork comes with a small, light-
weight container designed to let you build these kinds of features. It’s designed to
make life simple for other developers, allowing them to easily take advantage of your
unique container. In chapter 6, “Inversion of Control,” we’ll show you how to use
WebWork’s container to provide highly custom solutions to your development team.

Competing containers
WebWork isn’t the only lightweight container on the block. Others include
Jakarta HiveMind (and before that, Jakarta Avalon), PicoContainer, and Spring.
Although each container is unique, they all try to provide the same thing: a sim-
ple, customizable environment in which your objects can exist and be managed
independently and passively. Lightweight containers are only recently being rec-
ognized as something exciting.

 NOTE For more on the excellent Spring container, we recommend Spring in Action
by Craig Walls (Manning Publications, 2005, www.manning.com/walls2).

Jumping back to the framework discussion for a minute, remember that there is a
delicate balance between providing too many features and too few. Although
WebWork comes with its own lightweight container, it also allows for alternative
containers to be plugged in. That means you can use WebWork’s framework and
PicoContainer together without any problems.

 In a purely technical sense, WebWork’s container isn’t a core part of WebWork
and is considered optional. Replacing it and integrating it with an alternative con-
tainer is fairly simple. Many of these types of integrations are done through Web-
Work’s support for interceptors. In chapter 5, “Adding functionality with
interceptors,” you’ll learn about interceptors and discover the huge amount of
power and flexibility they offer while still maintaining a rigid framework on which
your applications can be built.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

WebWork: past, present, and future 13
 You can better understand the difference between WebWork’s container and
framework aspects if you know how WebWork evolved. Let’s take a moment to
examine the history of WebWork and the community revolving around WebWork;
in doing so, you’ll learn the core parts of WebWork, where XWork came from,
and when and why the Inversion of Control container was added.

1.3 WebWork: past, present, and future

To better understand the direction and philosophy that WebWork follows, let’s
look at the roots of WebWork, how it evolved, and where it’s going. In doing so,
we’ll identify an underlying component, XWork, which provides the foundation
on which WebWork is built. Although it’s fundamentally important to WebWork,
we’ll only examine XWork at a high level in this chapter. Finally, we’ll explore
some ideas and concepts being discussed today, to give you a better idea of what
WebWork might look like in the future.

1.3.1 The history of WebWork

Even though WebWork 2.0 was released in February 2004, WebWork was first cre-
ated a long time ago (long being a relative term when applied to Java open-source
technologies). WebWork was first publicly available in the fall of 2000 as version
0.92. It was originally created by Rickard Öberg after he faced many frustrations
with other Java web frameworks.

 As more developers began to use WebWork, it joined the OpenSymphony
group and continued releasing new versions until 1.3. At that point, it was widely
recognized that one of WebWork’s main benefits was the fact that it wasn’t truly
tied to the web, despite its name. In the winter of 2003, in an effort to separate the
web and nonweb portions, a roadmap for WebWork 2.0 was created. Version 2.0
was designed to continue to use all the principles of the 1.x version but to be built
on a non-web-based component called XWork.

NOTE Between the release of 1.3 and 2.0, the WebWork 1.x branch continued
to be supported and used by many users. Version 1.4 has since been re-
leased, and the 1.x branch will continue to be maintained. However, all
new major enhancements and features have been planned for the 2.x
branch, and as such this book is purely about WebWork 2.0 and beyond.

1.3.2 Understanding the XWork core

Although XWork is an important and critical part of WebWork, we won’t be
explicitly discussing XWork in this book. (We want to avoid confusion around the
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

14 CHAPTER 1

An overview of WebWork
terms XWork and WebWork, given that unless you plan to dig deep into the core
implementation of both projects, you probably won’t need to know the differ-
ence.) To give you an idea of how WebWork and XWork relate, figure 1.5 shows a
high-level representation of the interactions between them.

 An HTTP request goes to WebWork’s servlet dispatcher. The request is con-
verted to an action command, which is then routed through a series of WebWork
and XWork interceptors (1–3). The command is finally executed in the form of user
code that sits on top of both XWork and WebWork. After the action executes, the
response is routed through another series of interceptors (4–6) and finally con-
verted to a web-aware response (such as a JSP) via WebWork’s servlet response.

 As you can see, the interaction between XWork and WebWork can be complex.
Rather than ask you to continue to context-switch between XWork and WebWork,
we’ll merely refer to everything as WebWork, because it’s the higher-level compo-
nent of the two.

 If you’re interested in learning more about XWork, plenty of good online doc-
uments and resources can help you get started. XWork is far from a WebWork-
only component. In fact, it’s supported in another web framework called JPublish
and OpenSymphony’s workflow engine (OSWorkflow), and it’s even being used as
the basis for a Swing GUI framework (being developed at the time of this writing)
called Pendulum.

WebWork

HTTP Request
Servlet
Dis-
patcher

Servlet
Re-
sponse

1 3

2

5

4 6

User's
Action

XWork

HTTP Response

Figure 1.5 A high-level demonstration of the interactions between XWork and WebWork, including
how XWork and WebWork interceptors work together as the action invocation is processed
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

The CaveatEmptor application 15
1.3.3 Future directions

A Swing framework built on top of WebWork was one of the many grand visions
conceived from the very start of WebWork. Some people have already done this in
limited ways. It’s expected that in the future, the number of such developers will
increase around XWork and WebWork, providing even more user interface
options for your UI-agnostic action classes.

 Other future work on WebWork includes more integrated support for Java-
Script on the client browser, tool integration to enable rapid application develop-
ment, and better support for third-party libraries and containers. Other future
features might include support for alternative web-enabled view technologies,
such as Macromedia Flash. In general, the driving force will always be to allow you
to fulfill your customers’ changing needs quickly and safely, while giving you as
much freedom as possible without breaking down into chaos.

 Having glanced at the future, let’s take a moment to look at the primary basis
for all the example code in this book. By knowing what the application does, what
domain models are used, and how the application is packaged, you’ll have a much
easier time following along with the examples in the rest of the book.

1.4 The CaveatEmptor application

As we mentioned at the start of this chapter, this book bases many of its examples
on a web-enabled version of the CaveatEmptor application that was the founda-
tion of the book Hibernate in Action. CaveatEmptor is a fictitious online auction
application. It contains domain models like Item, Bid, and User, which we’ll focus
on in this book.

 The original CaveatEmptor application detailed in Hibernate in Action didn’t
have a web interface. For the purpose of this book, we implemented parts of the
web interface to demonstrate many WebWork features. You don’t need to be
familiar with Hibernate to understand the examples in this book, because all the
Hibernate-specific code is cleanly abstracted away in a PersistenceManager com-
ponent (detailed in chapter 6). Similarly, you won’t need the original CaveatEmp-
tor source code; you don’t even need to be familiar with it. However, if you do
find yourself with a copy of both books, you’ll find some continuity in the exam-
ples and domain objects.

 Speaking of domain objects, of all the objects found in CaveatEmptor, we’ll
spend the most time (by far) discussing the User domain object and the various
actions and web user interfaces that interact with it. The User object isn’t special
by any means: It’s a simple JavaBean with properties like firstName, lastName,
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

16 CHAPTER 1

An overview of WebWork
email, age, birthDate, and so on. These properties, however, represent the most
common domain properties around which you’ll often write web applications.

 We’ll look at use cases such as updating a user’s profile, registering for an
account, logging in and out, and creating multiple users at a time (batch process-
ing). We’ll also examine a few non-user-specific use cases, such as pagination, dis-
playing wait pages while background searches take place, and gracefully handling
double-click form submissions. All the actions and the view files (JSPs, in this case)
are found in the CaveatEmptor download available from this book’s web site. Let’s
look at how the download is organized so you can quickly get up to speed on the
examples in this book.

1.4.1 How CaveatEmptor is organized

Because this book focuses so much on this application, let’s go over what you’ll
find once you download the application. The download is in the form of a .zip
file. You’ll need to extract it using a standard tool like WinZip, Windows XP’s zip
tool, Java’s jar tool, or StuffIt Expander for the Mac OS. Once you extract the con-
tents, you’ll find this directory structure:

 CaveatEmptor
 - lib
 - core
 - resin*
 - src
 - java
 - org
 - hibernate
 - auction
 - ...
 - webapp
 - WEB-INF
 - ...
 - build.xml

All the source code we present in this book is found in the src directory. If the
example is a Java file, it’s in src/java and probably somewhere in the org.hiber-
nate.auction.web package. JSPs and Velocity templates, as well as any other web-
specific files, are found in src/webapp. Configuration files, such as xwork.xml and
webwork.properties, are located in src/java; they’re packaged into a single JAR
file, which is included in WEB-INF/lib when the entire WAR is packaged.

 Every JAR required for the application is found in lib/core. In addition to
these JARs, we also provide instructions in the form of a README.TXT file in lib/
resin. These instructions show you how to quickly launch the application without
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 17
running Ant or packaging the application as a WAR. The instructions also explain
how to download additional Resin JAR files needed to launch the application
quickly. This will let you open up the examples and modify them as you read the
book, playing with different options on the fly. When you do want to package the
application as a WAR, you can use the supplied build.xml file in the root of the
download; invoking ant war from the command line will do the trick.

NOTE We’ll continue to update CaveatEmptor after this book has been pub-
lished. You can always download the latest version at Manning’s web site.

1.5 Summary

Building reusable frameworks is a tough job—they can’t be custom tailored, they
can’t be too rigid, and they can’t be too flexible. The framework that can best allow
your development team to meet your customer’s requirements is the one you
should use. In this book, we’ll show you many WebWork features, tips, and tech-
niques, demonstrating that you that if you build your applications using WebWork,
meeting that next week’s deadline might not be nearly as difficult as it sounds.

 You’ve now seen the history of MVC, how it evolved, and why, when applied to
the Web, it enforces important design decisions that make building your next web
application much easier. Because WebWork provides both Front Controller and
Page Controller support, you should be able to use WebWork exactly as you want
to and not be limited by the framework.

 In addition to the framework that WebWork provides, we also explored the
concept of passive management of resources in containers. Because WebWork is
both a framework and a container, it can both address the need to narrow the
scope of certain functionality (such as a WebWork action) and broaden the scope
of other functionality (such as a passively managed persistence layer).

 Differentiating the need to sometimes be restricted and other times be totally
free is an important characteristic of WebWork. WebWork has evolved and will
continue to evolve, but this key characteristic continues to be the driving motiva-
tion for WebWork and all pragmatic programmers.

 We also explained our motivation for using a new version of the CaveatEmptor
application to demonstrate WebWork. This book focuses on the User domain
model for most examples, but a few examples aren’t user related. It’s important to
remember that although the examples in this book may be narrowed in scope to
just users, the concepts can be applied to any domain object.

 Before we can dig in to CaveatEmptor, let’s take some smaller steps. In chapter
2, you’ll build a simple “Hello, World” web application using WebWork. After
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

18 CHAPTER 1

An overview of WebWork
getting your feet wet, we’ll then explore some of WebWork’s architecture so you can
make more informed decisions when building WebWork-enabled applications.
Then we’ll dive headfirst into the features WebWork offers, all of which are designed
to make your job easier. Our aim is to show how you can build web applications faster
and smarter and be better prepared for change.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

 HelloWorld,
the WebWork way
This chapter covers
■ How to set up a WebWork project
■ How to create your first WebWork action
■ Input and output of data from your action
■ An introduction to the WebWork JSP tag library
19

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

20 CHAPTER 2

HelloWorld, the WebWork way
In this chapter, we’ll walk through a brief example that demonstrates the basics of
WebWork. By the end of this chapter, you should have enough understanding of
WebWork to build simple web-based applications. Later in the book, you’ll expand
on what you learned here to do more advanced configurations and take advantage
of advanced features including validation, internationalization, scripting, type
conversion, and support for display formats other than HTML, such as PDF.

2.1 Downloading WebWork

Before you begin, you must download WebWork. You can find the latest version
(2.1.7 at the time of this writing) at http://webwork.dev.java.net/servlets/Project-
DocumentList. Once you’ve downloaded the distribution binary, such as web-
work-2.1.7.zip, you need to unzip it. Inside, you’ll find sample applications,
documentation, and the source code of the framework so you can see how it
works. You’ll also find all the JAR files required to get WebWork running.

 We highly recommend that you examine all the documentation and sample
code, but for now we’re only concerned with the required libraries and the Web-
Work JAR. Let’s begin by preparing the basic web application file structure so that
you can start building applications.

2.2 Preparing the skeleton

The basic web application file structure, also known as the skeleton, is the bare min-
imum required to begin building the sample applications you’ll explore in this
chapter. You need the files listed in table 2.1, which are found in the download-
able WebWork distribution.

Table 2.1 Files required to set up a WebWork web application

 Filename Description

 xwork.jar XWork library on which WebWork is built

 commons-logging.jar Commons logging, which WebWork uses to support transparently logging to
either Log4J or JDK 1.4+

 oscore.jar OSCore, a general-utility library from OpenSymphony

 velocity-dep.jar Velocity library with dependencies

 ognl.jar Object Graph Navigation Language (OGNL), the expression language used
throughout WebWork
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

http://webwork.dev.java.net/servlets/ProjectDocumentList
http://webwork.dev.java.net/servlets/ProjectDocumentList

Preparing the skeleton 21
Some files, especially configuration files, aren’t included in the distribution; you’ll
create them in a moment. Also note that the version numbers of the dependent
JAR files (such as oscore.jar and ognl.jar) can be found in the distribution in the
file versions.txt, located in the lib directory.

 As usual for J2EE web applications, JARs go in the WEB-INF/lib directory and
web.xml goes in the WEB-INF directory. As is most often the case, configuration
elements such as xwork.xml go in the WEB-INF/classes directory. Having done
that, your directory layout should appear as follows:

 / (Root)
 |---WEB-INF
 |---web.xml
 |---classes
 | |---xwork.xml
 |---lib
 | |---webwork-2.1.7.jar, xwork.jar, oscore.jar, ognl.jar, ...

NOTE Now that the directory structure is set, you must configure your web ap-
plication server (such as Resin, Orion, or Apache Tomcat) to deploy the
web app starting from the location marked Root. How you deploy it de-
pends on the server you’re using and whether you zip the directory lay-
out as a WAR beforehand. Consult your server’s documentation for
detailed instructions on deploying web apps such as this one. We also
suggest that you consult your IDE’s documentation to be able to deploy
your web application directly from the IDE, either by using a plug-in or
by starting the container’s main class as an executable.

2.2.1 Creating the web.xml deployment file

In order for WebWork to work properly, it needs to be deployed in such a way that
certain URL patterns, such as *.action, map to a WebWork servlet that is responsi-
ble for handling all WebWork requests. A URL pattern is a pattern that is matched
against all incoming HTTP requests (such as from web browsers). If the location,
also known as a resource, matches the pattern, the associated servlet is invoked.
Without this servlet, WebWork wouldn’t function.

 xwork.xml WebWork configuration file that defines the actions, results, and intercep-
tors for your application

 web.xml J2EE web application configuration file that defines the servlets, JSP tag
libraries, and so on for your web application

Table 2.1 Files required to set up a WebWork web application (continued)

 Filename Description
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

22 CHAPTER 2

HelloWorld, the WebWork way
 You must first add the following entry to web.xml:

 <servlet>
 <servlet-name>webwork</servlet-name>
 <servlet-class>
 com.opensymphony.webwork.dispatcher.ServletDispatcher
 </servlet-class>
 </servlet>

The next step is to map the servlet to a URL pattern. The pattern you choose can
be anything you want, but the most typical pattern is *.action. You can configure
the pattern the servlet will match by adding the following to web.xml:

<servlet-mapping>
 <servlet-name>webwork</servlet-name>
 <url-pattern>*.action</url-pattern>
</servlet-mapping>

Finally, in order to use WebWork’s tag library, you must add an entry to web.xml
indicating where the tag library definition can be found:1

<taglib>
 <taglib-uri>webwork</taglib-uri>
 <taglib-location>/WEB-INF/lib/webwork-2.1.7.jar
 </taglib-location>
</taglib>

You can add many other optional configuration items to web.xml, such as support
for JasperReports, Velocity, FreeMarker, and other view technologies. Because
you’re building a skeleton application with no other files or configuration ele-
ments, the final web.xml file should look like the following:

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
 <web-app>
 <servlet>
 <servlet-name>webwork</servlet-name>
 <servlet-class>
 com.opensymphony.webwork.dispatcher.ServletDispatcher
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>webwork</servlet-name>
 <url-pattern>*.action</url-pattern>

1 In newer servlet containers that fully support the JSP 1.2 specification, the taglib should be automatical-
ly picked up without any configuration.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Preparing the skeleton 23
 </servlet-mapping>
 <taglib>
 <taglib-uri>webwork</taglib-uri>
 <taglib-location>/WEB-INF/lib/webwork-2.1.7.jar
 </taglib-location>
 </taglib>
</web-app>

This is the most basic web.xml file you can use for a WebWork application. Most
likely, your web.xml will quickly grow to include additional servlets, tag libraries,
event listeners, and so on.

2.2.2 Creating the xwork.xml configuration file

Now that you’ve configured web.xml correctly, you need to set up a skeleton con-
figuration for WebWork itself. Because WebWork is based on a subproject, XWork,
the configuration file is named xwork.xml and is located in WEB-INF/classes, as
previously shown. We’ll discuss configuration in more detail in chapter 3, “Setting
up WebWork,” so don’t worry too much about the contents of this file. For now,
the skeleton setup requires just the following in xwork.xml:

 <!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-1.0.dtd">
 <xwork>
 <include file="webwork-default.xml"/>

 <package name="default" extends="webwork-default">
 <default-interceptor-ref name="completeStack"/>
 </package>
 </xwork>

The key thing to note here is that a file, webwork-default.xml, is included. Doing this
ensures that all the WebWork additions built on top of XWork are available to you.
This file contains the standard configuration for WebWork, so it’s very important
that it be included. Without this file, WebWork wouldn’t function as you’d expect,
because it wouldn’t be correctly configured. Note that you don’t need to have a file
named webwork-default.xml—it’s already included in the WebWork JAR file.

2.2.3 Creating the webwork.properties configuration file

Just as you placed xwork.xml in WEB-INF/classes, you also need to add a file called
webwork.properties to that directory. Like other aspects of WebWork configura-
tion, the contents of this file are discussed in chapter 3. For now, add the following
line to webwork.properties:

webwork.tag.altSyntax = true
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

24 CHAPTER 2

HelloWorld, the WebWork way
This line is required because every example in this chapter (and the rest of the
book) is given with the assumption that webwork.tag.altSyntax is set to true. We
did this to let you have the most up-to-date information about a framework that is
always evolving. At the time of this writing, WebWork 2.1.7 is the latest released
version. However, we already know that as of WebWork 2.2, altSyntax will become
standard; so, we felt it would be best to cover this syntax now rather than teach
something that is on the verge of changing.

2.2.4 Tips for developing WebWork apps

You’re now ready to begin building your first example application. In order to do
so, you must compile Java sources and copy the resulting .class files to WEB-INF/
classes. There are several ways to do this, including executing javac by hand, using
an Ant build script, or using an IDE such as Eclipse or JetBrains IntelliJ IDEA (for-
merly IntelliJ IDEA). You should choose whatever method you’re most comfortable
with. In the CaveatEmptor example used in the rest of the book, you’ll find project
files for IDEA as well as an Ant build script to help you get started. Feel free to use
and modify the supplied build scripts and project files for your own projects.

 Using an IDE may be a better approach because you can launch the applica-
tion server, debug, and edit all within the same environment. Without these fea-
tures, you have to manually stop and start your application server from the
command line whenever you make changes to the code in your applications. If
you haven’t tried using a full-featured IDE with J2EE application server support, we
highly recommend doing so.

2.3 Your first action

Let’s start by creating a simple WebWork action. An action is a piece of code that is
executed when a particular URL is requested. After actions are executed, a result
visually displays the outcome of whatever code was executed in the action. A result
is generally an HTML page, but it can also be a PDF file, an Excel spreadsheet, or
even a Java applet window. In this book, we’ll primarily focus on HTML results,
because those are most specific to the Web. As Newton’s Third Law states, every
action must have a reaction.2 Although not “equal and opposite,” a result is always
the reaction to an action being executed in WebWork.

 Suppose you want to create a simple “Hello, World” example in which a
message is displayed whenever a user goes to a URL such as http://localhost/

2 An action doesn't technically have to have a result, but it generally does.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Your first action 25
helloWorld.action. Because you’ve mapped WebWork’s servlet to *.action, you
need an action named helloWorld. To create the “Hello, World” example, you
need to do three things:

1 Create an action class: HelloWorld.

2 Create a result: hello.jsp.

3 Configure the action and result.

Let’s begin by writing the code that creates the welcome message.

2.3.1 Saying hello, the WebWork way

Start by creating the action class, HelloWorld.java, as shown in listing 2.1.

 package ch2.example1;

 import com.opensymphony.xwork.Action;

 public class HelloWorld implements Action {
 private String message;

 public String execute() {
 message = "Hello, World!\n";
 message += "The time is:\n";
 message += System.currentTimeMillis();
 return SUCCESS;
 }

 public String getMessage() {
 return message;
 }
 }

The first and most important thing to note is that the HelloWorld class imple-
ments the Action interface. All WebWork actions must implement the Action
interface, which provides the execute() method that WebWork calls when execut-
ing the action.

 Inside the execute() method, you construct a “Hello, World” message along
with the current time. You expose the message field via a getMessage() JavaBean-
style getter. This allows the message to be retrieved and displayed to the user by
the JSP tags.

Listing 2.1 HelloWorld.java
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

26 CHAPTER 2

HelloWorld, the WebWork way
 Finally, the execute() method returns SUCCESS (a constant for the String “suc-
cess”), indicating that the action successfully completed. This constant and others,
such as INPUT and ERROR, are defined in the Action interface. All WebWork actions
must return a result code—a String indicating the outcome of the action execution.
Note that the result code doesn’t necessarily mean a result will be executed,
although generally one is. You’ll soon see how these result codes are used to map
to results to be displayed to the user. Now that the action is created, the next logi-
cal step is to create an HTML display for this message.

2.3.2 Displaying output to the web browser

WebWork allows many different ways of displaying the output of an action to the
user, but the simplest and most common approach is to show HTML to a web
browser. Other techniques include displaying a PDF report or a comma-separated
value (CSV) table. You can easily create a JSP page that generates the HTML view:

<%@ taglib prefix="ww" uri="webwork" %>
 <html>
 <head>
 <title>Hello Page</title>
 </head>
 <body>
 The message generated by my first action is:
 <ww:property value="message"/>
 </body>
</html>

The taglib definition in the first line maps the prefix ww to the URI webwork. (Note
that the URI is the same as that in the web.xml file.) A prefix of ww indicates that
all the WebWork tags will start with ww:.

 As you can see, this is a simple JSP page that uses one custom WebWork tag:
property. The property tag takes a value attribute and attempts to extract the
content of that expression from the action. Because you created a getMessage()
method in the action, a property value of message results in the return value of a
getMessage() method call. Save this file in the root of your web application, and
call it hello.jsp.

 Again, this example is extremely basic. In later chapters, we’ll go over many
other WebWork tags that can help you create dynamic web sites without using any
Java code in your JSPs, using a simple expression language called the Object
Graph Navigation Language (OGNL).
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Your first action 27
2.3.3 Configuring your new action

Now that you’ve created both the action class and the view, the final step is to tie
the two together. You do so by configuring the action to a particular URL and map-
ping the SUCCESS result to the JSP you just created. Recall that when you created
the skeleton layout, you generated a nearly empty xwork.xml file. You’ll now add
some meaningful values to this file and see the final WebWork action work.

 When you’re configuring a WebWork action, you must know three things:

■ The full action class name, including the complete package

■ The URL where you expect the action to exist on the Web

■ All the possible result codes the action may return

As you know from the previous Java code, the action class name is
ch2.example1.HelloWorld. The URL can be anything you like; in this case, we
choose /helloWorld.action. You also know that the only possible result code for
this action is SUCCESS.

 Armed with this information, let’s modify xwork.xml to define the action:

<!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-1.0.dtd">
 <xwork>
 <include file="webwork-default.xml"/>

 <package name="default" extends="webwork-default">
 <default-interceptor-ref name="completeStack"/>

 <action name="helloWorld"
 class="ch2.example1.HelloWorld">
 <result name="success">hello.jsp</result>
 </action>
 </package>
</xwork>

In this file, you’ve now made a direct correlation between an action name (hel-
loWorld) and the class you wish to be executed. So, any HTTP request to /hel-
loWorld.action will invoke your new action class. You also made a direct
correlation between the result code SUCCESS (a String constant for "success")
and the JSP that you just created to display the message.

 With xwork.xml saved, the action class compiled and copied to WEB-INF/
classes, and hello.jsp added to the root of the web application, you’re ready to fire
up the application server and try this new action. Consult your application
server’s documentation for detailed instructions on how to start, stop, and deploy
web applications like this one.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

28 CHAPTER 2

HelloWorld, the WebWork way
And that’s it! You can now point your web browser to the action URL, such as
http://localhost/helloWorld.action,3 to see the final product shown in figure 2.1.

NOTE The message returned by this action isn’t very friendly to the eye: The
time (displayed as 1073357910) is pretty hard to read. Don’t despair—in
chapter 14, “Internationalization,” we’ll show you how easy it is to display
locale-specific dates to the user.

As you can see, this isn’t the most exciting web page, so let’s spice it up. You’ll
make the greeting generated by this action customizable by letting users enter
their name and be personally greeted. Up to this point, you’ve seen an action that
is read-only; now you’ll learn how to handle inputs and read-write actions.

2.4 Dealing with inputs

Now that you know how to build a simple action, let’s take it up one notch and
add the ability to personalize the message. You’ll build on the existing code. First,
create another HTML page that asks for the user’s name. Create the following file,
name.jsp, in the same directory as hello.jsp:

3 Depending on the servlet container and the configuration, this URL could include a port number like
8080.

Figure 2.1
The first "Hello World" action
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Dealing with inputs 29
<html>
 <head>
 <title>Enter your name</title>
 </head>
 <body>
 Please enter your name:
 <form action="helloWorld.action">
 <input type="textfield"
 name="name"/>
 <input type="submit"/>
 </form>
 </body>
</html>

Note that the form is being submitted to helloWorld.action—the same location
you used to display the previous example. Since you’re expanding on the previous
example, you’ll continue to use this location. Another important point is that the
textfield input is named name. Just as message was the property you used to display
(get) the message, name is the property you use to write (set) the user’s name.

 Next, you need to tweak the HelloWorld action to construct the personalized
message. The new action code looks like this:

package ch2.example1;

 import com.opensymphony.xwork.Action;

 public class HelloWorld implements Action {
 private String message;
 private String name;

 public String execute() {
 message = "Hello, " + name + "!\n";
 message += "The time is:\n";
 message += System.currentTimeMillis();
 return SUCCESS;
 }

 public String getMessage() {
 return message;
 }

 public void setName(String name) {
 this.name = name;
 }
bbbbbpublic String getName(){
bbbbbbbbbreturn this.name;
bbbbb}
}

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

30 CHAPTER 2

HelloWorld, the WebWork way
This code adds two things to the previous example. The first new item is a field
and corresponding JavaBean-style set method named name. This must match
exactly the name of the textfield you used in name.jsp. You also personalize the
message that is constructed by including the name in the message during the exe-
cute() method. In WebWork, values are always set (via the setXxx() methods such
as setName()) before the execute() method is called. That means you can use the
variables in the execute() method while assuming they have already been popu-
lated with the correct value.

 That’s it! Recompile the action class, and start your application server. Now
point your web browser to http://localhost/name.jsp, enter a name, and see that
the message (shown in figure 2.2) is now personalized.

 As easy as that was, a few problems can result. For instance, what if the user
doesn’t enter any data? The greeting will end up saying “Hello, !” Rather than
show an ugly message, it might be better to send the user back to the original
page and ask them to enter a real name. Let’s add some advanced control flow to
this action.

Figure 2.2
The new greeting is personalized. In
this case, we used the name Patrick
as the input.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced control flow 31
2.5 Advanced control flow

Because you want the action to show either the message result (hello.jsp) or the
original input form (name.jsp), you have to define another result in xwork.xml.
You do this by changing the action entry to the following:

<action name="helloWorld"
 class="ch2.example1.HelloWorld">
 <result name="success">hello.jsp</result>
 <result name="input">name.jsp</result>
</action>

Now, if the execute() method in the HelloWorld action returns the String “input”
(also defined as a constant, INPUT, in the method), the result of the action will be
name.jsp rather than hello.jsp. In order to spice up this example a little more,
let’s also not allow the String “World” to be entered as a name. Editing the action
to support these checks results in the following execute() method:

 public String execute() {
 if (name == null || "".equals(name)
 || "World".equals(name)) {
 return INPUT;
 }

 message = "Hello," + name + "!\n";
 message += "The time is:\n";
 message += System.currentTimeMillis();
bbbb}

If the name doesn’t pass your validation rules, you return a result code of INPUT
and don’t prepare the message. With just a couple lines of code, the control flow
of this action has doubled the number of possible results the action can display.
However, this still isn’t as interesting as it could be, for two reasons:

■ When you return to the INPUT, users can’t see why they’re back on this page.
Essentially, there is no error message.

■ Users can’t tell what they originally entered as the name value. It might be
nothing, or it might be World. It would be better if the input box displayed
what the user original entered.

In order to address both concerns, let’s modify the input result to display an error
message. You can reuse the message property from the success result. Then, add
logic to display an error message as well as make the textfield input display the
previous name in the event of an error. With the modifications in place, name.jsp
now looks like this:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

32 CHAPTER 2

HelloWorld, the WebWork way
<%@ taglib prefix="ww" uri="webwork" %>
<html>
 <head>
 <title>Enter your name</title>
 </head>
 <body>
 <ww:if test="message != null">

 <ww:property value="message"/>

 </ww:if>
 Please enter your name:
 <form action="/helloWorld.action">
 <input type="textfield"
 name="name"
 value="<ww:property value="name"/>"/>
 <input type="submit"/>
 </form>
 </body>
</html>

This code adds two significant things to the JSP. First, if an error message exists,
it’s printed in a red font. You use the ww:if tag to see whether the message prop-
erty exists; if it does, you print it. If a user goes to this page directly, the test fails,
and no error message is reported—exactly the behavior you’re striving for.

 Second, you add a value attribute to the input HTML element. This attribute
defines the default value to be displayed when the page is first loaded. Because the
ww:property tag returns an empty String if a property isn’t found, it also results in
the desired behavior. After the action has been submitted once, the property
exists. As such, if the INPUT result occurs, the value previously entered is displayed.

 Finally, let’s modify the action’s execute() method one more time. This time,
you’ll make sure an error message is set in the message property just before the
action returns with the INPUT code. The new method looks like this:

public String execute() {
 if (name == null || "".equals(name)
 || "World".equals(name)) {
 message = "Blank names or names of 'World' are not allowed!";
 return INPUT;
 }

 message = "Hello," + name + "!\n";
 message += "The time is:\n";
 message += System.currentTimeMillis();
 return SUCCESS;
}

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Letting WebWork do the work 33
The most important thing to note here is that the execute() method is prevented
from finishing and returns with INPUT if the name fails the validation check.

 With these small changes, you’re ready to try the new behaviors. Start your
application server, and point your browser to http://localhost/name.jsp. Enter in
the value World for the name textfield and submit the form, and you should see
the screen shown in figure 2.3.

 This type of control flow, validation, and error reporting is often required for
forms in web applications. Rather than leave the developer to handle these tasks,
WebWork provides help that does almost all the work for you. In the next section,
we’ll explore how you can convert this example to use the reusable components
that WebWork provides.

2.6 Letting WebWork do the work

One of the most common tasks developers want to perform when building web appli-
cations is to build input widgets, such as drop-down selection boxes or textfields, that
all have a standard behavior. This includes displaying error messages about data as
well as ensuring the original value is displayed in the case of an error. In addition,
developers almost always want the widgets to have a common look and feel.

 Because this is such a common need, WebWork provides support for it. Rather
than code all the if-else error message logic in your JSPs and actions, you can take

Figure 2.3
The “Hello World” example when
an invalid name is entered
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

34 CHAPTER 2

HelloWorld, the WebWork way
advantage of WebWork’s helper classes and JSP tags to do the work for you. You’ll
now convert the previous example to use these classes and tags so you can see the
most common way WebWork applications are built.

2.6.1 Taking advantage of ActionSupport

You’ll start by converting the HelloWorld action to take advantage of a helper class
called ActionSupport. Rather than implement the com.opensymphony.xwork.Action
interface, you’ll modify your class to extend com.opensymphony.xwork.ActionSup-
port. ActionSupport provides a method called addFieldError() that you can use to
report error messages. Listing 2.2 shows the modified class.

package ch2.example1;

import com.opensymphony.xwork.ActionSupport;

public class HelloWorld extends ActionSupport {
 private String message;
 private String name;

 public String execute() {
 if (name == null || "".equals(name)
 || "World".equals(name)) {
 addFieldError("name",
 "Blank names or names of 'World' are not allowed!");
 return INPUT;
 }

 message = "Hello," + name + "!\n";
 message += "The time is:\n";
 message += System.currentTimeMillis();
 return SUCCESS;
 }

 public String getMessage() {
 return message;
 }

 public void setName(String name) {
 this.name = name;
 }
}

Listing 2.2 HelloWorld.java, modified to extend ActionSupport
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Letting WebWork do the work 35
As you can see, little has changed. In fact, only two lines have been modified: The
action now extends ActionSupport, and you no longer set the error message to
the message property but rather call addFieldError(), which is provided by
ActionSupport. This new method takes two arguments:

■ name—The property to which this error message relates

■ message—The error message itself

Because the error message is about the name property, you pass the String “name”
as the first argument. The second argument is the same error message you previ-
ously assigned to the message property. Although there isn’t a significant differ-
ence between the old action code and the new code, keep in mind that you’re
only reporting an error on a single property. Imagine that you have 10 or 15 prop-
erties—do you really want to maintain 10 or 15 error message properties as well?

2.6.2 Intermediate modifications to the JSP

The next step is to modify the JSP to take advantage of the new ActionSupport
class structure. Because ActionSupport provides a method, getFieldErrors(),
that returns a java.util.Map of error messages, the new JSP looks like this:

<%@ taglib prefix="ww" uri="webwork" %>
<html>
 <head>
 <title>Enter your name</title>
 </head>
 <body>
 <ww:if test="fieldErrors['name'] != null">

 <ww:property value="fieldErrors['name']"/>

 </ww:if>
 Please enter your name:
 <form action="/helloWorld.action">
 <input type="textfield"
 name="name"
 value="<ww:property value="name"/>"/>
 <input type="submit"/>
 </form>
 </body>
</html>

The code includes only one change: In the area where the error message is
printed, the value attribute has changed from message to fieldErrors['name'].
Right about now, you may be asking yourself, “Didn’t they say this was supposed to
be better?” You’re right that this code looks more confusing. Fortunately, you’re
not finished changing the JSP. Don’t worry; it gets easier—a lot easier.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

36 CHAPTER 2

HelloWorld, the WebWork way
 We’re showing you this JSP so you can begin to understand what’s going on in
the background. Because ActionSupport has a field called fieldErrors that is a
Map, you can reference values in that Map by using the notation map[key]. Because
the key is always the first argument of the addFieldError() method call, you pass
in a String “name”. Now that you have a basic understanding of what’s going on,
let’s create the final version of the JSP.

2.6.3 Exploring the UI tag library

At this point, the change you made to the JSP has added more complexity rather
than made it easier to work with. But you’re not finished with it. WebWork comes
with a complete UI tag library that helps you quickly write web applications with a
standard look and feel. Let’s add a UI tag to take care of the textfield input as well
as display the error message:

<%@ taglib prefix="ww" uri="webwork" %>
<html>
 <head>
 <title>Enter your name</title>
 </head>
 <body>
 <ww:form action="helloWorld">
 <ww:textfield label="Please enter your name:"
 name="name"/>
 <input type="submit"/>
 </ww:form>
 </body>
</html>

You may be looking at the previous JSP and wondering, “Where did everything
go?” Without getting into too much detail (you’ll learn all about UI tags in chap-
ter 11), we’ll explain what the new ww:textfield tag does.

 The WebWork UI tag library contains a tag for every HTML form element
(select, textfield, checkbox, and so on), and you can even write custom compo-
nents easily. Each tag provides a standard label, error reporting, font coloring, and
more. In this case, you’ve replaced the hand-coded HTML for error reporting,
labeling, and font coloring with a single call to a UI tag that does all this for you.

 These tags assume that the action extends ActionSupport (or at least provides
a getFieldErrors() method) to show error messages for that field. This is the pri-
mary reason that 99 percent of all WebWork actions extend ActionSupport rather
than implement the Action interface. Using the UI tag library and ActionSupport,
you can create large, complex forms in almost no time.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 37
2.7 Summary

In this chapter, we showed you how to build a simple web application and then
expand on it to introduce more complex flow control and validation rules. By
doing this, you discovered what a typical WebWork application looks like—one
that takes advantage of ActionSupport and the UI tag library. Whereas the first two
examples were simple in nature, the third example provided more functionality
and a better look and feel, all while containing less code. The idea that less is
more and that simplicity can be achieved through component reuse is a theme in
WebWork that will reoccur throughout this book.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

 Setting up WebWork
This chapter covers

■ Configuring actions, results, and interceptors

■ Describing required and optional libraries

■ Creating reusable WebWork modules

■ Configuring WebWork behaviors and features

■ Using the default configuration that comes
with WebWork
38

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Configuring actions, results, and interceptors 39
In chapter 2, “HelloWorld, the WebWork way,” you built a simple WebWork appli-
cation. In addition to creating the necessary Java and JSP code, you also config-
ured web.xml and xwork.xml. In this chapter, we’ll dive deeper into WebWork’s
configuration and setup. This includes the basic concepts of actions, results, and
interceptors—all of which are configured in xwork.xml. We’ll also look at how you
can split large applications into smaller modules through the use of packages,
namespaces, and includes.

 In addition to xwork.xml, we’ll discuss the other two configuration files neces-
sary to use WebWork: web.xml and webwork.properties. As you saw in chapter 2,
web.xml must be configured to instruct the servlet container that you wish to use
WebWork. In addition, you use webwork.properties to configure specific features
for WebWork, such as how certain tags render and how file uploads happen.

 Finally, we’ll explain how to package a WebWork-powered web application,
including which JAR files are required and which are optional. By the end of this
chapter, you should have a good grasp of the core concepts of WebWork. In addi-
tion, you’ll know how to create a new project that uses WebWork.

3.1 Configuring actions, results, and interceptors

Recall that when you built the simple “Hello World” application, you created both
an action and a result: the action in Java and the result in JSP. You tied them
together in the xwork.xml file. In addition to results and actions, WebWork
includes a third important type of object: interceptors. In this section, we’ll dis-
cuss what these objects do and how you can configure them to work together.

3.1.1 Overview of terminology

At the core of WebWork are actions. Actions are responsible for implementing the
logic for your web-based application. They’re implemented in Java and almost
always extend the class com.opensymphony.xwork.ActionSupport. Actions are
invoked whenever an HTTP request is made to WebWork’s ServletDispatcher. In
the “Hello World” example, requests to /hello.action invoked HelloWorld’s
execute() method.

 Once an action has finished executing, it returns a result code, such as SUCCESS,
INPUT, or error. These result codes tell WebWork what to do next, as defined in
xwork.xml. This next step is called a result. WebWork supports many different result
types, which allow you to use your choice of template technologies, such as JSP,
Velocity, or FreeMarker. In the “Hello World” example, you implemented your
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

40 CHAPTER 3

Setting up WebWork
results in JSP and as such used the servlet dispatcher result type, which is used to dis-
patch to a JSP or another servlet.

 Surrounding the execution of an action and its result is an interceptor. An inter-
ceptor is invoked before (and possibly after) the action is executed and can con-
trol how or whether the action is executed. Interceptors provide loose coupling of
logic such as security, logging, and validation. They can also do work after the
action and result have finished—allowing for them to provide functionality such
as database transactions.

 WebWork allows for multiple interceptors to be grouped together in the form
of an interceptor stack. These stacks can be reused with many different actions, let-
ting you provide sweeping behavior modifications across many different actions.
We’ll discuss interceptors, including the default ones bundled with WebWork, in
chapter 5 (“Adding functionality with interceptors”). For now, you’ll learn how to
configure these three critical parts of WebWork.

3.1.2 Actions

At the most basic level, configuring an action requires only two pieces of informa-
tion: the action name and the action class. When these two items are added to
xwork.xml, an action mapping is created. Listing 3.1 contains the most basic
xwork.xml file possible; the name login is mapped to the Login class.

 <!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-1.0.dtd">
 <xwork>
 <package name="default">
 <action name="login"

ggggggggggclass="org.hibernate.auction.web.actions.users.Login"/>
 </package>
 </xwork>

Except in a few rare cases when you’re using the <ww:action/> tag (discussed in
chapter 9, “Tag libraries”), an action without results isn’t very useful. An action-
result mapping must be provided before your action can display anything to a
user. Although WebWork lets you create your own result types (as you’ll see in sec-
tion 3.1.3), it also comes with a common set of result types that’s typically all you’ll
need. Listing 3.2 shows the login action again, but this time with the result map-
pings for the SUCCESS and INPUT result codes.

Listing 3.1 Action mapping at the most basic level
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Configuring actions, results, and interceptors 41
b<!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-1.0.dtd">
 <xwork>
 <include name="webwork-default.xml"/>
 <package name="default" extends="webwork-default">
 <default-interceptor-ref name="defaultStack"/>
 <action name="login"
 class="org.hibernate.auction.web.actions.users.Login">
 <result name="input">login.jsp</result>
 <result name="success"
 type="redirect">/secure/dashboard.action</result>
 </action>
 </package>
 </xwork>

This example includes two important changes: the inclusion of webwork-
default.xml and the addition of two result elements. Let’s set aside discussing web-
work-default.xml and packages for the moment and focus on the new result ele-
ments. Nested in the action mapping, you’ve added two result mappings. Each result
mapping has a required name, an optional type, and a value. When a result type isn’t
specified, the default result type (as defined in the package or superpackage) is used.
In this case, the default result type is dispatcher, as dictated by webwork-default.xml.

 Here, if the named result returned by the Login’s execute() method is SUC-
CESS, then the user will be redirected to a dashboard action (not yet defined). If
the return result is INPUT, the browser will display the login.jsp page again to
prompt the user to fix any invalid data, such as a bad username or password. Note
that the INPUT result maps to a relative path, whereas the SUCCESS result maps to
an absolute path. Your result mappings can be absolute or relative; this will
become more important when we begin to discuss the notion of namespaces later
in this chapter.

NOTE From this point on, our examples of xwork.xml won’t include the Docu-
ment Type Definition (DTD) DOCTYPE at the start of the file. We recom-
mend that you always specify the DTD so you get the added benefit of
XML validation; but for the sake of brevity, we won’t reprint it every time.
We may also exclude irrelevant parts of xwork.xml, such as packages and
other actions, in certain examples.

Listing 3.2 Login action with two result mappings
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

42 CHAPTER 3

Setting up WebWork
Aliasing actions
Remember that each action element in xwork.xml is an action mapping. Nothing
stops you from mapping multiple names to the same action class. This is often a
great way to reuse the same action logic but provide different results or intercep-
tor logic, a technique called action aliasing. Even more powerful than providing
two action aliases for the same action’s execute() method, WebWork also lets you
provide alternative methods in your action classes to which you can alias.

 Recall that WebWork is an implementation of a generic command pattern
framework (see the appendix, “WebWork architecture,” for detailed information
on this topic). Each WebWork action encapsulates a single instruction, or com-
mand. Although this is typically enough, sometimes you may have many actions
that perform similar tasks. You can end up with many classes that have a similar
form, especially if they all deal with the same inputs and outputs. This situation is
most common when you’re writing actions to deal with Create, Read, Update, and
Delete (CRUD) data operations.

 By default, WebWork invokes the execute() method of your action classes.
However, WebWork lets you pass in an optional method attribute in your action
mappings that indicates which method WebWork should invoke. The method
specified must adhere to the same format that the execute() method does: return
a String result code, and optionally throw any type of Exception (uncaught
exceptions are handled by WebWork). Listing 3.3 shows two aliases of the Search
action class.

g<action name="search" class="org.hibernate.auction.web.actions.Search">
 <interceptor-ref name="default"/>
 <interceptor-ref name="execAndWait"/>
 <result name="wait">search-wait.jsp</result>
 <result name="success" type="redirect">moreResults.action</result>
 </action>

 <action name="moreResults"
 class="org.hibernate.auction.web.actions.Search"
 method="moreResults">
 <result name="success">search.jsp</result>
 </action>

Using aliases, you implement these two search functions using one class rather
than two separate classes. Disregard the search action’s interceptor configuration

Listing 3.3 Search action class aliased twice with different configurations
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Configuring actions, results, and interceptors 43
for now; we’ll go over interceptors in a moment. Listing 3.4 shows the Search class
(some helper methods are omitted).

 public class Search extends ActionSupport
 implements ItemDAOAware, SessionAware {
 public static final String RESULTS = "__search_results";

 List items;
 String query;
 int page = 1;
 int pages;

 ItemDAO itemDAO;
 Map session;

 public String execute() throws Exception {
 List results = itemDAO.search(query);
 session.put(RESULTS, results);
 cutPage(results);

 return SUCCESS;
 }

 public String moreResults() throws Exception {
 List results = (List) session.get(RESULTS);
 cutPage(results);

 return SUCCESS;
 }

 // helper methods omitted
 }

Here you see the two methods used in the two action mappings: execute() and
moreResults(), both of which adhere to the requirement that they return a
String result code.

NOTE WebWork maps methods in xwork.xml two ways: by looking for any meth-
od with the name provided in the method attribute and also for any method
of the format doMethod(). In listing 3.4, WebWork looks for the method
moreResults() first; if it isn’t found, it then looks for a method named do-
MoreResults(). This is partly because of legacy behavior from older ver-
sions of WebWork but also because some commonly desired method
aliases, such as default, can’t be used due to the Java language syntax.

Listing 3.4 Search action with two methods mapped to different action aliases
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

44 CHAPTER 3

Setting up WebWork
Because WebWork uses reflection to execute any method other than execute(),
you should take care when refactoring actions that contain aliases. Although IDEs
such as IDEA and Eclipse contain powerful tools for refactoring, they typically
have no way of updating the action mapping with the new method name. Conse-
quently, when you’re creating a method intended to be used as an alias, the name
of the method should describe what action it performs and the method should be
clearly marked as a method intended for use as an alias.

Aliasing without configuration
It’s common to want to use a method alias for an action without wishing to create
a new action mapping in xwork.xml. WebWork makes this easy by providing a spe-
cial syntax for requesting actions from a web browser. Typically, actions are
requested in the form of name.action, where name is the name of the action map-
ping. WebWork also supports the form name!method.action.

 When a request is made in this form, such as to search!moreResults.action,
the search action mapping is used. Everything about the action execution is the
same as a request to search.action would be, except for the fact that moreRe-
sults() is invoked instead of executed().

 This feature is commonly used when you wish to use the same action mapping
without the actual action execution to show the initial, or default, view of a form.
For example, a user may be sent to the URL login!default.action when initially
logging in. The method doDefault() in the action then returns INPUT, which
directs the user to login.jsp. Then, in login.jsp, the form submits to login.action,
which invokes the execute() method this time around. If the data is invalid or
missing, the method returns INPUT, causing the page flow to repeat. Otherwise,
SUCCESS is returned, and the flow completes.

NOTE Because any method can be executed from the URL, a malicious user can
easily invoke a method you may not intend to be invoked. Always assume
that action methods are completely open for users to call, and never ex-
pose a way for an attacker to gain access to critical data. Always protect
your data and business logic with a solid security layer, especially when
building public-facing web applications.

Customizing actions with parameters
Actions can be customized, or parameterized, by using the <param> element. Param-
eterized actions are especially useful if you have many actions that perform similar
tasks. Rather than having to write multiple actions, you can write a single action
that varies its behavior based on parameters provided.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Configuring actions, results, and interceptors 45
 For example, suppose you’ve written an action to handle Web Service (SOAP)
requests. You may want to bind different instances of this action to different URLs.
You may also want a separate timeout value for each action. Using the <param> tag,
you can use the same WebServiceAction. Listing 3.5 shows a parameterized action
configuration.

 <action name="service" class="com.example.WebServiceAction">
 <result name="success">/success.jsp</result>
 <param name="url">http://somesite.com/service.wsdl</param>
 <param name="timeout">30</param>
 </action>

In this example, you created two parameters: url and timeout. In order for these
parameters to be set on the action, you must provide JavaBean-style setters, as
shown in listing 3.6.

 public class WebServiceAction {
 private String url;
 private long timeout;

 public void setUrl(String url) {
 this.url = url;
 }

 public void setTimeout(long timeout) {
 this.timeout = timeout;
 }

 public String execute() {
 // perform task here
 }
 }

When the action executes, WebWork automatically calls these setters with the value
specified in the action mapping. Remember that the values in the action mapping
are in the form of a string and therefore contain no data-typing information. For
example, the timeout parameter is the string “30”. But WebWork does its best to con-
vert this value to the type represented in the action—in this case, long. This is called

Listing 3.5 Parameterizing an action with the param element

Listing 3.6 Setters for the parameters shown in listing 3.5
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

46 CHAPTER 3

Setting up WebWork
automatic type conversion and it’s a useful WebWork feature. Consult chapter 12,
“Type conversion,” for more information on advanced type conversion.

NOTE All the examples thus far assume that the complete xwork.xml file repre-
sented in listing 3.2 is still being used, with the inclusion of webwork-
default.xml, the default-interceptor-ref, and the extension of the web-
work-default package. This is the case because webwork-default.xml,
which is covered later in this chapter, provides a set of default result types
and interceptors that are commonly used.

Now that you see how action mappings are configured, let’s examine result map-
pings and result types.

3.1.3 Results

Consider listing 3.2, reprinted here:

 <xwork>
 <include name="webwork-default.xml"/>
 <package name="default" extends="webwork-default">
 <default-interceptor-ref name="defaultStack"/>
 <action name="login"
 class="org.hibernate.auction.web.actions.users.Login">
 <result name="input">login.jsp</result>
 <result name="success"
 type="redirect">/secure/dashboard.action</result>
 </action>
 </package>
 </xwork>

In this example, you see two results: One doesn’t specify a type, and the other is type
redirect. It’s important to remember that result configuration is made up of two
parts: result mappings, which you’ve already seen associated with an action mapping;
and result types. We’ll now look at how result types are configured. Results and result
configuration are explained in much more detail in chapter 7, “Using results.”

Configuring result types
Every package in WebWork can be associated with one or more result types.
Using listing 3.2 as a starting point, listing 3.7 shows how a new result type might
be configured.

 <xwork>
 <include name="webwork-default.xml"/>
 <package name="default" extends="webwork-default">

Listing 3.7 With two result types configured
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Configuring actions, results, and interceptors 47
 <result-types>
 <result-type name="dispatcher" class="..." default="true"/>
 <result-type name="redirect" class="..."/>
 </result-types>

 <default-interceptor-ref name="defaultStack"/>

 <action name="login"
 class="org.hibernate.auction.web.actions.users.Login">
 <result name="input">login.jsp</result>
 <result name="success"
 type="redirect">/secure/dashboard.action</result>
 </action>
 </package>
 </xwork>

In this example, two result types are configured for the package default. We’ve
left out the values for the class attribute for the sake of brevity—you’ll see the
real values in a moment when we discuss webwork-default.xml.1 The first result
type, dispatcher, is declared as the default result. That means whenever a result
mapping in this package doesn’t specify a result type, the dispatcher result type is
used. The second result type, redirect, is also declared.

 Looking at the login action in listing 3.7, you can see how both result types are
being used. The INPUT mapping uses the dispatcher result type implicitly,
whereas the SUCCESS mapping uses the redirect result type explicitly. Both forms
are acceptable, but using the implicit default result helps reduce the amount of
configuration required.

Reducing configuration duplication with global result mappings
Another way to reduce the amount of configuration in xwork.xml is through the
use of global result mappings. Web applications often have a common set of
results that are used across many actions. Common results include redirects to
login actions and permission-denied pages. Rather than define each of these
results in every action mapping, WebWork lets you centralize the definitions for
the common pages, as shown in listing 3.8.

1 This is just an example of defining result types. In a real application, you don't have to repeat the defi-
nition of these result types, which are already defined in webwork-default.xml.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

48 CHAPTER 3

Setting up WebWork
g<package name="default" extends="webwork-default">
 <global-results>
 <result name="login"
 type="redirect">/login!default.action</result>
 <result name="unauthorized">/unauthorized.jsp</result>
 </global-results>
 <!-- other package declarations -->
 </package>

You can define any number of global result mappings for each package. Because
global results are searched after local results, you can override any global result
mapping by creating a local result mapping for a specific action. Recall that
results can point to locations using relative or absolute paths. Because you may
not know the context in which they’re being invoked, it’s best to use absolute
paths for global results, as in listing 3.8.

 Let’s look next at interceptors, a concept we haven’t spent much time on until
now.

3.1.4 Interceptors

Recall that interceptors wrap around the execution of an action and a result. As
with results, interceptors are important for customizing and using WebWork, but
you typically don’t need to use them when you’re doing day-to-day development
of new actions. Typically, you’ll create a group, or stack, of interceptors that you’ll
then apply globally to all your actions. Before we can discuss stacks and default
interceptors, let’s look at how an interceptor is defined. For a more in-depth dis-
cussion of interceptors, see chapter 5.

Defining interceptors
As with results, each package may contain a set of interceptors. To define an inter-
ceptor, you need to first create an <interceptors> element within your package
that contains your interceptors. Once you’ve done that, you can create your inter-
ceptors by using the <interceptor> element and specifying a reference name
along with the implementation class.

 Listing 3.9 provides the sample configuration for defining two interceptors for
the default package: timer and logger.

Listing 3.8 Global result mappings for login and unauthorized result codes
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Configuring actions, results, and interceptors 49
 <package name="default" extends="webwork-default">
 <interceptors>
 <interceptor name="timer" class=".."/>
 <interceptor name="logger" class=".."/>
 </interceptors>

 <!-- result-types, global-results, and action mappings -->
 </package>

Class names have been left out for the moment. Once you’ve defined the interceptor
names, you can configure action mappings in the package to use the interceptors,
as shown in listing 3.10.

 <package name="default" extends="webwork-default">
 <interceptors>
 <interceptor name="timer" class=".."/>
 <interceptor name="logger" class=".."/>
 </interceptors>

 <action name="login"
 class="org.hibernate.auction.web.actions.users.Login">
 <interceptor-ref name="timer"/>
 <interceptor-ref name="logger"/>
 <result name="input">login.jsp</result>
 <result name="success"
 type="redirect">/secure/dashboard.action</result>
 </action>
 </package>

When the login action is invoked, the timer and logger interceptors are invoked
as well.

 Naming individual interceptors can become tedious, especially considering
that WebWork provides more than 10 commonly used prebuilt interceptors. For-
tunately, you can group interceptors together.

Grouping interceptors as stacks
With most web applications, you’ll find yourself wanting to apply the same inter-
ceptors over and over. Rather than declare numerous interceptor-refs for each
action, you can bundle these interceptors together using an interceptor stack. An

Listing 3.9 Two sample interceptors defined for the default package

Listing 3.10 The login action, configured to use two interceptors
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

50 CHAPTER 3

Setting up WebWork
interceptor stack consists of a set of interceptors that are executed in the same
order they’re defined in the stack. In listing 3.11, the timer and logger intercep-
tors are grouped into a stack called myStack.

 <interceptors>
 <interceptor name="timer" class=".."/>
 <interceptor name="logger" class=".."/>
 <interceptor-stack name="myStack">
 <interceptor-ref name="timer"/>
 <interceptor-ref name="logger"/>
 </interceptor-stack>
 </interceptors>

Consider listing 3.10 again, as shown in listing 3.12, this time using the stack
instead of the individual interceptors.

 <package name="default" extends="webwork-default">
 <interceptors>
 <interceptor name="timer" class=".."/>
 <interceptor name="logger" class=".."/>
 <interceptor-stack name="myStack">
 <interceptor-ref name="timer"/>
 <interceptor-ref name="logger"/>
 </interceptor-stack>
 </interceptors>

 <action name="login"
 class="org.hibernate.auction.web.actions.users.Login">
 <interceptor-ref name="myStack"/>
 <result name="input">login.jsp</result>
 <result name="success"
 type="redirect">/secure/dashboard.action</result>
 </action>
 </package>

Note that when you compare listings 3.10 and 3.12, individual interceptors and
interceptor stacks are both referenced as interceptor-refs. This is the case
because WebWork doesn’t distinguish between the two when referencing intercep-
tors, making it easy to define one stack by including another stack and adding to it.

Listing 3.11 Grouping the timer and logger interceptors

Listing 3.12 The login action, configured to use the myStack interceptor stack
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Configuring actions, results, and interceptors 51
Reducing configuration duplication with default interceptor-refs
As with global results, interceptors also have a way to declare a default interceptor
stack, allowing you to avoid repeating the same information for every action map-
ping. For every package, you can establish a default interceptor-ref, as shown in
listing 3.13.

 <package name="default" extends="webwork-default">
 <interceptors>
 <interceptor name="timer" class=".."/>
 <interceptor name="logger" class=".."/>
 <interceptor-stack name="myStack">
 <interceptor-ref name="timer"/>
 <interceptor-ref name="logger"/>
 </interceptor-stack>
 </interceptors>

 <default-interceptor-ref name="myStack"/>

 <action name="login"
 class="org.hibernate.auction.web.actions.users.Login">
 <result name="input">login.jsp</result>
 <result name="success"
 type="redirect">/secure/dashboard.action</result>
 </action>
 </package>

Now, each action in this package no longer needs to define any interceptors. How-
ever, it’s extremely important to note that if even one interceptor is defined, the
default interceptor reference won’t be used. This is a common mistake that many
new WebWork users commit: They think they can add interceptor-refs in an
action mapping, which will be invoked in addition to the default interceptor-
ref. This is incorrect: The new interceptor-refs replace the default reference, and
only those will be invoked. Listing 3.14 shows how to properly add a single inter-
ceptor for an individual action mapping.

 <package name="default" extends="webwork-default">
 <interceptors>
 <interceptor name="timer" class=".."/>
 <interceptor name="logger" class=".."/>
 <interceptor name="foo" class=".."/>
 <interceptor-stack name="myStack">

Listing 3.13 Defining the default interceptor stack as myStack

Listing 3.14 The proper way to add an interceptor for an individual action mapping
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

52 CHAPTER 3

Setting up WebWork
 <interceptor-ref name="timer"/>
 <interceptor-ref name="logger"/>
 </interceptor-stack>
 </interceptors>

 <default-interceptor-ref name="myStack"/>

 <action name="login"
 class="org.hibernate.auction.web.actions.users.Login">
 <interceptor-ref name="foo"/>
 <interceptor-ref name="myStack"/>
 <result name="input">login.jsp</result>
 <result name="success"
 type="redirect">/secure/dashboard.action</result>
 </action>
 </package>

In this example, the login action is configured to work with both the foo intercep-
tor and the entire myStack interceptor. If no interceptors were defined, then only
the myStack interceptor reference would be used. If only the foo interceptor were
defined for the login action, then only the foo interceptor would be used.

 More complete information on interceptors, interceptor stacks, and configura-
tion is provided in chapter 5. We’ve completed the tour of configuring the three
core objects of WebWork: actions, results, and interceptors. It’s time to look at more
advanced configuration, including the concept of packages and namespaces.

3.2 Advanced configuration

You’ve seen the basic configuration that WebWork provides; thus far, everything is
focused around individual action mappings. Once an action is defined in
xwork.xml, you can apply result mappings and interceptor references to it. How-
ever, WebWork goes beyond focusing on individual action mappings and provides
ways to group actions together into packages and namespaces, which can then in
turn be stored in separate files to promote modular design. In this section, we’ll
discuss the advanced configuration WebWork provides and explain why these
advanced features are useful when you’re building large applications.

3.2.1 The xwork.xml DTD

Before we get started with advanced configuration topics, let’s examine the Web-
Work DTD file. A Document Type Definition (DTD) file defines the structure of an
XML document type. The contents of the DTD, currently version 1.0, are located
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced configuration 53
at www.opensymphony.com/xwork/xwork-1.0.dtd. Feel free to look at the DTD
and get a feel for how WebWork groups actions, results, and interceptors together
in packages. We’ve also provided a visual representation of the DTD in figure 3.1.

 As you can see in figure 3.1, and as you saw throughout section 3.1, actions,
results, and interceptors are bound by package declarations. It’s time to under-
stand what packages are used for.

3.2.2 Namespaces and packages

WebWork packages are similar to Java packages in many ways. They typically repre-
sent a cohesive set of functionality. They let you simplify maintenance and promote
reusability by providing a means to organize a multitude of actions into a single mod-
ule. Within xwork.xml, all configurations are organized in packages. Each package
contains definitions for all the actions, results, and interceptors that it will use.

 In the CaveatEmptor example WebWork application, three major packages
are defined: default, public, and secure. The default package doesn’t have any
action mappings but instead provides the basis from which the public and

result-types
(0..1)

result-type
(1..*)

interceptors
(0..1)

interceptor Interceptor-stack

param
(0..*)

Interceptor-ref
(1..*)

param
(0..*)

(interceptor|interceptor-stack)1..*

default-interceptor-ref
(0..1)

param
(0..*)

sequence

package

global-results
(0..1)

param
(0..*)

action
(0..*)

param

Interceptor-ref

result

external-ref

(param|result|interceptor-ref|external-ref)0..*

xwork
(include|package)*

include
<<another xml file>>

param
(0..*)

result
(1..*)

Figure 3.1 A visual representation of the WebWork configuration DTD
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

54 CHAPTER 3

Setting up WebWork
secure packages can extend. The public package contains actions that are avail-
able without logging in, whereas the secure package contains protected actions.
Listing 3.15 provides parts of the package definitions.

 <xwork>
 <include file="webwork-default.xml"/>
 <include file="config-browser.xml"/>

 <package name="default" extends="webwork-default">
 <interceptors>
 <interceptor name="auth"
 class="org.hibernate.auction.web.interceptors.

❇❇❇❇❇❇❇❇❇❇❇➥AuthenticationInterceptor"/>
 </interceptors>

 <global-results>
 <result name="login"
 type="redirect">/login!default.action</result>
 </global-results>
 </package>

 <package name="public" extends="default">
 <default-interceptor-ref name="completeStack"/>

 <!-- public facing actions -->
 </package>

 <package name="secure" extends="default" namespace="/secure">
 <interceptor-stack name="default">
 <interceptor-ref name="auth"/>
 <interceptor-ref name="completeStack"/>
 </interceptor-stack>

 <default-interceptor-ref name="default"/>

 <!-- protected actions -->
 </package>
 </xwork>

Using this example, we’ll discuss the purpose of packages and namespaces. Let’s
talk about how the public package in listing 3.15 extends the default package and
what that means.

TIP Package names must be unique. You can’t have two packages with the
same name in a single xwork.xml file.

Listing 3.15 CaveatEmptor’s three main packages: default, public, and secure
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced configuration 55
Extending packages
Unlike a Java package, a WebWork package can extend other packages. A Web-
Work package may specify a comma-separated list of packages to extend in the
extends attribute. When a WebWork package extends another package, it copies
all the definitions—including all interceptor, interceptor-stack, result, and action
configurations—from the package being included and adds them to the defini-
tions it already has. This enables you to centralize the configuration of common
elements and improves the readability of derived packages by reducing the con-
tents of the package to just those items that define the package.

NOTE WebWork packages are evaluated sequentially down the document, so
parent packages must be defined before their child package.

When WebWork looks for specific identifiers within a package, it first looks in the
package declaration and then at the packages that are extended in the order
they’re extended. The first matching identifier is used. This enables derived pack-
ages to override the behavior of a parent package in much the same way that a
derived class can override methods from the parent class.

 To make packages more self-describing, you can mark them as abstract by set-
ting the boolean attribute abstract to true. An abstract package behaves like a non-
abstract package in every way except that WebWork doesn’t map actions in
abstract packages. This makes them useful for setting up default values without
making the actions available from that package.

 For a concrete example of this behavior, see listing 3.15. In this example, the
default package defines a custom interceptor, auth, and also a global result map-
ping for the login result code. Then the public and secure packages extend the
default package and inherit those configuration elements. Let’s look at that
namespace attribute that the secure package defines but the public package doesn’t.

Mapping namespaces
To put it simply, WebWork uses namespaces to map URLs to actions. WebWork
identifies actions by the name of the action and the namespace it belongs to. If no
namespace attribute has been defined by the package, then the default
namespace, "", is assigned. When WebWork receives an incoming request, it
divides the requested URL into a namespace and an action name. WebWork then
attempts to find an action associated with this namespace/action name pair. If no
action exists for the namespace/action name pair, WebWork searches for the
action name in the default namespace.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

56 CHAPTER 3

Setting up WebWork
 For example, let’s say you’ve deployed the CaveatEmptor example application
to the /caveat context path. If your URL looks like this

http://www.somesite.com/caveat/public/categoryPicker.action

then the namespace is /public and the name of the action is categoryPicker. To
find the action, WebWork first searches for an action named categoryPicker in the
namespace /public. Finding none, it then searches for and finds the category-
Picker action in the default namespace. This means the following URL also maps
to the same categoryPicker action:

 http://www.somesite.com/caveat/some/path/categoryPicker.action

Since no action named categoryPicker has been mapped to the namespace /some/
path, WebWork falls back and searches for categoryPicker in the default
namespace (note that WebWork doesn’t then search for the /some namespace—it
searches in only two places). In smaller applications, this isn’t a problem. In larger
applications, you should minimize the number of actions defined in the default
namespace. The most useful actions in the default namespace are those that aren’t
context sensitive, such as logging in/out or having a password reminder sent.

 Unlike package names, which must be unique, more than one package can
map to the same namespace. If the namespace attribute isn’t used to specify which
namespace a package belongs to, WebWork places the package in the default
namespace. Having namespaces declared separately from package names means
that changing a namespace doesn’t break any references used by derived pack-
ages. This is important when you’re trying to provide a flexible approach for man-
aging your web application’s URL resource space.

 For a concrete example of why namespaces are useful, let’s again look at list-
ing 3.15. Recall that the secure package has the namespace /secure. This means
only HTTP requests in the pattern /secure/xxx.action will invoke any actions in
this package. The CaveatEmptor application takes advantage of this behavior and
provides a servlet filter in web.xml that maps to /secure/* and that prevents
unauthenticated users from logging in. In addition to the servlet filter, the secure
package has a second line of defense in the form of the auth interceptor.

 Now that you know what packages and namespaces are all about, it’s time to
come clean: Listing 3.15 isn’t exactly what the real xwork.xml file looks like in
CaveatEmptor. It’s close, but with one major difference: The real version compo-
nentizes the public and secure packages using includes. Let’s talk about how you
can break your application into modules using this technique.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced configuration 57
3.2.3 Componentization using the include tag

As a web application gets larger, so to does the task of managing the project. To
simplify this task, web applications are frequently subdivided into smaller mod-
ules. Often these modules are organized on logical boundaries, such as member
versus administrative functionality. However, the specifics vary depending on a
number of factors including the size and complexity of your application.

 To support breaking applications into more manageable modules, WebWork
provides an include facility to enable you to separate the xwork.xml file into mul-
tiple files. Each of these subfiles can then be associated with a module. You can
include the subfiles into the xwork.xml configuration file using the <include> tag
by specifying the file that contains the subfile. WebWork looks for the specified
file in the application’s classpath. Listing 3.16 shows the complete CaveatEmptor
xwork.xml file.

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-1.0.dtd">
 <xwork>
 <include file="webwork-default.xml"/>
 <include file="config-browser.xml"/>

 <package name="default" extends="webwork-default">
 <interceptors>
 <interceptor name="auth"
 class="org.hibernate.auction.web.interceptors.

❂❂❂❂❂❂❂❂❂❂➥AuthenticationInterceptor"/>
 </interceptors>

 <global-results>
 <result name="login"
 type="redirect">/login!default.action</result>
 <result name="invalid.token">/invalidToken.jsp</result>
 </global-results>
 </package>

 <include file="xwork-public.xml"/>

 <include file="xwork-secure.xml"/>
 </xwork>

This example uses four include declarations. The first is one you’ve already seen:
webwork-default.xml. We’ll discuss this include in more detail in a moment. The

Listing 3.16 CaveatEmptor’s complete xwork.xml file

webwork-default.xml
include

config-browser.xml
include

xwork-public.xml include

xwork-secure.xml include
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

58 CHAPTER 3

Setting up WebWork
next include, config-browser.xml, is a helpful utility that comes with WebWork
and is also discussed in a moment.

 The last two includes, xwork-public.xml and xwork-secure.xml, are a repackaging
of the packages from listing 3.15 into their own standalone XML files. Listing 3.17
contains part of the contents of xwork-secure.xml.

 <!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-1.0.dtd">
 <xwork>
 <package name="secure" extends="default" namespace="/secure">
 <interceptor-stack name="default">
 <interceptor-ref name="auth"/>
 <interceptor-ref name="completeStack"/>
 </interceptor-stack>

 <default-interceptor-ref name="default"/>

 <!-- protected actions -->
 </package>
 </xwork>

In this example, note that xwork-secure.xml is a complete and valid XML docu-
ment that validates against the DTD. This shows that the <include> declaration
doesn’t simply copy the contents of the file over but merges two well-formed Web-
Work configuration files. Thus two modules can be independently developed and
then packaged together at a later date.

 Because WebWork looks for includes in your application’s classpath, you can
place included XML files in the JARs located in your application’s WEB-INF/lib direc-
tory. Using includes, you can take large, monolithic applications and divide them
into smaller modules in the form of individual JAR files. Each module can contain
its package and action configuration, the action class files, and possibly even result
files if the views are written in a template language like Velocity or FreeMarker.

 If you decide to take this modular approach to building your web application,
it’s important to note that you can’t name the configuration files for each module
xwork.xml. Rather, you must give them each a unique name and then provide a single
xwork.xml file that includes all the modules. For example, suppose you have a project
with three modules: Foo, Bar, and Baz. Their Java packages are com.acme.foo,
com.acme.bar, and com.acme.baz, respectively. You can place xwork-foo.xml in com/
acme/foo, xwork-bar.xml in com/acme/bar, and xwork-baz.xml in com/acme/baz.

Listing 3.17 Partial contents of CaveatEmptor’s xwork-secure.xml file
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced configuration 59
 In your web application project, you can place foo.jar, bar.jar, and baz.jar in
the WEB-INF/lib directory. Finally, an xwork.xml file in WEB-INF/classes can then
include all three modules, as shown in listing 3.18.

g<!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-1.0.dtd">
 <xwork>
 <include name="webwork-default.xml"/>
 <include name="com/acme/foo/xwork-foo.xml"/>
 <include name="com/acme/bar/xwork-bar.xml"/>
 <include name="com/acme/baz/xwork-baz.xml"/>
 </xwork>

Let’s now look at the most common WebWork include file: webwork-default.xml.

WebWork’s default configuration
As you’ve already seen in many examples in this chapter and in chapter 2, includ-
ing webwork-default.xml in your xwork.xml is a common thing to do. This section
explains what’s in this file and why it’s so commonly used. Listing 3.19 contains
the entire contents of webwork-default.xml, which specifies result types, intercep-
tors, and interceptor stacks.

 <!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-1.0.dtd">

 <xwork>
 <package name="webwork-default">
 <result-types>
 <result-type name="dispatcher"
 class="com.opensymphony.webwork.dispatcher.
bbbbbbbbbbbbbb➥ServletDispatcherResult" default="true"/>
 <result-type name="redirect"
 class="com.opensymphony.webwork.dispatcher.
bbbbbbbbbbbbbb➥ServletRedirectResult"/>
 <result-type name="velocity"
 class="com.opensymphony.webwork.dispatcher.
bbbbbbbbbbbbbb➥VelocityResult"/>
 <result-type name="chain"
 class="com.opensymphony.xwork.
bbbbbbbbbbbbbb➥ActionChainResult"/>
 <result-type name="xslt"
 class="com.opensymphony.webwork.views.xslt.

Listing 3.18 An xwork.xml file that includes three hypothetical modules

Listing 3.19 The entire contents of webwork-default.xml
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

60 CHAPTER 3

Setting up WebWork
bbbbbbbbbbbbb ➥XSLTResult"/>
 <result-type name="jasper"
 class="com.opensymphony.webwork.views.
bbbbbbbbbbbbbb➥jasperreports.JasperReportsResult"/>
 <result-type name="freemarker"
 class="com.opensymphony.webwork.views.freemarker.
bbbbbbbbbbbbbb➥FreemarkerResult"/>
 <result-type name="httpheader"
 class="com.opensymphony.webwork.dispatcher.
bbbbbbbbbbbbbb➥HttpHeaderResult"/>
 <result-type name="stream"
 class="com.opensymphony.webwork.dispatcher.
bbbbbbbbbbbbbb➥StreamResult"/>
 </result-types>

 <interceptors>
 <interceptor name="timer"
 class="com.opensymphony.xwork.interceptor.
bbbbbbbbbbbbbb➥TimerInterceptor"/>
 <interceptor name="logger"
 class="com.opensymphony.xwork.interceptor.
bbbbbbbbbbbbbb➥LoggingInterceptor"/>
 <interceptor name="chain"
 class="com.opensymphony.xwork.interceptor.
bbbbbbbbbbbbbb➥ChainingInterceptor"/>
 <interceptor name="static-params"
 class="com.opensymphony.xwork.interceptor.
bbbbbbbbbbbbbb➥StaticParametersInterceptor"/>
 <interceptor name="params"
 class="com.opensymphony.xwork.interceptor.
bbbbbbbbbbbbbb➥ParametersInterceptor"/>
 <interceptor name="model-driven"
 class="com.opensymphony.xwork.interceptor.
bbbbbbbbbbbbbb➥ModelDrivenInterceptor"/>
 <interceptor name="component"
 class="com.opensymphony.xwork.interceptor.
bbbbbbbbbbbbbb➥component.ComponentInterceptor"/>
 <interceptor name="token"
 class="com.opensymphony.webwork.
bbbbbbbbbbbbbb➥interceptor.TokenInterceptor"/>
 <interceptor name="token-session"
 class="com.opensymphony.webwork.interceptor.
bbbbbbbbbbbbbb➥TokenSessionStoreInterceptor"/>
 <interceptor name="validation"
 class="com.opensymphony.xwork.validator.
bbbbbbbbbbbbbb➥ValidationInterceptor"/>
 <interceptor name="workflow"
 class="com.opensymphony.xwork.interceptor.
bbbbbbbbbbbbbb➥DefaultWorkflowInterceptor"/>
 <interceptor name="servlet-config"
 class="com.opensymphony.webwork.interceptor.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced configuration 61
bbbbbbbbbbbbbb➥ServletConfigInterceptor"/>
 <interceptor name="prepare"
 class="com.opensymphony.xwork.interceptor.
bbbbbbbbbbbbbb➥PrepareInterceptor"/>
 <interceptor name="conversionError"
 class="com.opensymphony.webwork.interceptor.
bbbbbbbbbbbbbb➥WebWorkConversionErrorInterceptor"/>
 <interceptor name="fileUpload"
 class="com.opensymphony.webwork.interceptor.
bbbbbbbbbbbbbb➥FileUploadInterceptor"/>
 <interceptor name="execAndWait"
 class="com.opensymphony.webwork.interceptor.
bbbbbbbbbbbbbb➥ExecuteAndWaitInterceptor"/>

 <!-- Basic stack -->
 <interceptor-stack name="defaultStack">
 <interceptor-ref name="servlet-config"/>
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="static-params"/>
 <interceptor-ref name="params"/>
 <interceptor-ref name="conversionError"/>
 </interceptor-stack>

 <!-- Sample validation and workflow stack -->
 <interceptor-stack name="validationWorkflowStack">
 <interceptor-ref name="defaultStack"/>
 <interceptor-ref name="validation"/>
 <interceptor-ref name="workflow"/>
 </interceptor-stack>

 <!-- Sample file upload stack -->
 <interceptor-stack name="fileUploadStack">
 <interceptor-ref name="fileUpload"/>
 <interceptor-ref name="defaultStack"/>
 </interceptor-stack>

 <!-- Sample Inversion of Control stack -->
 <interceptor-stack name="componentStack">
 <interceptor-ref name="component"/>
 <interceptor-ref name="defaultStack"/>
 </interceptor-stack>

 <!-- Sample model-driven stack -->
 <interceptor-stack name="modelDrivenStack">
 <interceptor-ref name="model-driven"/>
 <interceptor-ref name="defaultStack"/>
 </interceptor-stack>

 <!-- Sample action chaining stack -->
 <interceptor-stack name="chainStack">
 <interceptor-ref name="chain"/>
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

62 CHAPTER 3

Setting up WebWork
 <interceptor-ref name="defaultStack"/>
 </interceptor-stack>

 <!--
 Sample execute and wait stack.
 Note: execAndWait should always be the *last* interceptor.
 -->
 <interceptor-stack name="executeAndWaitStack">
 <interceptor-ref name="defaultStack"/>
 <interceptor-ref name="execAndWait"/>
 </interceptor-stack>

 <!--
 A complete stack with all the common interceptors in place.
 Generally, this stack should be the one you use, though it
 may process additional stuff you don't need, which could
 lead to some performance problems. Also, the ordering can be
 switched around (ex: if you wish to have your components
 before prepare() is called, you'd need to move the component
 interceptor after up
 -->
 <interceptor-stack name="completeStack">
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="servlet-config"/>
 <interceptor-ref name="chain"/>
 <interceptor-ref name="model-driven"/>
 <interceptor-ref name="component"/>
 <interceptor-ref name="fileUpload"/>
 <interceptor-ref name="static-params"/>
 <interceptor-ref name="params"/>
 <interceptor-ref name="conversionError"/>
 <interceptor-ref name="validation"/>
 <interceptor-ref name="workflow"/>
 </interceptor-stack>
 </interceptors>
 </package>
 </xwork>

The result types defined in this file are described briefly in table 3.1. Consult
chapter 7 for more detailed descriptions of results, including the common results
that make up part of webwork-default.xml.

 In addition to result types, WebWork provides a selection of default intercep-
tors that you can take advantage of if you include webwork-default.xml in your
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced configuration 63
configuration and extend the webwork-default package. Those interceptors are
described in table 3.2.

Table 3.1 Default result types included with WebWork

Name Description

 chain Chains to another WebWork action

 dispatcher (default) Standard ServletDispatcher include

 freemarker Renders a FreeMarker template

 httpheader Sends back HTTP header commands

 jasper Renders a JasperReports report

 redirect Sends HTTP redirects

 velocity Renders a Velocity template

 xslt Processes XML through XSL translations

Table 3.2 Default interceptors included with WebWork

Name Description

 chain Copies parameters from one action to another

 component Applies IoC logic to the action

 conversionError Adds field errors if any type-conversion errors occurred

 execAndWait Spawns a separate thread to execute the action

 fileUpload Sets uploaded files as action files (File objects)

 logger Logs the start and finish of an action’s execution

 model-driven Pushes the action model onto the stack

 params Applies HTTP parameters to action instances

 prepare Calls the action’s prepare() method

 servlet-config Provides access to common HTTP objects (request,
response, and so on)

 static-params Applies action-mapping parameters to action instances

 timer Times action execution

 token Basic form-duplication prevention

 token-session Advanced form duplication prevention
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

64 CHAPTER 3

Setting up WebWork
Building on these interceptors, WebWork provides eight example interceptor
stacks that you can use to get started. Table 3.3 describes all eight stacks; com-
pleteStack is the best candidate to start with.

As you can see, including webwork-default.xml provides you with easy access to all
the major features included with WebWork. It’s highly recommended that when
you start any WebWork project, you begin by including this file.

Example: configuration browser
The config-browser.xml file can also be useful when you’re getting started with
WebWork. Let’s look at what it does and how WebWork’s configuration browser is
a simple example of how to package together web application modules. This mod-
ule lets you visually browse your xwork.xml settings.

 To add this functionality to your web application, drop webwork-config-
browser.jar into your WEB-INF/lib directory, and add the following your xwork.xml:

<include file="config-browser.xml"/>

 validation Validates fields in the action

 workflow Automatically returns to the INPUT view if there are errors

Table 3.3 Default interceptor stacks included with WebWork

Name Description

 defaultStack Basic interceptor stack.

 validationWorkflowStack Example using the validation and workflow interceptors.

 fileUploadStack Example using the fileUpload interceptor.

 componentStack Example using the component (IoC) interceptor.

 modelDrivenStack Example using the model-driven interceptor.

 chainStack Example using the chain interceptor.

 execAndWaitStack Example using the execAndWait interceptor.

 completeStack Complete interceptor stack using chain, model-driven, IoC,
fileUpload, validation, and workflow. This can almost
always be your stack of choice.

Table 3.2 Default interceptors included with WebWork (continued)

Name Description
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced configuration 65
In your velocity.properties2 file, add an entry to your velocimacro.library prop-
erty for tigris-macros.vm:

 velocimacro.library = webwork.vm, tigris-macros.vm

Now, launch your web application and point your browser to http://localhost/
config-browser/actionNames.action. You’ll be greeted by something like the win-
dow shown in Figure 3.2.

That’s it—you’ve added a module to your application. We’ll look more at the con-
figuration browser in chapter 15, “Best practices.”

NOTE The edit to velocity.properties is required due to the way the configura-
tion browser was created. It’s possible to build modules that only require
editing xwork.xml.

2 See chapter 12 for details about configuring Velocity.

Figure 3.2 The configuration browser shows the action mappings for your application.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

66 CHAPTER 3

Setting up WebWork
Because the results for this module were written in Velocity, they were included in
the JAR file. This makes packaging modules easy. If you’re thinking about breaking
your application into modules using WebWork includes, we recommend that you
think about using a template language like Velocity or FreeMarker.

 We’ve completed the tour of xwork.xml, looking at everything from basic
action mappings to complex modular packaging. Let’s move on to the rest of the
configuration files that are important when you’re setting up a WebWork project.

3.3 Other configuration files

In addition to xwork.xml, two additional files are important: web.xml and web-
work.properties. The first file, web.xml, must be modified before the servlet con-
tainer can be made aware of WebWork. The second file, webwork.properties,
provides access to configure many of WebWork’s features, such as its UI tags and
file upload support.

3.3.1 Web-app configuration: web.xml

In chapter 2, you saw how to configure web.xml. We summarize those changes
here, in listing 3.20.

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">
 <web-app>
 <servlet>
 <servlet-name>webwork</servlet-name>
 <servlet-class>com.opensymphony.webwork.dispatcher.
bbbbbb➥ServletDispatcher</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>webwork</servlet-name>
 <url-pattern>*.action</url-pattern>
 </servlet-mapping>
 <taglib>
 <taglib-uri>webwork</taglib-uri>
 <taglib-location>
 /WEB-INF/lib/webwork-2.1.7.jar
 </taglib-location>
 </taglib>
 </web-app>

Listing 3.20 Required changes to web.xml
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Other configuration files 67
Only two things are happening in listing 3.20: the servlet mapping to *.action and
the declaration of the WebWork JSP tag library. If you wish to map the webwork servlet
to another servlet mapping, such as *.jspa, which is a popular alternative, keep in
mind that you must also indicate this nonstandard mapping in webwork.properties.

Using WebWork’s JSP taglib
If you wish to use the WebWork JSP tag library (see chapters 9 and 11 for a com-
plete description of the tags provided by WebWork), you need to put a taglib dec-
laration in web.xml. The recommended way is to use the taglib file included in
the WebWork JAR file. The taglib is included in the JAR at META-INF/taglib.tld
and is automatically found, as per the JSP specification.

 Depending on your IDE and/or how you structure your web application during
development, it may be beneficial to refer directly to the WebWork Tag Library
Definition (TLD) rather than the JAR file containing it. You can do so by extracting
the TLD from META-INF/taglib.tld and copying it to WEB-INF/webwork.tld in your
web application. The taglib declaration in web.xml now looks like this:

 <taglib>
 <taglib-uri>webwork</taglib-uri>
 <taglib-location>/WEB-INF/webwork.tld</taglib-location>
 </taglib>

Both approaches are valid; however, if you refer to the TLD directly, remember to
upgrade the TLD file after each upgrade of the WebWork JAR file.

3.3.2 Feature configuration: webwork.properties

Remember: xwork.xml defines the configuration for your action mappings and
applies interceptors and results to them. On the other hand, webwork.properties is
used to define application-wide settings and to configure parameters that change
the behavior of the framework. (Note that webwork.properties isn’t required and
is only necessary if you wish to configure any of the options outlined here.)

 WebWork first loads the contents of com/opensymphony/webwork/
default.properties, which is found in the WebWork JAR file. It then loads
webwork.properties and overrides any configuration settings defined in that file.
Listing 3.21 contains the complete contents of default.properties and will give you
a good understanding of which settings can be changed.

 ###
 ### Webwork default properties

Listing 3.21 The complete contents of WebWork’s default configuration file
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

68 CHAPTER 3

Setting up WebWork
 ### (can be overridden by a webwork.properties
 ### file in the root of the classpath)
 ###

 ### This can be used to set your default locale and encoding scheme
 #webwork.locale=en_US
 webwork.i18n.encoding=ISO-8859-1

 ### Parser to handle HTTP POST requests,
 ### encoded using the MIME-type multipart/form-data
 #webwork.multipart.parser=cos
 #webwork.multipart.parser=jakarta
 webwork.multipart.parser=pell
 # uses javax.servlet.context.tempdir by default
 webwork.multipart.saveDir=
 webwork.multipart.maxSize=2097152

 ### Load custom property files
 ### (does not override webwork.properties!)
 #webwork.custom.properties=application,com/webwork/extension/custom

 # extension for actions
 webwork.action.extension=action

 # use beta alternative syntax that requires %{} in most places
 # to evaluate expressions for String attributes for tags
 webwork.tag.altSyntax=false

 ### Standard UI theme
 # Change this to reflect which path should be
 # used for JSP control tag templates by default
 webwork.ui.theme=xhtml
 webwork.ui.templateDir=template
 #sets the default template type. Either vm or jsp
 webwork.ui.templateSuffix=vm

 ### Configuration reloading
 # This will cause the configuration to
 # reload xwork.xml when it is changed
 webwork.configuration.xml.reload=false

 ### Location of velocity.properties file.
 ### Defaults to velocity.properties
 #webwork.velocity.configfile = velocity.properties

 ### Comma separated list of VelocityContext
 ### classnames to chain to the WebWorkVelocityContext
 #webwork.velocity.contexts =

 # used to build URLs, such as the UrlTag
 webwork.url.http.port = 80
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Other configuration files 69
 webwork.url.https.port = 443

 ### Load custom default resource bundles
 #webwork.custom.i18n.resources=testmessages,testmessages2

The default configuration file is mostly self-describing, but we outline the impor-
tant configuration options in table 3.4. Some of these configuration options are
discussed in greater detail in future chapters.

Table 3.4 Common WebWork configuration options

Property Default Value Description

webwork.locale none Default locale to use for i18n. (See chapter 14.)

webwork.i18n.encoding ISO-8859-1 WebWork’s character encoding set.

webwork.multipart.parser pell Used for file upload support. Possible values are
pell, cos, and jakarta. Although not yet the
default, jakarta is highly recommended. (See
chapter 4.)

webwork.multipart.saveDir none Directory in which temporary uploaded files are
stored. By default, this value is the temp directory
associated with your web application by the serv-
let container.

webwork.multipart.maxSize 2097152 Maximum size of allowed uploaded files (in
bytes).

webwork.custom.properties none Other properties files to load in addition to web-
work.properties. Useful if you’re making packaged
applications that are designed to be customized.

webwork.action.extension action Mapping extension used in web.xml.

webwork.tag.altSyntax false When set to true, WebWork’s JSP tags use the
new alternative syntax that is set to become stan-
dard in WebWork 2.2. In this book, altSyntax is
assumed to be set to true.

webwork.ui.theme xhtml Default UI tag theme to use. (See chapter 11.)

webwork.ui.templateDir template Directory and/or classpath location to search for
UI tag themes.

webwork.ui.templateSuffix vm Suffix in which the UI templates are implemented.

webwork.configuration.xml.reload false When set to true, WebWork checks configuration
files to see if they need to be reloaded. This set-
ting is helpful for development and debugging.

webwork.velocity.configfile velocity.properties Where to look for Velocity-related configuration.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

70 CHAPTER 3

Setting up WebWork
The most important thing to note is that throughout this book, every example is
given with the assumption that webwork.tag.altSyntax is set to true. We did this
to allow you to have the most up-to-date information on a framework that is always
evolving. At the time of this writing, WebWork 2.1.7 was the latest released version.
However, we know that as of WebWork 2.2, altSyntax will become standard; so, we
felt it would be best to cover this syntax now rather than teach something that is
on the verge of changing.

 We’ve now explored every configuration option that WebWork offers. The last
thing to do when setting up WebWork is to place these configuration files and the
WebWork library files in the correct places.

3.4 Setting up your web app

We’re finally going to look at how you set up your web application in order to start
using WebWork. Specifically, we’ll explain where the various configuration files—
including xwork.xml, webwork.properties, and web.xml—must be placed. In addi-
tion, we’ll outline which JAR files are required and which are optional. For the
optional libraries, we’ll also discuss which features require them so you can
choose only the libraries you need.

3.4.1 General layout

A J2EE web application has the following basic structure:

■ WEB-INF/lib—JAR files

■ WEB-INF/classes—Classes and configuration files

■ WEB-INF—web.xml and configuration files

■ Everything else—JSPs, images, HTML, and so on

webwork.velocity.contexts none Additional VelocityContexts to chain together
(see chapter 10).

webwork.url.http.port 80 HTTP port for the URLTag. (See chapter 9.)

webwork.url.https.port 443 HTTPS port for the URLTag. (See chapter 9.)

webwork.custom.i18n.resources none Additional i18n resource bundles to search for if
no resource is found elsewhere. (See chapter
14.)

Table 3.4 Common WebWork configuration options (continued)

Property Default Value Description
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Setting up your web app 71
In sections 3.4.2 and 3.4.3, we discuss which files must be placed into WEB-INF/lib.
All files that aren’t configuration files or JAR files can be placed wherever you’d
like. As with all web applications, you must place web.xml in WEB-INF.

Configuration files
The two configuration files discussed in this chapter (xwork.xml and web-
work.properties) must be placed in your application’s classpath. This typically is
WEB-INF/classes, but some people like to package these files into a JAR file and
then place the JAR file in WEB-INF/lib. Both methods work, because both have the
same result: the configuration files are accessible via the classpath. Unless you
have a specific need, we recommend placing the files in WEB-INF/classes.

 Next, let’s look at the required libraries that must be added to WEB-INF/lib.

3.4.2 Required libraries

Table 3.5 lists all the required libraries needed to run WebWork 2.1.7. You may try
newer versions of the dependant libraries, but only the specific version outlined
here is guaranteed to work. Most minor revisions tend to be backward compatible
and work quite well with WebWork.

Because WebWork requires OSCore, it might be a good idea to familiarize yourself
with that project. It must be included anyway, so it can’t hurt to look at what the pack-
age has to offer and use some of the utilities that come with it. Some particularly use-
ful classes are GUID, TextUtils, and Yarrow (used for strong random number
generation). You can learn more about OSCore at www.opensymphony.com/oscore.

Table 3.5 Required JAR files for WebWork 2.1.7

Name Version Description

commons-logging.jar 1.0.4 Apache Jakarta Commons-Logging; can be used to plug into
any other logging system

ognl.jar 2.6.7 OGNL Expression Language (see chapter 8)

oscore.jar 2.2.4 OSCore, a utility library used by many of the OpenSymphony
projects

webwork-2.1.7.jar 2.1.7 WebWork JAR

xwork.jar 1.0.5 XWork project, which WebWork is built on
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

72 CHAPTER 3

Setting up WebWork
3.4.3 Optional libraries

Table 3.6 lists the optional libraries that WebWork 2.1.7 supports. Just as with the
required libraries, you are free to try to use newer versions of these libraries, but
you do so at your own risk.

Refer back to this table as we cover the optional features of WebWork and you
begin experimenting with them.

3.5 Summary

In this chapter, we discussed how to configure WebWork actions, results, and inter-
ceptors. You saw strategies for simplifying WebWork configuration using global
results, interceptor stacks, and default interceptors. We looked at modularizing
WebWork configuration using packages and breaking up the xwork.xml file using
includes. Finally, we discussed setting up a WebWork web application, including
the application file structure and the required and optional libraries.

 By now, you should have a good idea of the core WebWork concepts and how to
set up and configure a new WebWork project. Although we’ve explored WebWork

Table 3.6 Optional JAR files for WebWork 2.1.7

Name Version Description

velocity-dep.jar 1.3.1 Required if you wish to use the Velocity result type or Web-
Work’s UI tags. See chapters 7, 10, and 11.

cos-multipart.jar N/A Three multipart libraries to choose from for multipart file-
upload support (see webwork.properties configuration). You
only need to include the JAR that matches the implementa-
tion you choose.

pell-multipart.jar N/A

commons-fileupload.jar 1.0

bsh.jar 1.2 b6 Libraries needed by the JasperReports result (see chapter 7).

commons-beanutils.jar 1.5

commons-collections.jar 2.1

commons-digester.jar 1.3

jakarta-poi.jar 2.0

jasperreports.jar 0.6.3

itext.jar 1.0.1

freemarker.jar 2.3.2 Required for the FreeMarker result (see chapter 7).
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 73
concepts including actions, interceptors, and results, we have yet to touch on their
full features and capabilities; we’ll do this in chapters 4, 5, and 7, respectively.

 We hope that the practice of building modular web application modules is
now something that you understand and can begin to attempt. At this point, we
recommend that you take a break from the book and try to build a few simple
actions based on the information you’ve seen in this chapter and in chapter 2;
then come back and get ready to dig into the fun and interesting features Web-
Work provides.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Part 2

Core concepts

This part of the book digs into the core concepts of WebWork. We don’t spend
much time on the user interface or displaying data; instead, we focus on how that
data is processed. Chapter 4 looks at how to create actions, including concepts such
as how action fields are mapped to forms and how you can handle file uploads.
Chapter 5 discusses how you can add functionality in a loosely coupled manner
using interceptors. Extending the theme of loose coupling, chapter 6 examines the
Inversion of Control pattern and why it’s important for dependency management.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

 Implementing
WebWork actions
This chapter covers
■ Services available to action classes
■ The ActionSupport base class
■ Basic form validation, error message

handling, and localized text support
■ How to use the ModelDriven interface
■ How to access data transparently
■ How to handle file uploads
77

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

78 CHAPTER 4

Implementing WebWork actions
WebWork actions are the central unit of programming in WebWork. They repre-
sent what you want your web application to do. Actions are responsible for both
holding data/state (in the form of getters and setters) and executing logic.

 In this chapter, we’ll look at how actions are implemented and how they pro-
vide the common functionality required in web applications. In addition to the
Action interface, WebWork actions may also choose to implement optional inter-
faces that let WebWork provide functionality like internationalization, validation,
complex workflow, and error-message handling. We’ll examine the ActionSupport
base class, which implements the Action interface and provides default imple-
mentations of many of these optional interfaces. We’ll also look at how actions are
designed to provide input and output using JavaBean properties and how you can
handle file uploads.

4.1 The Action interface

The only requirement for WebWork actions is to implement the com.opensym-
phony.xwork.Action interface. The Action interface defines one method:

 public String execute() throws Exception

This single method defines the contract for executing actions in WebWork.
Actions for which a method other than execute() is configured to be called must
also implement the Action interface, and those methods must have the same sig-
nature and contract as the execute() method.

NOTE In future versions of WebWork, the Action interface may no longer be a
requirement. The interface dates back to earlier versions of WebWork, but
it’s no longer needed now that WebWork, which acts as a command pat-
tern implementation (see the appendix), can execute any method name.

4.1.1 Result codes

The execute() method must return a String return code, which can be any value.
This result code is then used to map to a result based on the action mapping spec-
ified in xwork.xml. Let’s look at the EditCategory action from the CaveatEmptor
example application. Listing 4.1 shows the saveCategory() method.

 public String saveCategory() {
 if (category == null) {
 return INPUT;

Listing 4.1 The EditCategory action’s saveCategory() method returns one of
two result codes.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

The Action interface 79
 }
 categoryDAO.makePersistent(category);
 return SUCCESS;
 }

You see two return statements here, one returning INPUT and the other returning
SUCCESS. These are static final Strings defined in the Action interface that can
be used as predefined default result codes. Listing 4.2 shows the action mapping
defined in xwork.xml; here, these return codes are mapped to different results.

 <action name="saveCategory"
 class=
 "org.hibernate.auction.web.actions.categories.EditCategory"
 method="saveCategory">
 <interceptor-ref name="crudStack"/>
 <result name="input">createCategory.jsp</result>
 <result name="success" type="redirect">dashboard.action</result>
 </action>

Note that if the action returns input, the createCategory.jsp page is rendered; if
success is returned, the user is redirected back to the dashboard action. This
works because the INPUT and SUCCESS values are input and success, respectively.

4.1.2 Handling exceptions

The execute() method of the Action interface declares that it throws
java.lang.Exception. This allows your action subclasses to throw any application-
specific exception without having to catch and rethrow a WebWork-specific excep-
tion type. Action subclasses can also choose to not declare any Exception types or
any specific Exception subclasses to be thrown. Because of the laws of Java inherit-
ance, implementing classes can only declare that they throw fewer than or the
same exceptions as the interface or parent class, not more. Therefore, if the
Action interface didn’t declare throws Exception, your action subclasses would be
required to catch any exceptions and wouldn’t be able to indicate that a system
error occurred.

Listing 4.2 Action mapping for the EditCategory example
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

80 CHAPTER 4

Implementing WebWork actions
4.2 Using the ActionSupport base class

ActionSupport serves as a quick-start base class for your action classes. It includes
default implementations of many of the optional services an action can provide;
this makes it easier to start developing your own actions, because you don’t have
to provide implementations. You can override the implementations of any of
these optional interface methods while keeping the default implementations of
the others. Actions are not required to extend ActionSupport, nor are they
required to implement any of the extra interfaces (besides com.opensym-

phony.xwork.Action) that ActionSupport implements. Due to the prebuilt func-
tionality that comes out of the box with ActionSupport, our example actions all
extend ActionSupport (or some subclass of ActionSupport), as do 99% of Web-
Work users’ actions. ActionSupport implements the following optional interfaces:

■ com.opensymphony.xwork.Validateable—Provides a validate() method to
allow your action to be validated

■ com.opensymphony.xwork.ValidationAware—Provides methods for saving
and retrieving action- and field-level error messages

■ com.opensymphony.xwork.TextProvider—Provides methods for getting
localized message texts

■ com.opensymphony.xwork.LocaleProvider—Provides a getLocale() method
to provide the locale to use for getting localized messages

We’ll present examples as we discuss these interfaces and the implementation
provided by ActionSupport.

4.3 Understanding basic validation

One of the basic requirements of a web application framework is validating user
input and informing the user of any invalid values. In chapter 13, “Validating
form data,” we’ll discuss validation in depth, including the metadata-driven
XWork Validation Framework; but here, we’ll look at basic action validation. This
involves two steps:

1 Automatically validate your action.

2 Collect and report any errors to the user.

Let’s examine these steps.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Understanding basic validation 81
4.3.1 Validating an action: Validateable

It’s often necessary to validate the data provided by the user before executing
business logic. This validation can be anything from a simple field x is

required to The document creation date must be before the document due
date and after the parent document creation date. To perform this validation
automatically, WebWork provides a mechanism to call a method on your action
before the execute() method (or whatever method you’ve told WebWork to call)
is called. This mechanism is provided by the com.opensymphony.xwork.Validate-
able interface, which includes one method:

public void validate()

The Validateable interface marks the action to be automatically validated using
that method. Let’s look at the CreateUser action from CaveatEmptor to see how
you can use this validate() method. The original execute() method of the Cre-
ateUser action is shown in listing 4.3.

 public String execute() throws Exception {
 // see if the name already exists
 User existing = userDAO.findByUsername(this.user.getUsername());
 if (existing != null) {
 addFieldError("user.username", "The user already exists");
 return INPUT;
 }

 userDAO.makePersistent(user);
 return SUCCESS;
 }

The part of the code identified in listing 4.3 isn’t performing the function of the
action—it’s validating the user input. Therefore, you should separate this code
out from the execute() method. Listing 4.4 shows the refactored code.

 public void validate() {
 // see if the name already exists
 User existing = userDAO.findByUsername(this.user.getUsername());
 if (existing != null) {
 addFieldError("user.username", "The user already exists");
 }
 }

Listing 4.3 The CreateUser action’s execute() method

Listing 4.4 The CreateUser action, refactored to use the validate() method

Validation
logic
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

82 CHAPTER 4

Implementing WebWork actions

 public String execute() throws Exception {
 userDAO.makePersistent(user);
 return SUCCESS;
 }

The validation code has been moved out into a validate() method. Because this
action extends ActionSupport, this implementation of validate() overrides the
default implementation in ActionSupport, which is empty. Notice that there is no
call to the validate() method and that the

return INPUT;

line is missing from this code. This is the case because calling this method and
shortcutting the rest of the action processing are handled by interceptors, assum-
ing the proper interceptors are in place. This shows a common pattern in Web-
Work: an optional interface, and an interceptor that can be applied to use that
interface. We’ll look more at interceptors in chapter 5, “Adding functionality with
interceptors”; for now, it’s important to know that if DefaultWorkFlowInterceptor
is applied to your action, it will do the following:

1 Call the validate() method on the action if the action implements Vali-
dateable.

2 If the action has errors, return INPUT; otherwise, execute the action.

The validate() method is called before your action is executed, and the action is
executed only if no error messages are added to it. You’ll see in the next section
on ValidationAware how error messages are added to and retrieved from the
action. These methods are also used to determine whether any problem occurred
in validating the action; so, if you want your action validation to work with the
DefaultWorkflow interceptor, you should use the methods described next to add
error messages and let the framework know about any problems. Now, let’s look at
the methods used to add error messages and check for their existence.

4.3.2 Displaying error messages: ValidationAware

One of the major features provided by ActionSupport is collecting error messages
for display to the user. Error messages can be collected at both the class (action) level
and the field level. The validate() method you just refactored checks the value of
the username property; if the value is invalid, validate() calls addFieldError(). This
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Understanding basic validation 83
method is implemented by ActionSupport and is defined in the com.opensym-
phony.xwork.ValidationAware interface, shown in listing 4.5.

 /**
 * ValidationAware classes can accept Action (class level) or field
 * level error messages. Action level messages are kept in a
 * Collection. Field level error messages are kept in a Map from
 * String field name to a List of field error msgs.
 *
 * @author $Author: mbogaert $
 * @version $Revision: 1.11 $
 */
 public interface ValidationAware {
 //~ Methods ///

 /**
 * Set the Collection of Action-level String error messages.
 *
 * @param errorMessages
 */
 void setActionErrors(Collection errorMessages);

 /**
 * Get the Collection of Action-level error messages for this
 * action. Error messages should not be added directly here, as
 * implementations are free to return a new Collection or an
 * Unmodifiable Collection.
 *
 * @return Collection of String error messages
 */
 Collection getActionErrors();

 /**
 * Set the Collection of Action-level String messages (not
 * errors).
 */
 void setActionMessages(Collection messages);

 /**
 * Get the Collection of Action-level messages for this action.
 * Messages should not be added directly here, as
 * implementations are free to return a new Collection or an
 * Unmodifiable Collection.
 *
 * @return Collection of String messages
 */
 Collection getActionMessages();

Listing 4.5 The com.opensymphony.xwork.ValidationAware interface
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

84 CHAPTER 4

Implementing WebWork actions
 /**
 * Set the field error map of fieldname (String) to Collection
 * of String error messages.
 *
 * @param errorMap
 */
 void setFieldErrors(Map errorMap);

 /**
 * Get the field specific errors associated with this action.
 * Error messages should not be added directly here, as
 * implementations are free to return a new Collection or an
 * Unmodifiable Collection.
 *
 * @return Map with errors mapped from fieldname (String) to
 * Collection of String error messages
 */
 Map getFieldErrors();

 /**
 * Add an Action-level error message to this Action.
 *
 * @param anErrorMessage
 */
 void addActionError(String anErrorMessage);

 /**
 * Add an Action-level message to this Action.
 */
 void addActionMessage(String aMessage);

 /**
 * Add an error message for a given field.
 *
 * @param fieldName name of field
 * @param errorMessage the error message
 */
 void addFieldError(String fieldName, String errorMessage);

 /**
 * Check whether there are any Action-level error messages.
 *
 * @return true if any Action-level error messages have been
 * registered
 */
 boolean hasActionErrors();

 /**
 * Checks whether there are any Action-level messages.
 *
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Understanding basic validation 85
 * @return true if any Action-level messages have been
 * registered
 */
 boolean hasActionMessages();

 /**
 * Note that this does not have the same meaning as in WW 1.x.
 *
 * @return (hasActionErrors() || hasFieldErrors())
 */
 boolean hasErrors();

 /**
 * Check whether there are any field errors associated with
 * this action.
 *
 * @return whether there are any field errors
 */
 boolean hasFieldErrors();
 }

Actions should implement this interface to signal parts of the framework (such as
the Validation Framework [discussed in chapter 13] and parts of the type-conversion
support [discussed in chapter 12, “Type conversion”]) to add error messages.

 As you can see from the JavaDoc comments in listing 4.5, the ValidationAware
interface requires an implementation to maintain two collections of error mes-
sages. The actionErrors property is a java.util.Collection of String error mes-
sages that apply to the entire action instance. The fieldErrors property is a
java.util.Map mapping String field names to java.util.List’s of String error
messages for each field. In addition to methods to get and set the collections and
to add error messages, boolean methods check whether the action has action
errors and/or field errors. The hasErrors() method (which checks for either
action-level or field-level error messages) is used by the DefaultWorkFlowInter-
ceptor to determine whether the action should be executed. ValidationAware
actions also provide for action-level messages that can be displayed to the user but
that aren’t errors.

 ActionSupport provides a simple default implementation of this interface that
collects error messages for action-level and field-level error messages. If you choose
not to extend ActionSupport, but you want a quick way to implement Validation-
Aware, your code can do the same as ActionSupport and delegate all the methods
in this interface to an instance of com.opensymphony.xwork.ValidationAwareSup-
port, which collects error messages for you. This class is a base implementation of
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

86 CHAPTER 4

Implementing WebWork actions
ValidationAware that maintains the lists of action-level error messages and non-
error messages and the Map of field-level error messages. This implementation has
been separated from ActionSupport to make it easy for action classes that don’t
extend ActionSupport to easily implement the ValidationAware interface.

4.4 Using localized message texts

This chapter’s example has been using messages that are coded directly into your
actions. What if you want to use the same application to support users in different
countries, who speak different languages? It would be inefficient to create a differ-
ent version of the application for each language and location; instead, you want to
make the texts external to the code and enable the code to determine at runtime
which text to return to the user based on their language and location.

4.4.1 Retrieving the user’s locale: LocaleProvider

The first hurdle is to determine what language and location the user expects. In
Java, this information is encapsulated in the java.util.Locale class. The
com.opensymphony.xwork.LocaleProvider interface allows an action to determine
which locale to use for getting message texts with its one method:

 public Locale getLocale()

The default implementation of this method, in ActionSupport, uses the ActionCon-
text to get this value by calling ActionContext.getContext().getLocale(). (You’ll
learn more about what ActionContext does in section 4.7.) The locale is associated
with the WebWork action call by consulting the HttpServletRequest and calling its
getLocale() method.

 This is a good default, in most cases, because it’s based on the locales the user’s
browser has indicated it can support in the HTTP request headers. Your action
classes can choose, instead, to override this method to provide a different imple-
mentation, perhaps one that pulls a user’s Locale information from a user profile
stored in a database.

4.4.2 Displaying the localized text: TextProvider

Now you know the user’s locale, but how do you get the text of your message for
that locale? The standard Java technique for getting localized text messages is to
use java.util.ResourceBundle. The most commonly used implementation of the
ResourceBundle interface is java.util.PropertyResourceBundle, which reads
message texts from a set of like-named .properties files.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using localized message texts 87
 The com.opensymphony.xwork.TextProvider interface (see listing 4.6) provides
methods for getting localized text messages.

 public interface TextProvider {

 /**
 * Gets a message based on a message key, or null if no message
 * is found.
 *
 * @param key the resource bundle key that is to be searched
 * for
 * @return the message as found in the resource bundle, or null
 * if none is found.
 */
 String getText(String key);

 /**
 * Gets a message based on a key, or, if the message is not
 * found, a supplied
 * default value is returned.
 *
 * @param key the resource bundle key that is to be searched for
 * @param defaultValue the default value which will be returned
 * if no message is found
 * @return the message as found in the resource bundle, or
 * defaultValue if none is found
 */
 String getText(String key, String defaultValue);

 /**
 * Gets a message based on a key using the supplied args, as
 * defined in {@link java.text.MessageFormat}, or null if no
 * message is found.
 *
 * @param key the resource bundle key that is to be searched
 * for
 * @param args a list of args to be used in a
 * {@link java.text.MessageFormat} message
 * @return the message as found in the resource bundle, or null
 * if none is found.
 */
 String getText(String key, List args);

 /**
 * Gets a message based on a key using the supplied args, as
 * defined in {@link java.text.MessageFormat}, or, if the
 * message is not found, a supplied default value is returned.
 *

Listing 4.6 The com.opensymphony.xwork.TextProvider interface
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

88 CHAPTER 4

Implementing WebWork actions
 * @param key the resource bundle key that is to be searched
 * for
 * @param defaultValue the default value which will be returned
 * if no message is found
 * @param args a list of args to be used in a
 * {@link java.text.MessageFormat} message
 * @return the message as found in the resource bundle, or
 * defaultValue if none is found
 */
 String getText(String key, String defaultValue, List args);

bbbbb/**
 * Gets a message based on a key using the supplied args, as
 * defined in {@link java.text.MessageFormat}, or, if the
 * message is not found, a supplied default value is returned.
 * Instead of using the value stack in the ActionContext this
 * version of the getText() method uses the provided value
 * stack.
 *
 * @param key the resource bundle key that is to be searched for
 * @param defaultValue the default value which will be returned
 * if no message is found
 * @param args a list of args to be used in a
 * {@link java.text.MessageFormat} message
 * @param stack the value stack to use for finding the text
 * @return the message as found in the resource bundle, or
 * defaultValue if none is found
 */
 String getText(String key, String defaultValue,
 List args, OgnlValueStack stack);

bbbb/**
 * Get the named bundle, such as "com/acme/Foo".
 *
 * @param bundleName the name of the resource bundle, such as
 * "com/acme/Foo"
 */
 ResourceBundle getTexts(String bundleName);

bbbb/**
 * Get the resource bundle associated with the implementing
 * class (usually an action).
 */
 ResourceBundle getTexts();
 }

As you can see in listing 4.6, the TextProvider interface consists mostly of differ-
ent sets of method arguments to getText() methods, which can be used to look
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using localized message texts 89
up a localized message text. The default implementation of TextProvider,
com.opensymphony.xwork.TextProviderSupport, uses the PropertyResourceBundle
implementation of ResourceBundle by using property files named based on the
action class.

 Let’s look at an example by pulling the text messages out of the CreateUser
example and putting them into property files. First let’s examine the .properties
file that will hold the default message texts. Property files for action message texts
are in the same package as the class with the same name, so the org.hiber-
nate.auction.web.actions.users.CreateUser class has a CreateUser.properties
file in the org/hibernate/auction/web/actions/users directory, right next to the
CreateUser.java file:

user.exists=The user already exists

This properties file contains one message. To see how this message is used, let’s
look at the refactored CreateUser’s validate() method (see listing 4.7).

 public void validate() {
 // see if the name already exists
 String username = this.user.getUsername();
 User existing = userDAO.findByUsername(username);
 if (existing != null) {
 addFieldError("user.username", getText("user.exists"));
 }
 }

The hard-coded text has been replaced by a call to getText(), which loads the
message from the CreateUser.properties file. The message is looked up in the
validate() method if a user already exists with the given username and added to
the field error map for the user.username field.

4.4.3 Providing messages for other languages

You’ve pulled your messages out of your action class, but you still don’t have sup-
port for any other languages. Let’s look at what you have to do to add another
translation. Later, in chapter 14 (“Internationalization”), we’ll present a more
complete internationalization example using French, Spanish, and German; here,
let’s examine a German translation. The translated texts will go in a file named

Listing 4.7 A refactored CreateUser action that uses getText() to get a
localized message text
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

90 CHAPTER 4

Implementing WebWork actions
CreateUser_de.properties in the same directory with your original Cre-
ateUser.properties file and the CreateUser.java source code. Here’s an example:

user.exists=Der benutzer besteht bereits

The earlier message has been translated and put into another .properties file with
a similar name, except that the _de part tells PropertyResourceBundle that this is
the German language translation (those of you who can speak or read German
can blame Google’s translate tool). This .properties file contains the same mes-
sage key, user.exists, but a different message body. These message bodies will be
retrieved when a user attempts to use your application and is using a German lan-
guage browser. Similarly, you can translate into other languages and create more
.properties files—there are many more options than the simple one-Resource-
Bundle-per-action strategy. We’ll go into more depth about the details of building
a localized web application in chapter 14.

4.5 Advanced inputs

Applications often use JavaBeans to provide representations of objects within a
domain. Examples of these types of classes include Address, Bid, and BankAccount.
These application-specific classes, or domain objects, form the building blocks of
most applications. Much of what a web application does involves getting informa-
tion into and out of these domain objects. This process is also known as data binding.

 With web applications, the two common approaches to data binding are to use
intermediary objects or to access the domain objects directly.

4.5.1 Intermediary objects

Intermediary objects provide a bridge between user input and the domain objects. In
most cases, the fields within the intermediary object are either Strings or Bool-
eans. This simplifies prepopulation of HTML forms. As temporary containers for
user input, intermediary objects are often called upon to perform a number of
different roles such as data validation, type transformation, and firewalling (allow-
ing only certain properties to be changed by the user).

 Using intermediary objects isn’t without drawbacks, however. The largest dis-
advantage is the proliferation of small intermediary classes that usually mirror the
domain objects. Your Address, Bid, and BankAccount domain objects would need
corresponding AddressForm, BidForm, and BankAccountForm objects.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced inputs 91
4.5.2 Using domain objects directly

The alternative approach is to use the domain objects directly. Doing so pushes
many of the responsibilities of the intermediary objects (such as data validation
and type transformation) to the application container—in our case, WebWork.
Although this technique makes the container more complicated, it has the advan-
tage of significantly reducing the development time for applications. WebWork
supports both intermediary objects and using domain objects directly, but the
authors of this book believe the best practice is to use domain objects. However,
both security concerns and design decisions come into play when you do this.
We’ll discuss these issues further throughout this book.

 Suppose you’re attempting to collect some information about a user. You already
have a domain object, User, which you’d like to take advantage of. Listing 4.8 shows
how you might create a form (using localized texts, as discussed earlier).

 <ww:form action="createUser">
 <ww:textfield label="%{getText('username')}" name="user.username"/>
 <ww:password label="%{getText('password')}" name="user.password"/>
 <ww:textfield label="%{getText('firstname')}"
 name="user.firstname"/>
 <ww:textfield label="%{getText('lastname')}" name="user.lastname"/>
 <ww:textfield label="%{getText('email')}" name="user.email"/>
 <ww:submit value="Submit"/>
 </ww:form>

Listing 4.9 shows the CreateUser action, which exposes the User object via a Java-
Bean getter and setter.

 public class CreateUser extends ActionSupport
 implements UserDAOAware {
 User user;

 ...

 public String execute() throws Exception {
 userDAO.makePersistent(user);
 return SUCCESS;
 }

Listing 4.8 WebWork tags let you directly access the properties of your domain
objects.

Listing 4.9 The CreateUser action exposes the User object via the getUser()
and setUser() JavaBean property accessors.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

92 CHAPTER 4

Implementing WebWork actions

 public User getUser() {
 return user;
 }

 public void setUser(User user) {
 this.user = user;
 }
 }

With WebWork’s data binding, passing a request parameter of

user.username

is equivalent to calling:

action.getUser().setUsername(...);

Note, however, that you never created an instance of a User object, so you should
have received the dreaded NullPointerException. Fortunately, as WebWork
traverses the request parameter, it automatically instantiates any object along the
way that it needs to populate data. For example, events happen in this order when
WebWork tries to set the user’s username property:

action.getUser();
action.setUser(newUser());
action.getUser().setUsername(...);

WebWork first attempts to get a reference to the User. Noting that User is null, it
creates a User using the zero-argument constructor. WebWork can now populate
the username field.

 You can see that by being able to use your domain objects directly, you can
reduce the amount of work required to implement this functionality. The object
instantiation feature that you saw for Users works to any depth and could be used
to automatically create instances to any level. For example, an expression of
user.address.street would call

getUser().getAddress().setStreet(...)

It would create the User object, as you saw earlier, but it would also create the Address
object so the street property could be set on it. Although this is a simplified exam-
ple, you can see how using this technique will significantly improve code readability.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced inputs 93
Advantages of using domain objects
WebWork allows you to use your actions to directly edit domain objects, rather
than having an intermediate layer of value objects or FormBeans as is often
required in web applications built on frameworks such as Struts. These value
objects or FormBeans are used for carrying data between the core business logic
and the presentation layer, and they offer little real value; avoiding them saves the
overhead of maintaining them without losing anything. This can save time not
only in the value object classes you don’t have to create but also in the layer of
mapping code you would need to create to build domain objects from the value
objects. You can also take advantage of common code, such as domain model vali-
dators, rather than have to duplicate this code for your value objects.

 The power of using domain objects is enabled by the powerful type conversion
and dynamic expression evaluation provided by the WebWork framework. Many
web frameworks use String-based FormBeans or other value objects because their
type conversion support isn’t sufficient to support true domain objects. True
domain objects often have complex property types and may require different type
conversion rules on a property-by-property basis, even if the different properties
are of the same type. WebWork’s type conversion, as described in full in chapter
12, provides this flexible support and allows you to use complex object types to
back your actions and web pages.

 Along with supporting complex types when converting type values from web
requests, WebWork’s support for Object Graph Navigation Language (OGNL), as
described more fully in chapter 8, allows your web pages to navigate complex
object models, getting and setting subproperties easily. This allows you to use
complex types as easily as a flat FormBean with only String properties. Thus your
model objects can be your rich domain objects and automatically set the proper-
ties and subproperties.

Considerations when using domain objects
Along with the convenience of using domain objects directly in your web tier
come some issues that you must consider. These considerations are applicable not
only to domain objects, as you’ve seen previously, but also to ModelDriven actions,
as you’ll see in the next section.

 One of the major issues when using domain objects is the order of interceptors
and what you’re trying to get them to do. Let’s think about the ideal order of
operations when you’re editing a domain object:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

94 CHAPTER 4

Implementing WebWork actions
1 Get the object’s identifier from the user input.

2 Load the object from the database with the supplied identifier.

3 Update the properties of the object from the user input submitted from
the form.

The problem is that you’re looking at the parameters twice: once to get the object
ID and again to set the object’s properties. You’ll see a concrete example when we
discuss implementing a Create, Read, Update, and Delete (CRUD) action in chap-
ter 15; but in general, one pattern that supports this order of operations is to use
the parameter interceptor twice in one interceptor stack:

1 The parameter interceptor sets the object ID on the action. The other prop-
erties can’t be set because the domain object is currently null.

2 The prepare interceptor calls prepare() on the action so the action can
load the object from the database. The domain object is no longer null.

3 The parameter interceptor sets the other properties on the domain
object. Because the domain object is no longer null, the additional prop-
erties can now be set.

As you can see, many different problems can be overcome by a creative usage of
interceptors.

 Another issue to consider when directly using domain objects in your web tier
is security. When you’re taking the user’s request parameters and setting them on
a domain object before saving it back to the database, you have to be careful not to
let the user modify properties they shouldn’t. For instance, what if the user put in
saveUser.action?userId=100&user.id=1? The userId parameter might be used to
load the User object, but then the user.id parameter might overwrite the id of the
User object. Similarly, there are other properties you may not wish the user to set.

 Currently, no single right answer exists for this problem. One option is to have
no getter for the domain object; instead, you put the getters and setters for the
properties you want the user to be able to set on the action and have them dele-
gate to the domain object properties, like this:

 public String getUsername() {
 return user.getUsername();
 }

 public void setUsername(String username) {
 user.setUsername(username);
 }
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Working with ModelDriven actions 95
Although this approach effectively protects the properties you don’t want modi-
fied, you’ve lost a lot of advantages of using the domain object, because you need
to duplicate the getters and setters for the properties on your action.

 Another option that is being worked on is using dynamic proxies to expose
only the methods on interfaces implemented by the domain object. Using Aspect-
Oriented Programming (AOP), these proxies can be built automatically without
your having to do it manually in your code. If you have an interface named User
with getters and setters for the properties username, firstname, lastname, and
email, and a class named UserImpl that implements the User interface but adds
properties with getters and setters for id, version, lastUpdate, and createDate,
then the proxy implementing User will block access to these UserImpl-specific
properties. Because the proxy only implements the User interface, only the get-
ters and setters for username, firstname, lastname, and email will be accessible.
Again, this is a work in progress; for the current status of this functionality, your
best source is the WebWork forums at http://forums.opensymphony.com.

4.6 Working with ModelDriven actions

One of WebWork’s key features is that it doesn’t require you to use special classes
to back your form fields on your web pages. The properties can instead be on your
action and can include complex objects with subproperties of their own. This can
be valuable because you don’t have to write FormBean classes, which are just
more boilerplate code to be maintained. Actions (which handle the form data)
and FormBeans (which hold the form data) are so tightly bound anyway, it makes
sense to combine them.

 Another option exists, however. If you want to have an object backing your form,
your action can implement com.opensymphony.xwork.ModelDriven. This backing
object doesn’t have to be a weak, all-string-property pseudo-object; it can be a
domain model object or other rich object. ModelDriven is an optional interface that
ActionSupport doesn’t implement, but subclasses of ActionSupport can choose to
implement it. ModelDriven lets you work directly with your application’s domain
objects, allowing you to use the same objects in your web tier and your core business
logic. Rather than having to map back and forth to another layer of FormBean
objects, your web application can directly view and edit your domain objects.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

96 CHAPTER 4

Implementing WebWork actions
4.6.1 Implementing ModelDriven actions

The ModelDriven interface has one method:

 public Object getModel()

You can use this method to return the model that will back your web page. The
properties of this model object are directly available by name for getting and set-
ting from the web page; you don’t have to make them (the model’s properties)
available from the action. This is another example of an optional interface that an
action can choose to implement along with a corresponding interceptor. In this
case, the interceptor is com.opensymphony.xwork.interceptor.ModelDrivenInter-
ceptor, and its job is to put the model onto the value stack. We haven’t looked
fully at interceptors (see chapter 5), but the code in listing 4.10 (from the Model-
DrivenInterceptor) should be straightforward.

 protected void before(ActionInvocation invocation)
 throws Exception {
 Action action = invocation.getProxy().getAction();

 if (action instanceof ModelDriven) {
 ModelDriven modelDriven = (ModelDriven) action;
 OgnlValueStack stack = invocation.getStack();
 stack.push(modelDriven.getModel());
 }
 }

As you can see, the ModelDrivenInterceptor only does its work if the action imple-
ments ModelDriven. If it does, the model object is retrieved and pushed onto the
value stack.

 In addition to the properties of your action being visible directly to the JSP
tags, your model object as returned from getModel() will also be available. As you
can see in figure 4.1, the model object is on the top of the value stack, with the
action instance just below, so the model properties are seen first by expressions
that access property values.

 Let’s look at an example of a ModelDriven action. Listing 4.11 shows the UpdateUser
action before it’s refactored to implement ModelDriven.

Listing 4.10 The before() method of the ModelDrivenInterceptor is
called before the action and result are executed.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Working with ModelDriven actions 97
 public class UpdateUser extends ActionSupport
 implements UserDAOAware, Preparable,
 SessionAware {
 UserDAO userDAO;
 Map session;

 User user;

 public void setSession(Map session) {
 this.session = session;
 }

 public void setUserDAO(UserDAO userDAO) {

Listing 4.11 The UpdateUser action before it's refactored to
implement ModelDriven

Figure 4.1
A representation of the value stack with the
model object on top and the action below it.
Queries for property values look first on the
model and then on the action.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

98 CHAPTER 4

Implementing WebWork actions
 this.userDAO = userDAO;
 }

 public void prepare() throws Exception {
 Long id = ((User)

session.get(AuthenticationInterceptor.USER)).getId();
 user = userDAO.getUserById(id, false);
 }

 public String execute() throws Exception {
 userDAO.makePersistent(user);
 return SUCCESS;
 }

 public String doDefault() throws Exception {
 return INPUT;
 }

 public User getUser() {
 return user;
 }
 }

Listing 4.12 shows the UpdateUser action after it has been refactored to imple-
ment ModelDriven.

 public class UpdateUser extends ActionSupport
 implements UserDAOAware, Preparable,
 SessionAware, ModelDriven {
 UserDAO userDAO;
 Map session;

 User user;

 public void setSession(Map session) {
 this.session = session;
 }

 public void setUserDAO(UserDAO userDAO) {
 this.userDAO = userDAO;
 }

 public void prepare() throws Exception {
 Long id = ((User)

session.get(AuthenticationInterceptor.USER)).getId();

Listing 4.12 The UpdateUser action after it’s been refactored to implement
ModelDriven
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Working with ModelDriven actions 99
 user = userDAO.getUserById(id, false);
 }

 public String execute() throws Exception {
 userDAO.makePersistent(user);
 return SUCCESS;
 }

 public String doDefault() throws Exception {
 return INPUT;
 }

 public Object getModel() {
 return user;
 }
 }

In listing 4.12, the only changes needed make the action implement ModelDriven
and change the getUser() method to getModel(). Now let’s look at the changes in
the JSP. Listing 4.13 shows updateProfile.jsp before it’s refactored to support the
ModelDriven version of the UpdateUser action.

 <ww:form action="updateProfile" method="post">
 <ww:textfield label="%{getText('firstname')}"
 name="user.firstname"/>
 <ww:textfield label="%{getText('lastname')}" name="user.lastname"/>
 <ww:textfield label="%{getText('email')}" name="user.email"/>
 <ww:radio label="%{getText('gender')}" name="user.gender"
bbbbbbbbbbblist="#{0 : getText('gender.male'),
 b1 : getText('gender.female')}"/>
 <ww:textfield label="%{getText('address.street')}"
 name="user.address.street"/>
 <ww:textfield label="%{getText('address.zipcode')}"
 name="user.address.zipcode"/>
 <ww:textfield label="%{getText('address.city')}"
 name="user.address.city"/>
 <ww:select label="%{getText('address.state')}"
 name="user.address.state"
 list="{'Californa', 'Oregon'}"/>
 <ww:select label="%{getText('address.country')}"
 name="user.address.country"
 list="{'USA', 'Canada', 'Mexico', 'Other'}"/>
 <ww:checkbox label="%{getText('address.poBox')}"
 name="user.address.poBox"
 fieldValue="true"/>

Listing 4.13 updateProfile.jsp before it’s refactored to support the ModelDriven
version of the UpdateUser action

Change to getModel()
to return User object
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

100 CHAPTER 4

Implementing WebWork actions
 <ww:submit value="%{getText('updateProfile')}"/>
 </ww:form>

Each of the form fields is mapped to one of the properties of the User object
using the user.* notation. To support the new ModelDriven action, all you need to
do is to remove these user. prefixes from the property names. Listing 4.14 shows
the refactored updateProfile.jsp.

 <ww:form action="updateProfile" method="post">
 <ww:textfield label="%{getText('firstname')}"
 name="firstname"/>
 <ww:textfield label="%{getText('lastname')}" name="lastname"/>
 <ww:textfield label="%{getText('email')}" name="email"/>
 <ww:radio label="%{getText('gender')}" name="gender"
 blist="#{0 : getText('gender.male'),
 b1 : getText('gender.female')}"/>
 <ww:textfield label="%{getText('address.street')}"
 name="address.street"/>
 <ww:textfield label="%{getText('address.zipcode')}"
 name="address.zipcode"/>
 <ww:textfield label="%{getText('address.city')}"
 name="address.city"/>
 <ww:select label="%{getText('address.state')}"
 name="address.state"
 list="{'Californa', 'Oregon'}"/>
 <ww:select label="%{getText('address.country')}"
 name="address.country"
 list="{'USA', 'Canada', 'Mexico', 'Other'}"/>
 <ww:checkbox label="%{getText('address.poBox')}"
 name="address.poBox"
 fieldValue="true"/>
 <ww:submit value="%{getText('updateProfile')}"/>
 </ww:form>

The JSP form is essentially the same, but you can now directly access the proper-
ties of the User object, so you don’t need the user.* prefix.

4.6.2 Considerations when using ModelDriven

This isn’t to say that ModelDriven should be used in all circumstances. You may
find scenarios where there are no existing business objects and it isn’t worthwhile
to create any. The search action is a common example. Most search actions take a

Listing 4.14 The refactored updateProfile.jsp directly accesses the properties of the
User object.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Working with ModelDriven actions 101
query and build a list of found items. You could create an object to hold these val-
ues, but usually it’s easier to directly use the properties, as in listing 4.15.

 public class Search extends ActionSupport
 implements ItemDAOAware, SessionAware {
 List items;
 String query;

 public String execute() throws Exception {
 List results = itemDAO.search(query);

 return SUCCESS;
 }

 public List getItems() {
 return items;
 }

 public void setQuery(String query) {
 this.query = query;
 }
 }

Another consideration when using ModelDriven concerns how the model is han-
dled. For consistency, the value returned by getModel() shouldn’t change over the
course of a request. Because execute() is called after a reference to the model is
returned, the execute() method may not replace the model. Consider the exam-
ple in listing 4.16.

 //Example 1: This is wrong:
 public class ViewHeadlineAction implements Action, ModelDriven {
 Headline headline = new Headline();

 public Object getModel() {
 return this.headline ;
 }

 // ...

 public String execute() {

Listing 4.15 A search action doesn’t need a domain model object to back it.

Listing 4.16 The value returned from getModel() shouldn’t change over the lifetime
of the action.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

102 CHAPTER 4

Implementing WebWork actions
 headline = headlineFactory.findLatest();
 return SUCCESS;
 }
 }

b//Example 2: This is correct:
 public class ViewHeadlineAction implements Action, ModelDriven {
 Headline headline = new Headline();

 public Object getModel() {
 return this.headline ;
 }

 // ...

 public String execute() {
 headlineFactory.updateToLatest(headline);
 return SUCCESS;
 }
 }

Example 1 attempts to change the instance that getModel() returns. However,
because getModel() is called before execute() and before the object is pushed
onto the value stack, the reference that WebWork uses is the original instance, cre-
ated by new Headline(), not the instance loaded from the HeadlineFactory. The
second example resolves this issue by updating the existing instance rather than
having headline point to a new instance.

4.7 Accessing data through the ActionContext

Until now, we’ve shown how information can be retrieved and set via the fields in
your action and/or model. Although 90% of the time this is all the data you’ll
need access to, in some cases additional data access is required (for example, to
the data stored in an HttpSession). In this section, we’ll cover the basics of access-
ing this type of information. The key is in the ActionContext class.

NOTE For more information about how ActionContext works, including how it
guarantees data consistency, consult appendix, “WebWork architecture.”

4.7.1 CaveatEmptor: accessing the session

Let’s look at the Login action in CaveatEmptor. This action uses WebWork’s Inver-
sion of Control container to delegate to the username/password verification. (For
now, ignore the UserDAO, but know that it’s one of many components built for
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Accessing data through the ActionContext 103
CaveatEmptor. In chapter 6, we discuss Inversion of Control and a couple of the
components that are part of CaveatEmptor.) In listing 4.17, the important thing is
the call to ActionContext.

 public class Login extends ActionSupport
 implements UserDAOAware {

 User user;
 UserDAO userDAO;

 public String execute() throws Exception {
 user = userDAO.findByCredentials(user.getUsername(),
 user.getPassword());
 if (user == null) {
 return INPUT;
 } else {
 Map session = ActionContext.getContext().getSession();
 session.put("user", user);
 return SUCCESS;
 }
 }

 public String doDefault() throws Exception {
 return INPUT;
 }

 public User getUser() {
 return user;
 }

 public void setUserDAO(UserDAO dao) {
 this.userDAO = dao;
 }
 }

As you can see, ActionContext provides a static method getContext(), which
returns an instance of ActionContext. Once you have a handle on this object, you
can call several of its methods, which provide access to data associated with the
action invocation. One of those methods, getSession(), provides access to session-
scoped data. You use the session Map to then store the User object and indicate that
the user has been authenticated.

 Although ActionContext can be handy, it’s sometimes cumbersome to use. It
has two big problems: It’s hard to test, and it can lead to bad designs. Specifically,

Listing 4.17 Login action using ActionContext
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

104 CHAPTER 4

Implementing WebWork actions
because ActionContext is statically accessed and is implemented as a ThreadLocal,
automated unit tests for your actions require more work to set up.

 Also, because you can technically access the ActionContext at any point in the
thread call stack, as you can with any ThreadLocal, if you rely on it too much you
may find yourself calling out to it deep in code that has nothing to do with your
WebWork actions. This is a bad design, but it’s easy to get caught up. Trust us—
we’ve been caught by it many times.

 But don’t despair! WebWork provides simple alternatives to getting access to
the values stored in the ActionContext. Listing 4.18 shows the use of the Session-
Aware interface, which uses Inversion of Control to give the action a handle to the
session Map. In chapter 5, we’ll explain which interceptor provides this functional-
ity; for now, know that using the completeStack outlined in chapter 3 is sufficient.

 public class Login extends ActionSupport
 implements com.opensymphony.webwork.interceptor.SessionAware,
 UserDAOAware {

 Map session;
 User user;
 UserDAO userDAO;

 public void setSession(Map session) {
 this.session = session;
 }

 public String execute() throws Exception {
 user = userDAO.findByCredentials(user.getUsername(),
 user.getPassword());
 if (user == null) {
 return INPUT;
 } else {
 session.put("user", user);
 return SUCCESS;
 }
 }

 public String doDefault() throws Exception {
 return INPUT;
 }

 public User getUser() {
 return user;
 }

Listing 4.18 Login action using SessionAware
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Accessing data through the ActionContext 105
 public void setUserDAO(UserDAO dao) {
 this.userDAO = dao;
 }
 }

The major change is that you no longer access ActionContext. Instead, the action
now implements SessionAware, which tells WebWork that the action needs the ses-
sion Map to be set on the action before it’s executed. This makes unit testing much
easier because you can pass in a HashMap and verify the contents after execute()
has completed. For more information about testing practices with WebWork, con-
sult chapter 15.

 You’ve now seen two ways to access the session in your action, but using Ses-
sionAware is the recommended approach. Note that the session is represented as
Map rather than the servlet-specific HttpSession, although the Map merely wraps
the HttpSession. Let’s see what needs to happen to get access to objects that are
specific to servlet environments.

4.7.2 Example: accessing the request and response

Let’s continue with the Login example, but this time access the HttpSession
directly rather than use the wrapper Map provided by WebWork. Start again by
using ActionContext:

 public String execute() throws Exception {
 user = userDAO.findByCredentials(user.getUsername(),
 user.getPassword());
 if (user == null) {
 return INPUT;
 } else {
 ActionContext ctx = ActionContext.getContext();
 HttpServletRequest req =
 ctx.get(ServletActionContext.HTTP_REQUEST);
 HttpSession session = req.getSession();
 session.setAttribute("user", user);
 return SUCCESS;
 }
 }

In order to get the servlet-specific session object, you first need access to the
HttpServletRequest that is associated with this request. You can do so by asking
the ActionContext for the object associated with the ServletActionCon-

text.HTTP_REQUEST key, which is a string. Once you get the object, the standard
servlet APIs are used to set the user in the session.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

106 CHAPTER 4

Implementing WebWork actions
NOTE The complete class name for ActionContext is com.opensympho-
ny.xwork.ActionContext. Similarly, the complete class name for Servlet-
ActionContext is com.opensymphony.webwork.ServletActionContext.
However, we recommend that you avoid using both of these classes unless
absolutely necessary.

The ServletActionContext class contains a bunch of keys, such as HTTP_REQUEST,
as well as helper methods, which work in tandem with the ActionContext to pro-
vide servlet-specific objects such as the request and response. It even provides a
helper method that simplifies the previous example down to the following:

 public String execute() throws Exception {
 user = userDAO.findByCredentials(user.getUsername(),
 user.getPassword());
 if (user == null) {
 return INPUT;
 } else {
 HttpServletRequest req = ServletActionContext.getRequest();
 HttpSession session = req.getSession();
 session.setAttribute("user", user);
 return SUCCESS;
 }
 }

ServletActionContext.getRequest() returns the request associated with the cur-
rent thread’s ActionContext. You can simplify this example one more time by
employing the same Inversion of Control pattern, shown in listing 4.19.

 import com.opensymphony.webwork.interceptor.ServletRequestAware;

 public class Login extends ActionSupport
 implements ServletRequestAware, UserDAOAware {

 HttpServletRequest req;
 User user;
 UserDAO userDAO;

 public void setServletRequest(HttpServletRequest req) {
 this.req = req;
 }

 public String execute() throws Exception {
 user = userDAO.findByCredentials(user.getUsername(),
 user.getPassword());
 if (user == null) {
 return INPUT;

Listing 4.19 Login action using ServletRequestAware
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Handling file uploads 107
 } else {
 HttpSession session = req.getSession();
 session.setAttribute("user", user);
 return SUCCESS;
 }
 }

 public String doDefault() throws Exception {
 return INPUT;
 }

 public User getUser() {
 return user;
 }

 public void setUserDAO(UserDAO dao) {
 this.userDAO = dao;
 }
 }

This listing uses the same pattern of implementing an Aware interface to get
access to the request object without accessing any static methods. Just like when
you access the session Map, we recommend using the Aware interface approach to
get access to this data rather than using ServletActionContext. In addition to get-
ting access to the request, you can implement ServletResponseAware to get access
to the HttpServletResponse object. Access to these servlet-specific objects is some-
times important, especially when you’re dealing with file uploads. Let’s now look
at how WebWork handles that process.

4.8 Handling file uploads

You’ve just seen how WebWork can allow simple access to the servlet request
object. This is important when you’re dealing with multipart requests—better
known as file uploads. Just as with the ActionContext examples in section 4.7, there
are two ways to get access to uploaded files. We’ll start with the more straightfor-
ward approach, and then we’ll show you the recommended approach by taking
advantage of WebWork’s interceptors.

4.8.1 Accessing uploaded files through the request wrapper

Before a file can be uploaded, it’s important to remember that your HTML form
must submit the request in the proper form. Marking your HTML form with the
encoding type of multipart/form-data does this:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

108 CHAPTER 4

Implementing WebWork actions
 <form action="upload.action"
 enctype="multipart/form-data"
 method="post">
 <input type="file" name="doc"/>
 ...
 b</form>

This tells the web browser to send the HTTP request encoded in such a manner that
uploaded files can be processed. WebWork automatically recognizes these types of
requests and wraps the HttpServletRequest object with a special MultiPartRe-
questWrapper (in the package com.opensymphony.webwork.dispatcher.multi-

part). This object properly parses out the files from the rest of the request, allowing
you to get a handle on the uploaded temporary java.io.File object as well as the
file’s content-type and original filename. An example of an action that does this is
shown here:

public class DocUpload extends ActionSupport
 implements ServletRequestAware {

 HttpServletRequest req;

 public void setServletRequest(HttpServletRequest req) {
 this.req = req;
 }

 public String execute() throws Exception {
 MultiPartRequestWrapper wrapper =
 (MultiPartRequestWrapper) req;
 File doc = null;
 try {
 doc = wrapper.getFiles("doc")[0];
 String contentType = wrapper.getContentTypes("doc")[0];
 String filename = wrapper.getFilesystemNames("doc")[0];

 // do something with the file, content-type, and filename
 } finally {
 doc.delete();
 }

 return SUCCESS;
 }
}

In this example, the first thing to notice is that the request object is cast to Multi-
PartRequestWrapper. This is necessary to get access to the file, content-type, and
filename. Note that the wrapper’s method calls are all in the plural form, such as
getFiles() and getContentTypes(). This is because a form could potentially
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Handling file uploads 109
upload several files using the same parameter name (doc in this case). Because
you know your form is sending only one file for that parameter, you can safely use
the array index 0 to get a handle on the data.

 Once you have access to the File object, the action needs to do something
with it, such as copy the contents to a permanent location (a database, for exam-
ple). The File object that is handed off with the request will not be deleted
(unless you’re using the FileUploadInterceptor, which we’ll discuss in the next
section). The try/finally block ensures that the temporary file is removed once
it has been processed.

 This approach works, but it obviously isn’t graceful to have to clean up
uploaded files every time. WebWork has features that can make file uploads easier
to handle, as we’ll now discuss.

4.8.2 Automating file uploads

WebWork provides an interceptor, FileUploadInterceptor, which automates the
retrieval and cleanup of uploaded files. Using this interceptor, your action no
longer needs to worry about request objects, request wrappers, or even cleaning
up the File objects. We discuss interceptors more in chapter 5; but the fileUp-
load interceptor is automatically configured in webwork-default.xml and is part of
the completeStack outlined in chapter 3. Provided you configure your actions to
use the completeStack or some other stack that includes the fileUpload intercep-
tor, the following modifications to the previous example are valid:

public class DocUpload extends ActionSupport {
 File doc;
 String docContentType;
 String docFileName;

 public String execute() throws Exception {
 // do something with the file, content-type, and filename

 return SUCCESS;
 }

 public void setDoc(File doc) {
 this.doc = doc;
 }

 public void setDocContentType(String docContentType) {
 this.docContentType = docContentType;
 }

 public void setDocFileName(String docFileName) {
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

110 CHAPTER 4

Implementing WebWork actions
 this.docFileName = docFileName;
 }
}

This example is much simpler. Using the interceptor, you can treat uploaded files
(and their associated metadata: content-type and filename) like normal form
parameters. Also, the action is no longer required to delete the uploaded files—
the fileUpload interceptor automatically handles that.

 The field names in the action must follow a specific pattern. In this example,
the form element is named doc, so the File field must also be named doc. Simi-
larly, the content-type and filename must be in the form [element]ContentType
and [element]FileName, respectively. If you don’t need the content-type or origi-
nal filename, you can omit the fields and setters in your actions.

 Uploading multiple files with the same parameter names is also supported. All
you have to do is change your action fields to arrays: that is, File becomes File[],
and the two strings become string arrays. The three arrays are always the same
length, and their order is the same, meaning that index 0 for all three arrays rep-
resents the same file and file metadata.

4.8.3 Configuration settings

Although WebWork supports file uploading without any modifications, three con-
figuration options are available to tune how WebWork handles files. We discussed
these items in chapter 3, but we’ll go over them here in more detail now that
you’ve seen a real file-upload example. These three properties are defined in web-
work.properties:

■ webwork.multipart.parser—Configures the underlying multipart request
parser. Possible values are pell, cos, and jakarta.

■ webwork.multipart.saveDir—The directory to which WebWork saves tem-
porary uploaded files. If this isn’t specified, WebWork saves files to the
directory specified by the javax.servlet.context.tempdir system property.

■ webwork.multipart.maxSize—The maximum size of the uploaded files,
measured in bytes. Defaults to 2097152, or roughly 2MB.

The most important configuration for file uploads is the parser you choose.
Although pell is the default for WebWork 2.1.7 and below, as of WebWork 2.2
jakarta will be the default choice. This is the case because that implementation is
the only one that supports multiple files with the same parameter name. We rec-
ommend that you configure your WebWork application to also use the jakarta
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 111
parser in preparation for the upgrade to WebWork 2.2 when it’s released and also
because it’s the best implementation of the three.

NOTE In order to use the file-upload feature, you must include the correct JAR
file for the multipart parser you’ve chosen. For jakarta, that file is in-
cluded with WebWork as commons-fileupload.jar.

4.9 Summary

Actions are the core unit of functionality in WebWork. At their heart, actions are
nothing more than classes with an execute() method, but your action classes can
choose to implement a number of optional interfaces to take advantage of other
services provided by the framework. Several of these optional interfaces follow a
common pattern in WebWork: an optional interface paired with an interceptor
that applies to actions implementing this interface. This is a powerful pattern to
remember for your code as you pull common code out into interceptors.
Although you can implement these optional interfaces, the overriding message
we hope to convey is that WebWork should provide 99% of your desired function-
ality in the form of the ActionSupport base class.

 We also looked at another way of building your web applications using Model-
Driven actions. The model-driven approach will start to introduce you to the
robust parameter mapping and type conversion that WebWork offers. This allows
you to directly use your domain objects in your web applications, gaining the
advantage of code reuse and reducing code duplication. WebWork’s powerful
type conversion and dynamic expression evaluation make this a valuable alterna-
tive to putting your form properties on actions as fields.

 You now know that the ActionContext contains additional information that
your action doesn’t necessarily have access to. Although it’s possible to access it
directly, it’s recommended that you use the Aware interfaces that WebWork pro-
vides. These interfaces are described in more detail in chapter 5.

 Finally, using the fileUpload interceptor rather than directly talking to Web-
Work’s MultiPartRequestWrapper is the simplest way to support uploaded files in
your web applications. The pell parser is the default choice at this moment, but
we highly recommend that you use the jakarta parser: it’s more feature-rich, has
fewer bugs, and will be the default in future versions of WebWork.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Adding functionality
with interceptors
This chapter covers

■ How interceptors are called

■ Using the prepackaged interceptors

■ Using the prepackaged interceptor stacks

■ Customizing interceptor stacks for
specific needs

■ Building your own interceptors
112

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

How interceptors are called 113
Interceptors are one of WebWork’s most powerful features—one that sets it apart
from other frameworks. Interceptors allow you to do some processing before and/
or after the action and result are executed, and they also let you modularize com-
mon code out into reusable classes. Many of the core features of WebWork are
implemented as interceptors, including setting parameters and chaining action
properties. Interceptors, including your own custom interceptor classes, may be
applied in any order to provide the exact functionality required for each action.

 As you’ll see in this chapter, WebWork comes with many interceptors to pro-
vide both the common functionality of a web application framework and several
advanced features. We’ll also look at an example that shows how you can build a
custom interceptor and how interceptors can be used to integrate other libraries
and frameworks with WebWork.

5.1 How interceptors are called

When we’re discussing interceptors throughout the rest of this chapter, it’s impor-
tant to understand the lifecycle of an action’s execution and when interceptors
are called in that execution. When a request comes into the WebWork Servlet-
Dispatcher, WebWork looks up the configuration for that action and builds a list
of the interceptors applied for that action configuration. Figure 5.1 shows that
WebWork starts the call to the list of interceptors, which calls each of the intercep-
tors in order.1

 Because interceptors wrap around the execution of the action and the result,
when the action and result are finished, each interceptor regains control in
reverse order until the interceptor that was first on the way in is the last on the way
out. If you’re familiar with servlet filters, interceptors are similar in that each
interceptor has the option to continue the execution of the rest of the intercep-
tors or to short-circuit the execution of the rest of the interceptors and the
action/result by just returning. By returning, an interceptor can prevent the rest
of the interceptors and the action from executing. The return value from either
the action or a short-circuiting interceptor is used to look up the result config-
ured in xwork.xml for that return code.

1 Note that this is a highly simplified view of how interceptors and the action and result are called. For a
more detailed look at the architecture of WebWork, see the appendix (“WebWork architecture”).
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

114 CHAPTER 5

Adding functionality with interceptors
5.2 Using the prepackaged interceptors

WebWork comes packaged with a number of interceptors that provide much of the
core functionality as well as optional advanced features. As you saw in chapter 3,
“Setting up WebWork,” these interceptors are defined in the webwork-default.xml
file. Some default interceptor stacks, or named groups of interceptors, are also
defined; you can use them to provide a set of functionality or extend them for your
own custom interceptor stacks. Remember, interceptor stacks are just ordered lists
of interceptors mapped to a name; they can be referenced by name anywhere
where an interceptor can be referenced. The prepackaged interceptors are shown
in table 5.1.

WebWork Interceptor1 Interceptor2 Action Result

intercept

intercept

execute

execute

Figure 5.1 Each interceptor wraps the execution of the remainder of the interceptors and
the action and result.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using the prepackaged interceptors 115
Table 5.1 Prepackaged interceptors, grouped by functionality

Interceptor alias Description

Utility interceptors timer Times the execution of the rest of the ActionInvoca-
tion and logs the time.

logger Logs a message before and after the rest of the
ActionInvocation for trace logging.

Property setting
interceptors

params Sets the properties of the action using the request
parameters. Request parameters are mapped to the
same named properties of the action, if they exist, and
the values are converted to the proper type.

static-params Sets any parameters defined in the xwork.xml action
configuration onto the action instance

component Calls the Inversion of Control (IoC) container to have all
the action’s dependencies set with component
instances managed by the container. Chapter 6 dis-
cusses the IoC container built into WebWork.

chain Copies all the properties from previous actions to the
current action. This interceptor is usually applied to an
action that is chained to using a chain result to auto-
matically copy the property values from the previous
action to the new action.

conversionError Adds a field error message to the action for every type
conversion error.

servlet-config Sets the HttpServletRequest, HttpServletRe-
sponse, parameter map, session map, and application
map on the action if it implements ServletRequest-
Aware, ServletResponseAware, ParameterAware,
SessionAware, and ApplicationAware, respectively.
An action may choose to implement some or all of
these to get the ones it needs.

fileUpload Handles multipart file uploads, allowing your action to
use the uploaded file without needing to parse the mul-
tipart request.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

116 CHAPTER 5

Adding functionality with interceptors
Interceptor alias Description

Workflow interceptors workflow Defines a default workflow for actions. If the action
implements the Validateable interface, the intercep-
tor calls validate() on the action. If the action imple-
ments ValidationAware, the interceptor checks to
see whether the action has any error messages using
the hasErrors() method. If the action does have any
errors, the interceptor returns input without letting the
action execute.

validation Invokes the validation framework to read the *-valida-
tion.xml files and apply the validations declared in them.

prepare Calls prepare() on your action if the action imple-
ments Preparable. This is useful for setting up
resources before other interceptors (such as params)
are called and before the action is executed. As an
example, you could create a model object in prepare()
into which the params interceptor sets parameters.

model Calls getModel() on your action if it implements the
ModelDriven interface, and pushes the model object
onto the value stack. This allows your form fields to
directly access the model’s properties without your hav-
ing to precede the property names with model.*.

token Checks for a valid form token in the request parameters.
This form token is generated using the <ww:token> JSP
tag; it sets an expected value in the session and creates
a hidden input field in the form. The token interceptor
verifies that the form token is in the request parameters
and that it hasn’t been used before. If the token isn’t
valid, the token interceptor returns invalid.token
without executing the action. This is useful for prevent-
ing duplicate form submissions.

token-session Extends the token interceptor. When there is a valid
token, it saves the ActionInvocation in the session;
then, if a duplicate form submission comes in, it re-
renders the same page as the first time without execut-
ing the action.

execAndWait Spawns a new thread to execute the action, and
returns wait as the result code. The wait result can
be mapped to a page that has a meta refresh, telling
the browser to try again every few seconds. When the
Thread executing the action finishes, the next request
from the browser returns the result of the original
action invocation.

Table 5.1 Prepackaged interceptors, grouped by functionality (continued)
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using the prepackaged interceptors 117
5.2.1 Utility interceptors

The utility interceptors listed in table 5.1 are the simplest interceptor classes; so,
as we begin to look at how interceptors are built and used, they make a good start-
ing point. Using these interceptors is as easy as applying them in your xwork.xml
action configurations, as you saw in chapter 3.

Timing your actions
One of the simplest and most frequently used interceptors is also one of the clas-
sic usage examples for the interceptor pattern: execution timing. The timer inter-
ceptor is the most basic direct implementation of the Interceptor interface.
Here’s its intercept() method, which logs the time it takes to execute the action
and result:2

public String intercept(ActionInvocation invocation)
 throws Exception {
 long startTime = System.currentTimeMillis();
 String result = invocation.invoke();
 long executionTime = System.currentTimeMillis() - startTime;
 ... log the time ...
}

As you can see, it’s basically very simple. The intercept() method calls Sys-
tem.currentTimeMillis() before executing the rest of the ActionInvocation
(including the rest of the interceptors applied to this action) by calling invoca-
tion.invoke(). After the action and result have executed and returned, the timer
interceptor gets the time it took by subtracting the start time from the current
time and building a message to log the execution time.

The AroundInterceptor
Rather than directly implement the Interceptor interface, like the TimerInter-
ceptor does, most of the prebuilt interceptors extend com.opensym-

phony.xwork.interceptor.AroundInterceptor. We’ll look at when to extend
AroundInterceptor and when to directly implement the interceptor interface later
in this chapter. For now, let’s take a quick look at what it does, to better understand
the other interceptors that come bundled with WebWork (see listing 5.1).

2 This code sample is simplified to show only the pertinent parts.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

118 CHAPTER 5

Adding functionality with interceptors
public abstract class AroundInterceptor implements Interceptor {
 public String intercept(ActionInvocation invocation)
 throws Exception {
 String result = null;

 before(invocation);
 result = invocation.invoke();
 after(invocation, result);

 return result;
 }

 /**
 * Called after the invocation has been executed.
 *
 * @param result the result value returned by the invocation
 */
 protected abstract void after(
 ActionInvocation dispatcher,
 String result)
 throws Exception;

 /**
 * Called before the invocation has been executed.
 */
 protected abstract void before(ActionInvocation invocation)
 throws Exception;
}

As you can see in listing 5.1, the AroundInterceptor defines two callback methods,
before() and after(). The before() method is called, surprisingly, before the
rest of the invocation is called, and the after() method is called afterward. This
allows for subclasses to implement these two abstract methods to put the code
they want to execute before and after the action in the correct spots. As you look
at the prebuilt interceptors that follow, you’ll see examples of this, along with sev-
eral interceptors that need only before() or after().

Logging action executions
In addition to execution timing, the other classic example for the interceptor pat-
tern is logging. The com.opensymphony.xwork.interceptor.LoggingInterceptor
implements logging a message before and after the action is executed by extend-
ing the AroundInterceptor and implementing the before() and after() meth-
ods, as shown here:

Listing 5.1 AroundInterceptor: a useful base class for interceptors
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using the prepackaged interceptors 119
protected void after(ActionInvocation invocation, String result)
 throws Exception {
 logMessage(invocation, FINISH_MESSAGE);
}

protected void before(ActionInvocation invocation) throws Exception {
 logMessage(invocation, START_MESSAGE);
}

5.2.2 Setting parameters

As we said earlier, interceptors handle even core features such as setting
properties on your action instance so that their order can be customized via
configuration in xwork.xml. Several interceptors set properties on your action,
depending on the source of the values to be set—the configuration, the request,
or the container.

Setting properties from the request parameters
The com.opensymphony.xwork.interceptor.ParametersInterceptor, which is map-
ped as params in webwork-defaults.xml, is responsible for setting properties on your
action from the request parameters. Suppose you have a text field named foo
defined like this:

<ww:textfield label="Foo" name="foo"/>

When that form is submitted to an action with the parameter interceptor
applied, it will try to call a setFoo() method on your action with the value from
the form field.

 Listing 5.2 shows the heart of the ParametersInterceptor, which takes the
request parameters and iterates through them, setting the value for each name
using the value stack. As explained in more detail in the appendix, the value stack
uses the name of the property passed in as an Object Graph Navigation Language
(OGNL) expression and traverses object relationships using getters to find the
final property to be set.

if (parameters != null) {
 final OgnlValueStack stack =

bbbbbbbbbbActionContext.getContext().getValueStack();

 for (Iterator iterator = parameters.entrySet().iterator();
 iterator.hasNext();) {
 Map.Entry entry = (Map.Entry) iterator.next();

Listing 5.2 ParametersInterceptor sets the properties of the action from the
request parameters.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

120 CHAPTER 5

Adding functionality with interceptors
 stack.setValue(entry.getKey().toString(), entry.getValue());
 }
}

This parameter interceptor is responsible for turning the name-value pair
user.name->John that comes in the HTTP request into a call of getUser().set-
Name("John").

Setting properties from the configuration
A similar interceptor is the com.opensymphony.xwork.interceptor.StaticParame-
tersInterceptor, which is mapped with the name static-params in webwork-
default.xml. This interceptor does the same thing as ParametersInterceptor; but
instead of using the request parameters, it uses the parameters from the action
configuration in xwork.xml. For example, suppose you have an action defined
like this in xwork.xml:

<action name="exampleAction" class="example.ExampleAction">
 <param name="firstName">John</param>
 <param name="lastName">Doe</param>
</action>

The static-params interceptor is called with these two name-value pairs. If the
action has properties named firstName and lastName with setters, then they will
be set with the supplied values.

Setting components into your action from the IoC container
The com.opensymphony.xwork.interceptor.component.ComponentInterceptor also
sets properties on your action, but in this case they are instances of component
classes that are managed by an IoC container. Chapter 6 discusses Inversion of
Control and the IoC container that comes with WebWork.

Setting properties on your action from a chained action
Another interceptor that sets property values on actions is com.opensym-

phony.xwork.interceptor.ChainingInterceptor. The ChainingInterceptor can
be used as part of chaining from one action to another if you want to copy the
property values of the executed action along to the new action. This process is dis-
cussed in detail in chapter 7, “Using results”; but the general idea of this intercep-
tor is to use reflection to find all the properties of the first action and try to set
them into properties with the same name on the next action.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using the prepackaged interceptors 121
Getting at the HTTP-specific objects when you need them
The ServletConfigInterceptor works with actions that implement any or all of five
interfaces:

1 com.opensymphony.webwork.interceptor.ServletRequestAware

2 com.opensymphony.webwork.interceptor.ServletResponseAware

3 com.opensymphony.webwork.interceptor.ParameterAware

4 com.opensymphony.webwork.interceptor.SessionAware

5 com.opensymphony.webwork.interceptor.ApplicationAware

Each of these interfaces contains one method—a setter—for (respectively) the
HttpServletRequest, the HttpServletResponse, a map of the request parameters, a
map wrapping the HttpSession, and a map wrapping the ServletContext’s
attributes. If your action needs to directly access any or all of these, you can pick and
choose which of these interfaces to implement and apply the servlet-config inter-
ceptor to put them into your action. Listing 5.3 shows an action that implements
ServletRequestAware. The servlet-config interceptor puts the HttpServlet-
Request into this action before it’s executed, so it can just use the request.

public class ServletConfigAction extends ActionSupport
 implements ServletRequestAware {
 private HttpServletRequest request;
 private String contextPath;

 public void setServletRequest(HttpServletRequest request) {
 this.request = request;
 }

 public String getContextPath() {
 return contextPath;
 }

 public String execute() throws Exception {
 contextPath = request.getContextPath();
 return SUCCESS;
 }
}

Listing 5.4 shows the ServletConfigInterceptor checking for each of these inter-
faces and calling the appropriate method if it’s found.

Listing 5.3 An action that implements ServletRequestAware
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

122 CHAPTER 5

Adding functionality with interceptors
protected void before(ActionInvocation invocation)
throws Exception {
 Action action = invocation.getAction();
 ActionContext context = ActionContext.getContext();

 if (action instanceof ServletRequestAware) {
 HttpServletRequest request =
 (HttpServletRequest) context.get(HTTP_REQUEST);
 ((ServletRequestAware) action)
 .setServletRequest(request);
 }

 if (action instanceof ServletResponseAware) {
 HttpServletResponse response =

bbbbbbbbbbb(HttpServletResponse)
bbbbbbbbbbbbb➥context.get(HTTP_RESPONSE);

 bbbb((ServletResponseAware) action)
 bb➥.setServletResponse(response);
 }

 if (action instanceof ParameterAware) {
 ((ParameterAware) action)
bbbbbbbbbbbbbb➥.setParameters(context.getParameters());
 }

 if (action instanceof SessionAware) {
 ((SessionAware) action)
bbbbbbbbbbbbbb➥.setSession(context.getSession());
 }

 if (action instanceof ApplicationAware) {
 ((ApplicationAware) action)
bbbbbbbbbbbbbb➥.setApplication(context.getApplication());
 }
 }

The ServletConfigInterceptor is the best method when you need to get direct
access to the HTTP-specific classes. If at all possible, you should avoid tying your
actions to the Web like this, because it makes testing more difficult and ties you to
a servlet container for deployment. At times, however, this approach may be nec-
essary to get below the abstractions provided by the framework—for instance, to
set custom HTTP headers on the response.

Listing 5.4 ServletConfigInterceptor sets servlet-specific parameters
onto an action.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using the prepackaged interceptors 123
Handling file uploads
As you saw in chapter 3, the fileUpload interceptor automates the handling of
multipart file uploads. It parses the file(s) from the request and sets them, along
with the filenames and content types, into your action. Refer to chapter 3 for
more information about how to use the fileUpload interceptor.

5.2.3 Defining workflow

Several interceptors change the workflow of an action’s execution. By workflow, here
we mean the method calls that your action receives—both which ones are called
and the order in which they are called. Some add more workflow steps, such as call-
ing optional methods on actions that implement certain interfaces, whereas the
DefaultWorkflowInterceptor can prevent the action from executing altogether.

Using the default workflow
Here’s the intercept() method of the com.opensymphony.xwork.intercep-

tor.DefaultWorkflowInterceptor, which validates an action and checks for any
error messages:

bbbbpublic String intercept(ActionInvocation invocation)
 throws Exception {
 Action action = invocation.getAction();

 if (action instanceof Validateable) {
 Validateable validateable = (Validateable) action;
 validateable.validate();
 }

 if (action instanceof ValidationAware) {
 ValidationAware validationAwareAction =
 (ValidationAware) action;

 if (validationAwareAction.hasErrors()) {
 return Action.INPUT;
 }
 }

 return invocation.invoke();
 }

The DefaultWorkflowInterceptor implements a common best practice in Web-
Work actions and also maintains backward compatibility with the 1.x WebWork
development line. In WebWork 1.x, ActionSupport encapsulated much of the
functionality pulled into interceptors in WebWork 2.0 and later. Included in the
functionality in ActionSupport was some workflow that called a validate()
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

124 CHAPTER 5

Adding functionality with interceptors
method on the action and then checked for any action-level or field-level error
messages in the action. If the action contained any errors, ActionSupport auto-
matically returned Action.INPUT.

 The validate() method has been pulled into the com.opensym-

phony.xwork.Validateable interface, which ActionSupport in WebWork 2.x imple-
ments. If an action implements this interface, the DefaultWorkflowInterceptor
calls validate() on the action before it’s executed. If the action implements
com.opensymphony.xwork.ValidationAware, which is the interface that defines
methods for managing action- and field-level error messages, then the Default-
WorkflowInterceptor calls hasErrors() to check for any error messages and
returns Action.INPUT without executing the action if any error messages exist.

Validating your action using the validation framework
The DefaultWorkflowInterceptor with the Validateable interface is one method
of validating user input before executing your action. Another way of doing valida-
tion is to use the com.opensymphony.xwork.validator.ValidationInterceptor.
This interceptor calls into the XWork Validation Framework, which lets you define
your validations in external XML files, keeping your validation separate from your
code. The details of the validation framework are discussed in chapter 13, “Validat-
ing form data,” along with the pros and cons of each approach and when the two
approaches can be used together.

Preparing your actions
The PrepareInterceptor, like the ServletConfigInterceptor, calls an optional
method on your action if the action implements the correct interface. The Prepare-
Interceptor acts on actions that implement com.opensymphony.xwork.Preparable.
The Preparable interface implements only one method:

void prepare() throws Exception

As you can see, the PrepareInterceptor looks for classes implementing this inter-
face and calls prepare() on them:

bbbbprotected void before(ActionInvocation invocation)
 throws Exception {
 Action action = invocation.getAction();

 if (action instanceof Preparable) {
 ((Preparable) action).prepare();
 }
 }
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using the prepackaged interceptors 125
The Preparable interface can be helpful for setting up resources or values before
your action is executed. For instance, if you have a drop-down list of available values
that you look up in the database, you may want to do this in the prepare() method
so that the values will be populated for rendering to the page even if the action isn’t
executed because the DefaultWorkflowInterceptor found error messages.

Making your actions ModelDriven
The final interceptor that calls methods on your action to set up state before exe-
cuting the action is com.opensymphony.xwork.interceptor.ModelDrivenIntercep-
tor. We looked at the ModelDrivenInterceptor in chapter 4, “Implementing
WebWork actions,” when we discussed ModelDriven actions. As we showed then,
the ModelDrivenInterceptor looks for actions that implement com.opensym-
phony.xwork.ModelDriven; it calls getModel() from that interface to get an object
that’s pushed onto the value stack to allow its properties to be directly accessed via
OGNL expressions. (See section 4.6 in chapter 4 for the details.)

Preventing duplicate form posting using form tokens
The token and token-session interceptors can be used as part of a system to pre-
vent duplicate form submissions. Duplicate form posts can occur when users click
the Back button to go back to a previously submitted form and then click the but-
ton again, or when they click the button more than once while waiting for a
response. The token interceptors look for valid tokens submitted with your form
and allow them to be used only once. On subsequent form posts, the token inter-
ceptors identify the invalid requests and give you two options for handling them:
You can either show an error page or save the original result to be re-rendered for
the user. We look in detail at the token JSP tag and the token interceptors in chap-
ter 15, section 15.6.

Executing long-running actions without making the user wait
The token and token-session interceptors can help prevent duplicates posts from
being submitted and processed, but there is another common problem with web
applications and users who click too frequently: Long-running pages are often
resubmitted multiple times. As you’ll see in chapter 15, the token-session inter-
ceptor can transparently address this issue; but sometimes, having a simple Please
wait page while the action executes gives the user more confidence about your
application. The execAndWait interceptor does exactly that. This interceptor is an
advanced feature of WebWork and is explained in detail in chapter 15, section 15.7.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

126 CHAPTER 5

Adding functionality with interceptors
5.3 Using prepackaged interceptor stacks

In addition to the prepackaged interceptors, webwork-default.xml includes pre-
packaged combinations of these interceptors in named interceptor stacks. Table 5.2
lists the prepackaged interceptor stacks defined in webwork-default.xml.

Table 5.2 The prepackaged interceptor stacks define starter recipes for
interceptor stacks.

Interceptor alias Description

defaultStack

<interceptor-stack name="defaultStack">
 <interceptor-ref name="servlet-config"/>
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="static-params"/>
 <interceptor-ref name="params"/>
 <interceptor-ref name="conversionError"/>
</interceptor-stack>

Defines the basic interceptor stack.
It gives the action any servlet-spe-
cific dependencies it has, calls

prepare() on it if it implements
Preparable, sets configuration
and request parameters on the
action, and finds any type conver-
sion errors.

validationWorkflowStack

<interceptor-stack name="validationWorkflowStack">
 <interceptor-ref name="defaultStack"/>
 <interceptor-ref name="validation"/>
 <interceptor-ref name="workflow"/>
</interceptor-stack>

Builds on the defaultStack and
adds validation and workflow
interceptors. The interceptor-ref to
defaultStack includes all of the
interceptors from that stack. The
validation interceptor calls the
XWork validation framework, and
the workflow interceptor adds the
validation and error-checking work-
flow we looked at earlier.

fileUploadStack

<interceptor-stack name="fileUploadStack">
 <interceptor-ref name="fileUpload"/>
 <interceptor-ref name="defaultStack"/>
</interceptor-stack>

Prepends the fileUpload intercep-
tor to the default stack to handle a
multipart file upload. See chapter 4
for details of handling file uploads.

componentStack

<interceptor-stack name="componentStack">
 <interceptor-ref name="component"/>
 <interceptor-ref name="defaultStack"/>
</interceptor-stack>

Adds the component interceptor,
which invokes the Inversion of Con-
trol container to provide the depen-
dencies for the action.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using prepackaged interceptor stacks 127
These interceptor stacks aren’t meant to be the only ones you use. You may not
use any of them as is, but they provide a starting point for understanding intercep-
tor ordering and interceptor stack design. By understanding what each of the

Interceptor alias Description

modelDrivenStack

<interceptor-stack name="modelDrivenStack">
 <interceptor-ref name="model-driven"/>
 <interceptor-ref name="defaultStack"/>
</interceptor-stack>

Prepends the model-driven inter-
ceptor to the default stack to get the
model object and put it onto the
value stack, as you saw in chapter 4.

chainStack

<interceptor-stack name="chainStack">
 <interceptor-ref name="chain"/>
 <interceptor-ref name="defaultStack"/>
</interceptor-stack>

Adds the chain interceptor to copy
the properties from a previous
action or actions to the current
action when chaining actions.

executeAndWaitStack

<interceptor-stack name="executeAndWaitStack">
 <interceptor-ref name="defaultStack"/>
 <interceptor-ref name="execAndWait"/>
</interceptor-stack>

Adds the execAndWait interceptor
to run the rest of the action in a
separate thread. It’s very important
that the execAndWait interceptor
be the last interceptor in the stack,
because no further interceptors will
be executed after it.

completeStack

<interceptor-stack name="completeStack">
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="servlet-config"/>
 <interceptor-ref name="chain"/>
 <interceptor-ref name="model-driven"/>
 <interceptor-ref name="component"/>
 <interceptor-ref name="fileUpload"/>
 <interceptor-ref name="static-params"/>
 <interceptor-ref name="params"/>
 <interceptor-ref name="conversionError"/>
 <interceptor-ref name="validation"/>
 <interceptor-ref name="workflow"/>
</interceptor-stack>

Defines an all-purpose stack of
interceptors. The interceptor order
has been designed to be good for
general-purpose use.

Table 5.2 The prepackaged interceptor stacks define starter recipes for
interceptor stacks. (continued)
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

128 CHAPTER 5

Adding functionality with interceptors
interceptors does as described here, you’ll learn about the interactions between
the interceptors and how interceptor stacks are put together to create a certain
order of events that produce the required outcome. Chapter 15 has some exam-
ples of advanced usages of interceptors and interceptor stacks.

5.4 Building your own interceptors

One of WebWork’s most powerful features is the ability to create your own inter-
ceptor classes and apply them to the execution of your actions. This allows you to
modularize repeated code without having to build up brittle class hierarchies of
abstract parent actions, delegating part of the processing to the subclass after sur-
rounding it with some pre- and post-processing. The class hierarchy approach
works fine for small applications; but as the size and complexity of your web appli-
cation grows, it becomes difficult to pull together the right class hierarchy to pro-
vide two or more optional services for your action class. With interceptors, these
optional services can be pulled out into interceptor classes and applied wherever,
and in whatever combination and order, they are required.

 For example, just to provide all combinations of security checking and Hibernate
Session setup, you would need four base classes (one with neither, one with security
but no Hibernate Session, one with the Hibernate Session but no security, and one
with both). Adding another optional service brings this number to eight, and so on.

 As we continue with this section, keep in mind the most important rule of
building interceptors: Interceptors must be stateless and not use anything outside of the
ActionInvocation provided in the API.

 Remember that, and interceptors will be simple to understand and build. For-
get this rule, and you’ll be seeing (and trying to debug) strange results. As an
example, suppose you have a timer interceptor that does this:

public class BadTimingInterceptor extends AroundInterceptor {
 private long startTime;
 protected void after(
 ActionInvocation dispatcher,
 String result)
 throws Exception {
 long totalTime = System.currentTimeMillis() - startTime;
 LOG.debug("Processed Action in " +
 (totalTime / 1000) + " seconds.")
 }

 protected void before(ActionInvocation invocation)
 throws Exception {
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Building your own interceptors 129
 startTime = System.currentTimeMillis();
 }
}

The problem is that because more than one invocation can be running through
the interceptor at a time, you may get incorrect times when another Thread comes
in and sets the startTime. Compare this to the real TimerInterceptor:

public String intercept(ActionInvocation invocation)
 throws Exception {
 long startTime = System.currentTimeMillis();
 String result = invocation.invoke();
 long executionTime = System.currentTimeMillis() - startTime;
 ... log the time ...
}

The real TimerInterceptor avoids this problem by keeping the scope of the
startTime variable inside the single method, so it’s not shared between calls to
the interceptor.

5.4.1 Using the AroundInterceptor as a base

As you saw in section 5.1, many of the prebuilt interceptor classes extend
com.opensymphony.xwork.interceptor.AroundInterceptor. This class provides
what most interceptor implementations really want: callbacks for before() and
after() the action is executed. To refresh your memory, listing 5.5 shows the
intercept() method from the AroundInterceptor again.

public String intercept(ActionInvocation invocation)
 throws Exception {
 String result = null;

 before(invocation);
 result = invocation.invoke();
 after(invocation, result);

 return result;
}

/**
 * Called after the invocation has been executed.
 *
 * @param result the result value returned by the invocation
 */
protected abstract void after(
 ActionInvocation dispatcher,

Listing 5.5 AroundInterceptor: a useful base class for interceptors
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

130 CHAPTER 5

Adding functionality with interceptors
 String result)
 throws Exception;

/**
 * Called before the invocation has been executed.
 */
protected abstract void before(ActionInvocation invocation)
 throws Exception;

This method calls the before() method and then lets the rest of the ActionInvo-
cation continue by calling invocation.invoke(). It saves the result code, and
then calls after(), passing in the ActionInvocation and the result code.

 This is fine for most interceptors. Many don’t even need both before() and
after() and only do real work in one of these methods. However, sometimes your
interceptor needs to remember something across both the before and after
code—for example, the TimerInterceptor needs to know the start time in order
to calculate the total time in the code after the action has executed. Keep in mind
the first rule for building interceptors: Interceptors must be stateless and not use
anything outside of the ActionInvocation.

 These interceptors can’t extend the AroundInterceptor because there is no
clean way to save state between these two method calls.3 In this case, as well as in the
DefaultWorkflowInterceptor shown earlier, it makes more sense to directly imple-
ment the interceptor interface. It’s important to remember these examples as well
as the simpler examples of interceptors when building your own interceptors.

5.4.2 Looking at an example custom interceptor

We’ve discussed how the bundled interceptors are implemented and talked about
some considerations for implementing custom interceptors, but where would you
need a custom interceptor, and what might it look like? One use for implement-
ing a custom interceptor might be integrating another library with WebWork.
Whether it’s for resource management, setting up data for the action to use, or, as
in the example we’ll look at, security, an interceptor allows you to set up or con-
trol access to resources.

 Most web applications share a need to control who uses them. The process of
checking a username and some credential, such as a password or certificate, is
called authentication. Authentication is the first step to controlling access to your

3 Yes, yes, it could save it in the ActionContext ThreadLocal or in the ActionInvocation, but that’s hardly
“clean.”
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Building your own interceptors 131
application, because it’s impossible to say what the user can or can’t do if you don’t
know who they are. The AuthenticationInterceptor used in the CaveatEmptor
example application is relatively simple, as authentication goes. Listing 5.6 shows
the AuthenticationInterceptor, which checks that the user has been logged on
and returns a special result without executing the action otherwise.

public class AuthenticationInterceptor implements Interceptor {
 public static final String USER = "user";

 public void destroy() {
 }

 public void init() {
 }

 public String intercept(ActionInvocation actionInvocation)
 throws Exception {
 Map session = actionInvocation.getInvocationContext()
 .getSession();
 User user = (User) session.get(USER);
 if (user == null) {
 return Action.LOGIN;
 } else {
 Action action = actionInvocation.getAction();
 if (action instanceof UserAware) {
 ((UserAware)action).setUser(user);
 }
 return actionInvocation.invoke();
 }
 }
}

As you can see, the AuthenticationInterceptor doesn’t actually do the authentica-
tion. It’s responsible for checking whether the user has already been logged in,
and, if not, returning the built-in default LOGIN result code. In the xwork.xml file
for CaveatEmptor, the login result is mapped as a global-result and is available
for all actions, as shown here:

<global-results>
 <result name="login" type=
 "redirect">/login!default.action</result>
 <result name="invalid.token">/invalidToken.jsp</result>
</global-results>

Listing 5.6 AuthenticationInterceptor: checks the user logon
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

132 CHAPTER 5

Adding functionality with interceptors
The AuthenticationInterceptor works together with the Login action to handle
the whole authentication process. Listing 5.7 shows the Login action, which takes
a username and password that are set onto an empty User object and verifies that
there’s a user in the database with those values.

public class Login extends ActionSupport
 implements SessionAware, UserDAOAware {
 Map session;
 User user;
 private UserDAO userDAO;

 public void setSession(Map session) {
 this.session = session;
 }

 public String execute() throws Exception {
 user = userDAO.findByCredentials(
 user.getUsername(),
 user.getPassword());
 if (user == null) {
 return INPUT;
 } else {
 session.put(AuthenticationInterceptor.USER, user);
 return SUCCESS;
 }
 }

 public String doDefault() throws Exception {
 return INPUT;
 }

 public User getUser() {
 return user;
 }

 public void setUser(User user) {
 this.user = user;
 }

 public void setUserDAO(UserDAO dao) {
 this.userDAO = dao;
 }
}

Listing 5.7 Login action: checks whether the user exists in the database
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Building your own interceptors 133
The other responsibility of the AuthenticationInterceptor is to check whether
the action implements UserAware and, if so, to give the action the User object using
the setUser() method. This is an important difference between an interceptor
and a servlet filter, because the interceptor has easy access to the action instance
and can provide it with needed dependencies.

5.4.3 Getting callbacks before the result
is executed with the PreResultListener

When you’re implementing interceptors, sometimes it’s important to know when
the action has finished executing but the result hasn’t executed yet. For example,
this is important in exception handling. During the execution of the action,
exceptions are probably system exceptions due to back-end processing. During
the execution of the result, exceptions are generated due to rendering the view to
the user, rather than due to system problems.4

 Listing 5.8 shows an ExceptionInterceptor that deals with exceptions differ-
ently before and after the result begins. Before the result starts, you can change
the return code used to look up a result from the action configuration; so, you
want to catch the exception and return Action.ERROR, because it’s the common
practice in WebWork apps to use Action.ERROR as a mapping for a page describing
an error to the user. After the result has started, the return code from the intercep-
tor isn’t particularly important, but you capture the result code passed back to you
from the beforeResult() call and return that. One thing to note in this example is
that because the interceptor must be stateless, it creates a new ExceptionHandler
object for each ActionInvocation to hold state specific to that ActionInvocation.

public class ExceptionInterceptor implements Interceptor {
 public String intercept(ActionInvocation invocation)
 throws Exception {
 ExceptionHandler handler = new ExceptionHandler(invocation);
 return handler.invoke();
 }

 private class ExceptionHandler implements PreResultListener {

4 Note that the Open Session in View pattern (where the database connection is available while rendering
the page to load lazy-initialized relationships) can make this distinction blurry, because you can get
exceptions due to mappings or database problems while rendering the view. Every pattern has its
drawbacks.

Listing 5.8 ExceptionInterceptor: handles exceptions differently before and
after the result is called
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

134 CHAPTER 5

Adding functionality with interceptors
 private ActionInvocation invocation;
 private boolean beforeResult = true;
 private String result = Action.ERROR;

 public ExceptionHandler(ActionInvocation invocation) {
 this.invocation = invocation;
 invocation.addPreResultListener(this);
 }

 String invoke() {
 try {
 result = invocation.invoke();
 } catch (Exception e) {
 if (beforeResult) {
 LOG.warn(
 "There was an error executing the Action");
 return Action.ERROR;
 } else {
 LOG.error(
 "There was an error executing the result.");
 // it doesn't really matter what we return,
 // since the result has already been mapped
 return result;
 }
 }
 return result;
 }

 public void beforeResult(
 ActionInvocation invocation,
 String resultCode) {
 beforeResult = false;
 result = resultCode;
 }

 }
}

5.4.4 Looking out for interceptor interactions

With interceptors, it’s important to understand what each interceptor is doing,
because the order definitely matters. We provide some prebuilt interceptor stacks
that are set up with the correct order to provide certain services to your actions;
but as you begin to add your own interceptors and build up custom interceptor
stacks, it’s vital to understand the interactions between interceptors’ side effects.

 The ModelDrivenInterceptor is one whose interactions give people the most
trouble. For instance, you don’t want to put the parameter interceptor before the
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Interceptors vs. servlet filters 135
model interceptor, because the model properties won’t be available to be directly
set on the value stack yet. But what if you want the parameters to influence which
model type you return from getModel()? One way to do this is to use the parame-
ter interceptor twice:

1 ParameterInterceptor

2 ModelDrivenInterceptor

3 ParameterInterceptor

4 …

Another way to do this is to make your action implement Preparable and apply
the prepare interceptor. In your prepare() method, your action can look in the
parameter map from the ActionContext (that is, ActionContext.getCon-

text().getParameters()) and use this to determine what type of model to return.
You can also combine these two, as you’ll see in chapter 15, section 15.8, when we
look at implementing data admin operations.

 Another interceptor that needs special attention is the DefaultWorkflowInter-
ceptor. It’s important to remember that if there are any error messages, none of
the rest of the interceptors or the action will be executed. Also remember that any
validations that should affect whether the action should execute should happen
before this interceptor is executed, so that it can check for error messages.

 Overall, it’s important to understand what the interceptors you are applying
are going to do. Interceptor stacks should be carefully designed to provide spe-
cific sets of functionality and reused throughout your application to reduce the
number of unexpected interactions.

5.5 Interceptors vs. servlet filters

We often hear the question, “How are interceptors different from servlet filters?”
One of the key differences is that interceptors aren’t tied to a servlet container.
This may seem like a small thing when you’re building a web application, but
when you’re unit testing your web application, it makes things much easier. One of
the key tenets of WebWork is to make things simple and loosely coupled. Having
interceptors outside the servlet container makes integration testing much simpler.
You can test the combination of your action, configuration, and interceptors by
directly calling the framework from your unit test.

 Another advantage is that your interceptor has access to your ActionContext,
your action, the value stack, and so on. When we looked at the Authentication-
Interceptor, you saw how this can be useful for giving the action some context—
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

136 CHAPTER 5

Adding functionality with interceptors
in this case, the identity of the user who made this web request. Your interceptors
can access your business objects and set up resources for your actions in a way that
would be much more difficult with servlet filters. When you’re managing
resources with a servlet filter, you would have to set up the resources in the servlet
request, and your action would need to retrieve them from there, requiring
lookup code in your action. Interceptors are also aligned with the lifecycle of your
action, whereas filters are aligned with the lifecycle of the servlet request. For
example, the servlet filter won’t be called again between actions in an action
chain, whereas the interceptors for the second action will be.

 You don’t have to make a choice between interceptors and filters, though.
Sometimes filters are a better alternative, and nothing in WebWork stops you
from using them. Using a GZIP filter to compress the output of your web pages
can reduce the amount of bandwidth your servers use. SiteMesh, which is a servlet
filter–based page-decoration framework from OpenSymphony, lets you give a
common look to all the pages in your site and easily change it in just one place.
For each requirement, you should weigh the pros and cons of using an intercep-
tor versus a servlet filter.

5.6 Summary

Interceptors let you encapsulate common functionality in classes and reuse that
functionality by applying the interceptors to your actions in the xwork.xml config-
uration. Interceptors are called as part of the execution of the action and are
nested wrappers around the execution of your action and its result. Many of the
core features of WebWork are implemented as interceptors, including setting
parameters on the action and applying workflow before and after the action. You
can specify which interceptors are applied and in what order on a per-action level
in the xwork.xml file; or, you can save and reuse these lists of interceptors across
many actions. In addition to the prebuilt interceptors that come with WebWork,
you can build custom interceptors and apply them to your actions. These custom
interceptors can provide any needed functionality and are often useful for integrat-
ing other libraries with WebWork. It’s important to understand what interceptors
are available and what they do. Designing interceptor stacks to be reused through-
out your application is as important as designing the classes in your application.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Inversion of Control
This chapter covers

■ The of Control pattern

■ Resource management patterns

■ Using IoC in WebWork and J2EE APIs

■ Using WebWork’s IoC container

■ Using WebWork’s IoC container
in CaveatEmptor
137

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

138 CHAPTER 6

Inversion of Control
In chapter 5, “Adding functionality with interceptors,” you learned that intercep-
tors are very useful when you wish to separate cross-cutting logic from your actions.
Typically, things like logging, security, and transactions consist of code segments
interspersed in your other code. With interceptors, you can separate those con-
cerns from your core action logic. Once you’ve begun to use interceptors, a com-
mon pattern that begins to take place is a crude form of Inversion of Control (IoC).
In fact, you’ve probably seen forms of IoC if you’ve ever written EJB code. We also
explored a little of IoC when we demonstrated the ServletConfigInterceptor.

 In this chapter, we’ll take a closer look at the pattern that evolved in the Serv-
letConfigInterceptor. Then, we’ll demonstrate how this pattern can be applied a
general terms rather than as an interceptor for specific needs (such as supplying
HTTP-related objects to the action).

6.1 Examining the pattern

In order to help you understand the IoC pattern, we must first look at how alterna-
tive resource management patterns work and what IoC brings to the table. IoC
doesn’t solve every resource management problem; so even if you choose to build
your applications using IoC, like any other technology decision, knowing the alter-
natives is important.

 Finally, we’ll explore one of the biggest reasons why IoC is ideal: testing. Web-
Work was designed from the ground up to make testing your code as simple as
possible. This can be seen in design decisions such as keeping your actions sepa-
rated from the servlet APIs. IoC is also an effective way to make unit-testing your
code accessible.

6.1.1 Common patterns for active resource management

Before we explore IoC in detail, let’s look at the evolution of various resource man-
agement patterns. The most primitive form of managing resources is not manag-
ing them at all! Imagine that you want to write a class called BalanceChecker,
which needs to provide a method that determines whether enough money is in a
bank account. The class might look like the following:

public class BalanceChecker {
 private BankAccountManager mgr;

 public BalanceChecker() {
 mgr = new BankAccountManager();
 }
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Examining the pattern 139
 public boolean hasEnoughMoney(int bankAccountId, double money) {
 BankAccount account = mgr.getBankAccount(bankAccountId);

 return account.getBalance() >= money);
 }
}

The method takes two arguments, bankAccountId and money. It uses bankAccountId
to ask a BankAccountManager for a BankAccount object so it can then compare the
balance of the account to the money parameter. Although this approach is hypothet-
ically correct, there is something interesting to note: Each new BalanceChecker cre-
ates a new BankAccountManager.

 Many projects include classes that don’t need to be created all the time—they
provide stateful logic and can be reused by multiple objects and threads, occasion-
ally at the same time. This might sound an awful lot like a static method, and in
fact you could have changed the hasEnoughMoney() method to just call a hypothet-
ical static method, instead:

public boolean hasEnoughMoney(int bankAccountId, double money) {
 BankAccount account = BankAccountManager.getBankAccount(bankAccountId);

 return account.getBalance() >= money;
 }

However, static methods often aren’t friendly to work with in terms of both test-
ability and providing options to the programmer. For example, if you choose to
use static methods, you can no longer pass around a BankAccountManager object
to other objects, thereby forcing those other objects to be tightly coupled to
BankAccountManager. For some systems, this might be acceptable—but for most
applications, tight coupling is something to be avoided.

Singleton pattern
The Singleton pattern is used to find a balance between the desire to have only a sin-
gle instance of an object (conceptually, a collection of static methods and fields)
and being able to use that code as a regular object. The Singleton pattern allows
only one instance of an object to exist through the use of a private constructor
and a single static method used to retrieve the single instance of the class. The fol-
low Widget class is a Singleton:

public class Widget {
 private static Widget instance = new Widget();

 public static Widget getInstance() {
 return instance;
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

140 CHAPTER 6

Inversion of Control
 }

 private Widget() {
 }

 public int doSomething(int x, int y) {
 return x + y;
 }
}

Widget’s constructor is private, meaning only the static method getInstance() can
create a Widget object. Because the instance field is static, there can by definition
be only one instance. The first call to getInstance() creates a new Widget, and all
subsequent calls return that instance.

 Rewriting the previous BalanceChecker example to use a Singleton pattern
produces the following:

public class BalanceChecker {
 private BankAccountManager mgr;

 public BalanceChecker() {
 mgr = BankAccountManager.getInstance();
 }

 public boolean hasEnoughMoney(int bankAccountId, double money) {
 BankAccount account = mgr.getBankAccount(bankAccountId);

 return account.getBalance() >= money);
 }
}

By using a Singleton, you’ve eliminated unnecessary object creation. However,
this pattern still ties you to using the BankAccountManager implementation, leaving
you still tightly coupled. It’s common to need to be able to easily swap out differ-
ent types of BankAccountManagers without having to rewrite much code. The most
frequent need for this type of behavior is when writing tests for your code.

 Because BankAccountManager might connect to a database, it might be much
easier to replace the normal manager class with a much simpler mock manager.
However, the current state of BalanceChecker would require that its code be
changed to replace BankAccountManager with, say, BankAccountManagerMock.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Examining the pattern 141
NOTE Mocking a class is the technique of replacing a complex class with a simple
one that is designed to assist with writing test code. Often, mocks are used
to allow a tester to easily introduce otherwise hard-to-reproduce situations.
They’re also commonly used because they make running tests much fast-
er: Heavy resources (such as a database) are no longer necessary; the be-
havior they provide can be mocked.

In order to decouple BalanceChecker from BankAccountManager, we need to look to
another pattern that is designed to provide various configurations of similar
resources.

Factory pattern
Because the Singleton pattern doesn’t assist with decoupling your code, you need
to provide code that is designed to do this. You want a class that can be configured
to produce either a BankAccountManager or BankAccountManagerMock for when you’re
writing tests. The Factory pattern is exactly this.

 Suppose that BankAccountManager is now an interface, and the two implement-
ing classes are BankAccountManagerImpl and BankAccountManageMock. Also assume
that there is a factory called BankAccountManagerFactory. The code might now
look like this:

public class BalanceChecker {
 private BankAccountManager mgr;

 public BalanceChecker() {
 mgr = BankAccountManagerFactory.getManager();
 }

 public boolean hasEnoughMoney(int bankAccountId, double money) {
 BankAccount account = mgr.getBankAccount(bankAccountId);

 return account.getBalance() >= money);
 }
}

As you can see, you utilize a static method getManager() to return an implementa-
tion of BankAccountManager. This code isn’t aware of whether this is a concrete
implementation or just a simple mock. You’ve successfully decoupled Bal-
anceChecker from BankAccountManagerImpl. You can now add more methods to
BankAccountManagerFactory to let you configure the type of object to be returned
when getManager() is called:

BankAccountManagerFactory.setMock(true);
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

142 CHAPTER 6

Inversion of Control
Doing this might tell the factory that instead of producing normal objects, it
should produce mock objects. Making a call to this method just before running a
test would give you much more control over the test.

 Factories aren’t just useful for tests, though. Suppose you have two kinds of
banks in your application: international and domestic banks. It might be desirable
to tell the factory which type of account manager you want to be produced.

Registry pattern and WebWork’s ActionContext
Factories are nice for decoupling code, but once you have many factories, it
becomes unwieldy to handle all the various classes. Rather than try to understand
all the options for assorted factories, you can create a single class called a registry
to act as a central repository for all the components you wish to choose from.

 In its simplest form, a registry is nothing more than a mapping of keys to
objects. Once a registry is set up, rather than passing around resources through
method calls or depending on classes to understand all the factory semantics, you
can pass a single object—the registry—that provides access to every resource
through a simple method like get(String key).

 A registry is also good for abstracting how code accesses a resource, thereby
allowing all the logic of how a resource is obtained to be placed in a single place to
better modularize your code. WebWork’s ActionContext is a perfect example of
the Registry pattern. Rather than passing the ServletRequest, HttpSession, or
parameters map all the way through the interceptors, action class, and result, it’s
better to dump everything in the ActionContext so that there is only one object to
worry about.

 In the next section, you’ll see how ActionContext (and its wrapper, Servlet-
ActionContext) can be replaced by inverting the logic for resource management.

6.1.2 Inverting resource management

Now that we’ve discussed the patterns that exist to help you manage resources, let’s
look at how you can get a handle to an HttpServletRequest object in your Web-
Work action. You can do this two ways in WebWork: actively and passively. We’ll look
at both techniques to demonstrate the concept of inversion that is central to IoC.

Actively requesting ActionContext
To actively request the HttpServletRequest object, all you need to do is look in
the ActionContext. For every WebWork action, the ActionContext is given a
bunch of information pertinent to the current request, including the request
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Examining the pattern 143
object itself. This means the following code, when executed inside the scope of an
action, is correct:

public class SomeAction implements Action {
 public String execute() throws Exception {
 HttpServletRequest request =
bbbbbbbbbbbbServletActionContext.getHttpServletRequest();
 request.setAttribute("foo", "bar");
 return SUCCESS;
 }
}

Note that you use the ServletActionContext instead of ActionContext because it
provides a simple wrapper that retrieves the request object from the ActionCon-
text using the correct key. HttpServletRequest is an interface, so you can mock
the request object by setting the request with a different instance:

ServletActionContext.setHttpServletRequest(

❂❂❂➥new HttpServletRequestMock());

Through these examples, you can see that the ActionContext provides many of
the same benefits that the factory and registry patterns do. Now let’s look at the
passive technique for gathering this information.

Passively telling WebWork
Rather than write code that says, “I am going to get object X,” an alternative is to
write code that says, “Hey, give me X when I need it.” The difference between
active and passive is that one gets the object itself, whereas the other states that
something should inject the resource when the time comes.

NOTE Martin Fowler recently wrote an article indicating that the term Inversion
of Control might be overloaded and that Dependency Injection pattern would
be a better-suited name (see http://www.martinfowler.com/articles/in-
jection.html). We use IoC in this book because the alternative name
hasn’t yet caught on. However, the concept of injecting objects is impor-
tant and must be recognized regardless of which name you choose.

Let’s look at the previous action rewritten in the form of IoC. No longer will the
code actively retrieve the request object from the ActionContext; rather, it will
state that it needs the request object. It’s up to a process external to this action class
to make sure the needs of all action classes are handled:

public class SomeAction implements Action, ServletRequestAware {
 private ServletRequest request;

 public void setServletRequest(ServletRequest request) {
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

144 CHAPTER 6

Inversion of Control
 this.request = request;
 }

 public String execute() throws Exception {
 request.setAttribute("foo", "bar");
 return SUCCESS;
 }
}

By implementing the interface ServletRequestAware and providing the setServ-
letRequest() method, you indicate to WebWork that this action should be given a
ServletRequest object before execute() is called.

Inversion in J2EE APIs
It turns out that this concept is seen in various J2EE APIs you may already be famil-
iar with. In fact, WebWork’s IoC implementation (as well as alternatives) is often
called a container, just like J2EE servers are called servlet and/or EJB containers.
But rather than being specifically about servlets or EJBs, these containers are
designed to let the developer shape and mold what services they provide.

 In the EJB world, the container is required to call a method such as setEntity-
Context(EntityContext ec) or setSessionContext(SessionContext sc) on your
entity or session beans. EJB containers also make method calls to ejbActivate(),
ejbPassivate(), ejbLoad(), and ejbStore(). As you’ll learn in a moment, one of
the major features that a container must provide is lifecycle—when to start and stop
code. In EJB, these methods are used to provide code that responds to certain life-
cycle events.

 In the servlet world, there are many interfaces you can implement when
building a listener, such as ServletContextListener, HttpSessionListener, and
HttpSessionAttributeListener. These interfaces are used as flags to tell the servlet
container what information your class requires. It’s up to the container to then find
that data and call the methods the interface defines. Examples of such methods are
contextInitialized(ServletContext sc), contextDestroyed(ServletContext sc),
and sessionCreated(HttpSessionEvent e).

 Other J2EE specifications, such as JMS, also provide similar techniques in their
API. The point isn’t that J2EE is using a unique and special concept, but rather to
show that this style of depending on external container management is common
and should not be foreign to you. Next we’ll look at how IoC, especially general-
ized IoC like that found in WebWork, can assist with testing.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Examining the pattern 145
6.1.3 How IoC helps with testing

When we introduced the Factory pattern, we showed how you can configure the
factory to produce mock instances of whatever resource it was responsible for. We
also hinted at how testing might be done when we actively grabbed the request
object from the ActionContext. Let’s look at how you can test the previous action
in both forms.

Testing without inversion
Regardless of whether you use IoC, testing a WebWork action was designed to be
easy. Because actions are simple objects with an execute() method and JavaBean-
style getters and setters, testing is as straightforward as instantiating a new object,
setting any data via the setters, and then calling execute().

 In the following example, a mock object is created and then inserted into the
ActionContext. When execute() is called, you know that the request object
returned by ActionContext will be the mock object you just set up. This is the
most typical way to test a WebWork action that isn’t using IoC:

SomeAction action = new SomeAction();
ServletRequestMock mockReq = new ServletRequestMock();
ServletActionContext.setServletRequest(mockReq);
action.execute();
String foo = mockReq.getAttribute("foo");
if ("bar".equals(foo)) {
 // test passed
} else {
 // test failed
}

Testing with inversion
Testing with inversion is almost exactly the same; but rather than indirectly hand
the resource to the action via the ActionContext, you can directly set the resource
on the action object itself. This subtle yet powerful difference makes up the foun-
dation of IoC:

SomeAction action = new SomeAction();
ServletRequestMock mockReq = new ServletRequestMock();
Action.setServletRequest(mockReq);
action.execute();
String fooattrValue = mockReq.getAttribute("foo");
if ("bar".equals(foo)) {
 // test passed
} else {
 // test failed
}

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

146 CHAPTER 6

Inversion of Control
It’s important to note that even though we’re demonstrating the difference that
inversion brings to the table through the use of tests, IoC’s usefulness isn’t limited
to people who write a lot of unit tests (although writing tests is almost never a bad
thing). Rather, you use tests to show the fundamental difference in how the
resources are wired to the object. The difference in wiring (how the resource
finally reaches its destination) is the most obvious visual difference between IoC
and non-IoC code.

6.2 IoC essentials

Although not an entirely new pattern, Inversion of Control didn’t become an offi-
cially recognized pattern under that name or under the name Dependency Injection
until recently. However, the problems it addresses are common, and you should
have no trouble relating to them. Before we dive into the two main parts of IoC—
dependencies and scope and lifecycle—let’s briefly explore the history that led to a
marriage between WebWork and IoC.

6.2.1 WebWork’s IoC history

Before the 2.0 branch of WebWork (this book is based on the current version,
2.1.7), the WebWork 1.x line existed and didn’t have any support for interceptors
or IoC. However, it did support something similar to interceptors, which was the
basis for the interceptor support in WebWork today.

 The sample PetStore application in the book Java Open Source Programming
(Walnes, Cannon-Brookes, Abrahamian, Lightbody; Wiley, 2003) was built on
WebWork 1.3. Because the book is primarily about Test-Driven Development (also
known as Test-First Development), the code evolved over time. Eventually, a plug-
in for WebWork 1.3 evolved that did a simple job of identifying whether an action
needed a particular class and, if so, supplied it via a setter.

Hard-coded resources
The initial version of this plug-in was trivially simple—the resources it supported
were hard-coded. After spending a bit of time generalizing the concept and bor-
rowing many ideas from the Apache Avalon framework, an IoC implementation
similar to WebWork’s was born. We’re telling you this history so you can better
understand the thought process behind building an IoC framework and thus bet-
ter grasp IoC as well.

 The important thing to note is that IoC can be achieved without using an IoC
framework (including WebWork’s) in WebWork by creating an interceptor that
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

IoC essentials 147
decides when to apply resources to the action. This is what the early versions of
the IoC support were doing when bundled with the PetStore application. Today,
you could write an interceptor that manages their specific resources Foo, Bar, and
Baz, as follows:

public FooBarBazInterceptor extends AroundInterceptor {
 public void before(Action action) {
 if (action instanceof FooAware) {
 ((FooAware) action).setFoo(new Foo());
 }

 if (action instanceof BarAware) {
 ((BarAware) action).setBar(new Bar());
 }

 if (action instanceof BazAware) {
 ((BazAware) action).setBaz(new Baz());
 }
 }
}

From this point on, any action that implemented one of those three *Aware inter-
faces automatically had a resource applied to it. This approach works well; but
eventually it becomes tedious because for every new resource, more code must be
written. The first stab at WebWork’s IoC implementation did nothing more than
generalize this behavior.

Aware interfaces
Even before IoC was a twinkle in WebWork’s eye, the idea of interfaces that
declare what the action needs was well accepted. For compatibility as well as ease,
WebWork still has all the interfaces that it supported long before IoC. These inter-
faces are called aware interfaces because the interface names always end with Aware
and the interfaces require that a single setter method be implemented so the
resource may be applied.

 Common aware interfaces that WebWork supports are as follows:

■ ParametersAware—Indicates that the action requires the HTTP request
parameter Map

■ ServletRequestAware—Indicates that the action requires the ServletRe-
quest object, as previously seen

■ SessionAware—Indicates that the action requires the HttpSession object

■ ApplicationAware—Indicates that the action requires the ServletContext
object
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

148 CHAPTER 6

Inversion of Control
Following in the pattern of aware interfaces, WebWork’s IoC support requires an
aware interface to be implemented, as you’ll see in a moment. But before we
examine WebWork’s specific implementation (many other implementations are
available to use), let’s look at the concept of dependencies.

6.2.2 Dependencies

Let’s tweak the previous example to give more concrete names to each resource.
Foo will become PersistenceManager, Bar will be TransactionManager, and Baz
will be AuthenticationManager. With names like these, it isn’t hard to imagine that
TransactionManager and AuthenticationManager require PersistenceManager in
order to work properly. However, looking at the simple FooBarBazInterceptor,
neither would be given a handle to the PersistenceManager you just created.

 Rewriting the interceptor to support this more complex dependency results in
a much more complicated piece of code, as shown in listing 6.1.

public void before(Action action) {
 PersistenceManager pm = null;
 if (action instanceof PersistenceManagerAware) {
 pm = new PersistenceManager();
 ((PersistenceManagerAware) action)
 .setPersistenceManager(pm);
 }

 if (action instanceof TransactionManagerAware) {
 TransactionManager tm = new TransactionManager();
 if (pm == null) {
 pm = new PersistenceManager();
 }
 tm.setPersistenceManager(pm);
 ((TransactionManagerAware) action)
 .setTransactionManager(tm);
 }

 if (action instanceof AuthenticationManagerAware) {
 AuthenticationManager am = new AuthenticationManager();
 if (pm == null) {
 pm = new PersistenceManager();
 }
 am.setPersistenceManager(pm);
 ((AuthenticationManagerAware) action)
 .setAuthenticationManager(am);
 }
}

Listing 6.1 Complex dependency example
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

IoC essentials 149
Whoa! Often, you write code that depends on other classes without fully realizing
the dependencies that you’re introducing. Sometimes, if the dependencies get
too complicated, you end up with the scientifically named spaghetti code. A visual
representation of these dependencies, shown in figure 6.1, helps explain.

 When looking at this dependency graph, you can see that PersistenceManager
must be created before anything else. Another way to say it is that the life of the
PersistenceManager must start before the life of the other resources. This means
the lifecycle of an object is intimately tied in to its dependencies As such, we can’t
talk about dependencies without also talking about lifecycle.

6.2.3 Scope and lifecycle

As you just learned, lifecycle is tied closely to the dependencies between objects. It
turns out that not only is lifecycle important, but scope also affects when that lifecy-
cle goes through its various stages. Let’s first look at what lifecycle is; then we’ll
examine how scope affects lifecycle.

Lifecycle
In life, all things go through many stages, but at least two events are guaranteed:
birth and death. As such, when we talk about lifecycle, we’re talking about a mini-
mum of these two states. Objects don’t exactly give birth (or die, although some-
times we all wish we could kill our code—or someone else’s!), so let’s call these
states initializing and disposing.

Action Class

PersistenceManager

TransactionManager AuthenticationManager

Figure 6.1 A simple dependency graph between resources and an action class
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

150 CHAPTER 6

Inversion of Control
 There are many other lifecycle states that you might be interested in; a few that
come to mind are reset, pause, stop, and start. Every time one of these events takes
place, you’d like to notify the object so that it might do the appropriate work
needed. This can be done with methods such as init() and dispose(), which all
objects that wish to participate in lifecycle must provide.

Scope
Often you want to exert some level of control over when these lifecycle events
(especially initialize and dispose) take place. The initialize and dispose lifecycle
events control the entire span of the object’s life. This span is often called the
object’s scope. Just like in programming languages, where variables can have
scopes such as global, object, method, or just a code block, resources can also
have varying scopes.

 The scope of a resource depends on what the resource has to do. If the
resource is a cache, it would be sensible for the cache to have a global scope,
meaning that it will live the entire lifetime of the application. If the resource is a
transaction, it makes more sense for the scope to be much more constrained,
because having a transaction open for an extended period is costly and often not
the desired behavior.

 Figure 6.2 shows a timeline for two different users accessing a web application.
On the first request, 1A, the session and application scopes are started and

A
p
p
lic

a
ti
o
n

S
e

s
s
io

n Session 1

Session 2

R
e

q
u

e
s
t 1A 1B

2A 2B 2C

Figure 6.2 Timeline of application, session, and request scopes
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using WebWork’s IoC framework 151
initialized. On the second request, 2A, a new session is created. Note that no new
application scope is started because application scope is global, meaning there is
only one instance.

 On the third request, 1B, the user logs out, and the associated session is
destroyed (disposed). The fourth request, 2B, does nothing in the session or
application scope. The fifth request, 2C, logs out the second user, causing the
associated session to end as well. Finally, the application is shut down, and the
application scope is disposed.

6.3 Using WebWork’s IoC framework

Now that we’ve introduced the general concepts common in all IoC frameworks,
let’s look at the WebWork IoC implementation. Because WebWork’s IoC frame-
work is optional, it isn’t ready to be used initially. We’ll first discuss the configura-
tion changes you need to make in order to use WebWork’s IoC. We’ll then
examine the step-by-step instructions for creating a new component that can be
plugged into the IoC container. Finally, we’ll look at advanced topics such as com-
plex dependencies and using WebWork’s IoC on objects other than actions.

6.3.1 Configuration

Before you can begin to use WebWork’s IoC, it must be properly configured. Two
major parts are equally important when you’re configuring this optional Web-
Work feature: configuring the servlet container through web.xml, and configur-
ing WebWork through xwork.xml. We’ll first look at the web.xml changes and
explain why they’re necessary.

Modifying web.xml
WebWork’s IoC container understands three scopes: request, session, and application.
Their hierarchy is as follows: All requests have one session, and all sessions have
one application. The opposite isn’t true. In order for WebWork to be aware of
these three scopes, you must configure the servlet container to notify WebWork
when they operate.

 You’ll start with application scope. Adding the following entry to web.xml lets
objects get application-scoped resources:

<listener>
 <listener-class>
 com.opensymphony.webwork.lifecycle.

❂❂❂❂❂➥ApplicationLifecycleListener
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

152 CHAPTER 6

Inversion of Control
 </listener-class>
</listener>

Listeners are part of the servlet specification and allow custom code to act on vari-
ous servlet-related events, such as the application starting or stopping. In this case,
the ApplicationLifecycleListener is configured to respond to application-scope-
related events.

NOTE Be sure you place this XML snippet in the correct location to ensure that
web.xml is well formed and validates against the Servlet 2.3 specification
DTD. Listeners are defined to be after <filter-mapping> elements and
before <servlet> elements.

Next, you configure the session scope. Like application scope, this is done with a
listener:

<listener>
 <listener-class>
 com.opensymphony.webwork.lifecycle.
bbbbbbb➥SessionLifecycleListener
 </listener-class>
</listener>

This listener, appropriately named SessionLifecycleListener, is configured to
respond to events related to session scope, such as a new session starting or a ses-
sion ending (for example, a user logging out of your application).

 Last is request scope. Rather than provide another listener, you can best moni-
tor for the start and end of a request by using a filter. You first define the filter
with the following addition to web.xml:

<filter>
 <filter-name>container</filter-name>
 <filter-class>
bbbbbbbbcom.opensymphony.webwork.lifecycle.RequestLifecycleFilter
bbbb</filter-class>
</filter>

After the filter is defined, you need to map it to a URL pattern. To ensure that
WebWork’s IoC container is accessible under all circumstances, you should choose
a mapping to allow all requests access. In this example, you’ll choose /*, although
you’re free to limit your mapping to a more narrow URL pattern if you have a spe-
cific need to do so:

<filter-mapping>
 <filter-name>container</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using WebWork’s IoC framework 153
Now that web.xml is configured, WebWork’s IoC container is officially ready to
begin to work. However, in order for your actions to get access to the container,
you must modify the interceptor stack so that an interceptor can apply resources
according to the Aware interfaces that your actions implement.

ComponentManager
Before we show you how the WebWork IoC container uses the items you configured
in web.xml, let’s first take a quick look at the main interface to WebWork’s IoC: the
ComponentManager. This interface—and the associated implementation, Default-
ComponentManager—is responsible for deciding whether an object needs a resource
handed to it, as well as managing all resource lifecycles and dependencies.

 In WebWork, each scope (request, session, or application) gets a Component-
Manager (CM) associated with it. Each CM has a parent CM that it consults when
making decisions about how to manage and apply resources. The request-scoped
CM has a session-scoped CM, which in turn has an application-scoped CM.

 This means that applying an object to the request-scoped CM makes sure that it
also gets resources that are session- or application-scoped. Each scope has the CM
saved in the attribute map, which is accessible via setAttribute() and get-
Attribute() methods on the ServletRequest object, the HttpSession object, or
the ServletContext object.

Modifying xwork.xml
In addition to being placed in ServletRequest’s attribute map, the request-scoped
CM is also placed in the ActionContext, which is a ThreadLocal that only exists for
the lifetime of a request. As such, an interceptor that applies an action to the
request-scoped CM is shown in the following code:

ComponentManager container =
 (ComponentManager) ActionContext.getContext()
 .get(ComponentManager.KEY);

if (container != null) {
 container.initializeObject(dispatcher.getAction());
}

In fact, this interceptor is included with WebWork. All you need to do to start
using IoC-aware actions is to configure xwork.xml to include this interceptor in
your interceptor stack. The interceptor is already configured in webwork-
default.xml with the name component. If you plan to use IoC for all your applica-
tions, add the following to your base package:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

154 CHAPTER 6

Inversion of Control
<interceptors>
 <interceptor-stack name="defaultComponentStack">
 <interceptor-ref name="component"/>
 <interceptor-ref name="defaultStack"/>
 </interceptor-stack>
</interceptors>

<default-interceptor-ref name="defaultComponentStack"/>

If you don’t intend to use IoC for all actions, you can just as easily apply the com-
ponent interceptor as you see fit. Now that everything is configured, it’s time to
see how to create a new component.

PITFALL A very common mistake when using WebWork’s IoC container is to not
include the component interceptor in your action’s interceptor stack. If,
while debugging a program, you encounter a NullPointerException
when a method call is made on a dependent resource, it’s almost guaran-
teed to be because the interceptor didn’t run.

6.3.2 Creating a new component

Creating a new component involves four steps: creating the component, creating the
component interface, creating the enabler interface (also known as the aware inter-
face), and telling WebWork about these new classes by editing components.xml.

 Imagine that you need to create a miniature online banking system. In order
to do so, you require a single Bank resource and a BankManager that is used to
make transactions with the bank. Because there is only a single Bank, application
scope is the best choice for the Bank instance. The BankManager, on the other
hand, is transactional, and therefore should be request-scoped so that each
request can do a unique transaction (and potentially roll back the transaction).
Let’s start by creating the component classes as well as their interfaces.

Creating the component and component interface
For each component (Bank and BankManager), you’ll create a concrete class as well
as an interface that the class will implement. You’re using interfaces for these
components purely to promote testability of your objects. You don’t have to sepa-
rate the interface from your component, but doing so makes your code many
times more testable and loosens the coupling of your objects.

 Let’s start with the Bank interface. In this example, Banks are trivially simple:
They only contain whole dollars, and you may only get the balance in an account,
add money to an account, or subtract money from an account:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using WebWork’s IoC framework 155
public interface Bank {
 int balance(String account);

 void add(String account, int dollars);

 void subtract(String account, int dollars);
}

The next step is to write an implementation for this interface. A real implementa-
tion would, of course, store to a database and offer much better security; but for
the sake of a simple example, you’ll allow the bank to store all its account balances
in memory:

public class BankImpl implements Bank {
 HashMap balances = new HashMap();

 int balance(String account) {
 Integer b = (Integer) balances.get(account);
 return (b == null) ? 0 : b.intValue();
 }

 void add(String account, int dollars) {
 Integer b = (Integer) balances.get(account);
 if (b == null) {
 balances.put(account, new Integer(dollars));
 } else {
 balances.put(account,
 new Integer(b.intValue() + dollars));
 }
 }

 void subtract(String account, dollars) {
 add(account, -dollars);
 }
}

Because the Bank resource is application-scoped, as long as the application is running,
the account balances are shared across all classes that use the Bank resource. Let’s
now create the BankManager interface and class implementation. You’ll support two
operations in the BankManager: transferring money and rolling back transactions:

public interface BankManager {
 void transfer(String account1, String account2, int dollars);

 void rollback();
}

When writing the implementation, let’s assume that any operation on a BankMan-
ager is committed at the end of its lifecycle unless the rollback() method has
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

156 CHAPTER 6

Inversion of Control
been called. Because you want to do an operation at the end of this resource’s life,
you can take advantage of the lifecycle support that WebWork offers:

public class BankManagerImpl implements BankManager, Disposable {
 ArrayList transfers = new ArrayList();
 Bank bank;
 boolean rolledBack = false;

 public void transfer(String account1,
 String account2,
 int dollars) {
 Transfer t = new Transfer();
 t.account1 = account1;
 t.account2 = account2;
 t.dollars = dollars;
 transfers.add(t);
 }

 public void rollback() {
 rolledBack = true;
 }

 public void dispose() {
 if (!rolledBack) {
 for (Iterator it = transfers.iterator();
 it.hasNext;()) {
 Transfer t = (Transfer) it.next();
 bank.add(t.account1, t.dollars);
 bank.subtract(t.account2, t.dollars);
 }
 }
 }

 class Transfer {
 String account1;
 String account2;
 int dollars;
 }
}

Although not exactly up to snuff for the needs of a real bank, the example pro-
vides a good demonstration of how a resource might depend on another resource
as well as how tying in to lifecycle events can be very important to the object’s
behavior. The only thing missing from BankManager is the fact that it has no way to
get Bank objects. For that to happen, you need to create enabler interfaces that let
the BankManager advertise to WebWork that it requires a Bank object in order to
successfully complete.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using WebWork’s IoC framework 157
Creating the enabler interface and tying the resources together
To give BankManager access to the Bank, you’ll create an enabler interface called
BankAware. Likewise, you’ll also create an enabler interface called BankManager-
Aware so that WebWork actions can get a handle to the BankManager associated
with the current request. The BankAware interface is a single setter method:

public interface BankAware {
 void setBank(Bank bank);
}

The BankManagerAware interface is also a single setter method:

public interface BankManagerAware {
 void setBankManager(BankManager mgr);
}

With these two enabler interfaces, you can modify BankManagerImpl to implement
BankAware, so the container can identify that BankManagerImpl requires Bank in
order to work properly. The code now looks like this:

public class BankManagerImpl implements BankManager,
 Disposable,
 BankAware {
 ArrayList transfers = new ArrayList();
 Bank bank;
 boolean rolledBack = false;

 void setBank(Bank bank) {
 this.bank = bank;
 }

 ...
}

The enabler interface not only lets WebWork know that BankManager has a depen-
dency on Bank, but it also provides a method to allow WebWork to wire the depen-
dent resource correctly. Note that enablers should always have exactly one
method that is in the form of setXxx(), where the one and only parameter is
either the resource itself (BankImpl, in this case) or something equivalent, such as
an interface for the resource (Bank).

Editing components.xml
The next step is to tell WebWork about all these new classes by modifying (creat-
ing, in this case) the components.xml file. The three things WebWork needs to
know about are the scope, the enabler interface, and the resource class. Because
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

158 CHAPTER 6

Inversion of Control
these are the first components you created, you need to create a new compo-
nents.xml file. The file should read as follows:

<components>
 <component>
 <scope>application</scope>
 <class>ch6.example1.BankImpl</class>
 <enabler>ch6.example1.BankAware</enabler>
 </component>
 <component>
 <scope>request</scope>
 <class>ch6.example1.BankManagerImpl</class>
 <enabler>ch6.example1.BankManagerAware</enabler>
 </component>
</components>

Notice that you never refer to any of the interfaces that your resources implement
(Bank and BankManager). Again, that’s because although it’s nice to separate inter-
face from implementation, it isn’t necessary and isn’t specific to the configura-
tion. The last step is to save this file in the same location where xwork.xml is
located, WEB-INF/classes.

 With components.xml created, all configuration is completed. At this point,
you’re free to implement the enablers in your actions; WebWork will automati-
cally take care of all the lifecycle, dependency, and scope complexities for you. As
you’ve already seen, WebWork will also handle the resource dependency require-
ments of other resources, just like the BankManager depends on the Bank. In fact,
WebWork’s IoC container isn’t just for actions and resources, but can be used on
any object.

6.3.3 Using IoC on any object

Although out-of-the-box WebWork only supports applying resources to actions
and resources themselves, you can use the ComponentManager to apply resources to
any object you need. Recall the implementation of the component interceptor
from the previous section. All that is needed is to look up the CM from the
ActionContext and then pass the object you wish to be managed by the container
through to the CM’s initializeObject() method.

 The key required to pass ActionContext’s get() method is in the ComponentMan-
ager interface. However, sometimes using ActionContext isn’t ideal. For example,
you may want to get a handle to the CM, but the request isn’t going through an
action. That means an ActionContext doesn’t exist, and therefore you can’t get the
CM the way you’ve previously seen. However, the request-scoped CM is applied to the
ServletRequest object for all requests you’ve mapped the filter to (in the case of this
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using WebWork’s IoC framework 159
chapter, you mapped it to all requests). Getting the CM from the ServletRequest is
as simple as calling getAttribute() with the same key, ComponentManager.KEY.

 Because WebWork’s IoC implementation can be used anywhere, even outside
of WebWork, it offers a great deal of power. Next, we’ll look at how it handles
complex dependencies and what it can and can’t do.

6.3.4 Dealing with complex dependencies

Odds are, if you use IoC even moderately, you’ll begin building up a lot of compo-
nents. Many of those components will probably depend on each other in various
ways. Eventually, you’ll find yourself with a pretty complex and deep dependency
graph. Knowing how WebWork handles complex dependencies will help you bet-
ter design your components to support the capabilities of WebWork.

A complex example
Look at the dependency graph shown in figure 6.3. Suppose a request comes to
an action that implements the FAware interface. In order to identify how the
resources will be initialized on the first request as well as subsequent requests, you
must understand a bit about the implementation of the WebWork IoC container.
WebWork uses a depth-first search (DFS) algorithm when identifying the order in
which lifecycles should be managed. WebWork also uses lazy initialization, mean-
ing that even if a scope opens, no resources are initialized until they’re needed.
Once a resource has been initialized, that same object instance is used again and
again until it’s disposed and its scope is closed.

 Knowing that WebWork uses the DFS algorithm to handle dependencies and
also uses lazy initialization, let’s pretend that the application has just started and

A B

C

F

D

E G

A
p
p
lic

a
ti
o
n

S
e
s
s
io

n
R

e
q
u
e
s
t

Figure 6.3
A complex dependency graph spanning
all three scopes
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

160 CHAPTER 6

Inversion of Control
no requests have been issued yet. A request then comes in that causes WebWork to
retrieve the F component. Assuming that ties are broken in alphabetical order,
the order of initialization for the first request is as follows: B, A, C, D, E, G, F. If
you’re having trouble seeing this order, try working your way up from F until you
no longer have any outgoing arrows; then cross off each resource as you work
your way backward.

 It’s important to note here that even though the B resource is a dependency
for many other resources, it’s only initialized once. All other resources, such as C
and G, are given the same B resource that A got.

 Now, let’s assume a second request has come through from the same user
(same session). The order of initialization is E, G, F. Far fewer resources are ini-
tialized this time because only the request scope is opening; all the other
resources that were initialized from the previous request are still open and in
their respective scopes. Likewise, a request from a new user (new session) will
yield C, D, E, G, F.

 Now that you know how WebWork manages dependencies, let’s look at some
of the dependencies that are problematic and aren’t supported.

Circular dependencies
A circular dependency is one that yields a dependency graph in the shape of a cir-
cle. Sometimes the circle is tight, meaning that it’s obvious a circular dependency
exists. A tight circle is when X depends on Y and Y depends on X. These are usu-
ally easy to find and eliminate, often by introducing a common component Z that
both X and Y can depend on.

 The harder-to-find and trickier circles are loose, meaning that there may be
multiple circles that go several levels deep before they loop. Figure 6.4 illustrates
an example. Can you see the circle?

 Actually, although this graph is complex, it’s almost legal. The only link that is
invalid is the dependency of G on F. If that link could be broken, WebWork would
be able to handle even this complex dependency chart. Finding these kinds of
dependency errors requires a careful eye.

 Your best bet is to draw out the graph and then, starting at the lowest-level
node, begin working your way up the graph. As you pass each node, place a check-
mark next to each item. Cross off any node that no longer has any dependencies
that haven’t been crossed off. As you work your way up the graph, if you come
across a node that has a checkmark but hasn’t yet been crossed off, you have a cir-
cular dependency.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using WebWork’s IoC framework 161
Scope dependencies
Another kind of dependency isn’t allowed by WebWork: lower-scope dependencies.
These are usually easier to identify but sometimes harder to solve. As we’ve dis-
cussed previously and also showed in figure 6.3, objects in the request scope may
depend on objects in the session scope, just as session scope may depend on appli-
cation scope. However, the opposite doesn’t hold true. Let’s examine why this is
the case and how you can get around it when it crops up.

 Sometimes it makes logical sense for a higher-level scope to depend on a scope
below it. For example, a ShoppingCart in session scope might want to depend on a
Transaction in request scope. Individually, it makes sense for each object to be in
its respective scope, session, and request. The problem comes up when you want
ShoppingCart to implement TransactionAware.

 At first this might seem like a feasible situation, especially given that during
development, there is almost zero traffic on your site. But what if two requests
come in at almost the same time from the same use? This case can easily hap-
pen—a common situation is when the user double-clicks a link or a Submit but-
ton. Imagine that a user clicks Submit twice, and the following two requests come
in at almost exactly the same time (see table 6.1).

Table 6.1 A race condition using inverse-scoped dependencies

Time Request 1 Request 2

T=0 Transaction t1 is initialized

T=1 Transaction t2 is initialized.

T=2 cart.setTransaction(t1) is called.

H

B

A

F

E

G

C

D
Figure 6.4
A complex (and invalid) circular
dependency graph
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

162 CHAPTER 6

Inversion of Control
A race condition is occurring: There is a chance that Request 1 is getting Request 2’s
Transaction object, which may cause strange behavior. These types of multithread-
ing bugs are very difficult to track down and can result in you and other developers
banging your heads on your desks for many days. As such, WebWork doesn’t sup-
port this type of dependency.

 When this situation comes up—and it will—the simplest resolution is to
remove the dependency entirely and change the method signatures of the meth-
ods that need the resource so that they accept the resource directly. In the case of
ShoppingCart, rather than having a checkOut() method, you change it to have a
checkOut(Transaction t) method instead. Doing so guarantees that the correct
resource is wired correctly and no race conditions can occur.

NOTE There has been some talk on the WebWork mailing lists about changing
WebWork to allow these types of reverse-scope dependencies. Because
the nature of the relationship between request, scope, and application is
very specific (one-to-many relationship between application-and-session
and session-and-request), it’s theoretically possible, using complex syn-
chronization logic, to allow these kinds of dependencies. However, we’re
unsure whether the effort is worth it, because depending on lower-
scoped resource is usually a dangerous game, and promoting it could be
a slippery slope.

6.4 An example from CaveatEmptor

Let’s look at two components in CaveatEmptor that provide that base persistence
support using Hibernate. If you’re not familiar with Hibernate, don’t worry—the
ideas presented here could work with any persistence layer.

 The first thing to pay special attention to is that Hibernate has a concept of a
Session and a SessionFactory. The Session is open only as long as it needs to
work with the database. The SessionFactory, on the other hand, is created once
and then used over and over, providing the backbone for advanced caching and
session management.

T=3 cart.setTransaction(t2) is called.

T=4 cart.checkOut() is called.

T=5 cart.checkOut() is called.

Table 6.1 A race condition using inverse-scoped dependencies (continued)

Time Request 1 Request 2
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

An example from CaveatEmptor 163
 In CaveatEmptor, we decided to create two IoC components to encapsulate
these two objects: the HibernateSessionFactory and the PersistenceManager.
Let’s first talk about the SessionFactory implementation.

6.4.1 The HibernateSessionFactory component

Before you create the classes of any component (or any object, for that matter),
it’s important to make sure you understand the role of the component. That is, you
must ask yourself, “What is the purpose of the object?” Considering the introduc-
tion to this section, you can assume that this particular component is responsible
for managing Hibernate’s SessionFactory for the CaveatEmptor application.

 With that said, you can start to define a simple interface first. Listing 6.2 pro-
vides the complete HibernateSessionFactory interface.

package org.hibernate.auction.persistence.components;

import net.sf.hibernate.SessionFactory;

public interface HibernateSessionFactory {
 SessionFactory getSessionFactory();
}

As you can see, the interface is very simple: All it does is return a SessionFactory
object. Now that you have defined the interface, let’s implement the interface
(see listing 6.3). Keep in mind that this component’s job is to manage the single
SessionFactory that should be associated with the entire application.

package org.hibernate.auction.persistence.components;

import com.opensymphony.xwork.interceptor.component.Initializable;
import com.opensymphony.xwork.interceptor.component.Disposable;
import net.sf.hibernate.cfg.Configuration;
import net.sf.hibernate.SessionFactory;
import net.sf.hibernate.HibernateException;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class HibernateSessionFactoryImpl
 implements HibernateSessionFactory, Initializable, Disposable {
 private static final Log LOG =
 LogFactory.getLog(HibernateSessionFactoryImpl.class);

Listing 6.2 The HibernateSessionFactory interface

Listing 6.3 The HibernateSessionFactory implementation
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

164 CHAPTER 6

Inversion of Control
 SessionFactory sessionFactory;

 public void init() {
 try {
 Configuration configuration = new Configuration();
 sessionFactory = configuration.configure()
 .buildSessionFactory();
 // We could also let Hibernate bind it to JNDI:
 // configuration.configure().buildSessionFactory()
 } catch (Throwable e) {
 // We have to catch Throwable, otherwise we'll miss
 // NoClassDefFoundError and other subclasses of Error
 LOG.error("Building SessionFactory failed.", e);
 throw new ExceptionInInitializerError(e);
 }
 }

 public SessionFactory getSessionFactory() {
 return sessionFactory;
 }

 public void dispose() {
 try {
 sessionFactory.close();
 } catch (HibernateException e) {
 LOG.error("Closing SessionFactory failed.", e);
 }
 }
}

Let’s break down listing 6.3 so you understand what’s going on. First, let’s examine
the interfaces this class implements. The expected HibernateSessionFactory inter-
face is there, but it also includes two new interfaces: Initializable and Dispos-
able. It turns out that the rest of the implementation of this class is merely satisfying
the requirements of these three interfaces: getSessionFactory() for your Hiber-
nateSessionFactory, init() for Initializable, and dispose() for Disposable.

WebWork’s two lifecycle events: initialize and dispose
WebWork’s IoC implementation has two optional lifecycle events: initialize and dis-
pose. Initialize is called after the component has been created and all its depen-
dencies have been set and also initialized. Dispose is called just before the
component lifecycle has ended and the object is about to be no longer accessible
by any other objects in the system.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

An example from CaveatEmptor 165
 These two lifecycle events are optional; you can hook into them by implement-
ing the com.opensymphony.xwork.interceptor.component.Initializable and
com.opensymphony.xwork.interceptor.component.Disposable interfaces, respec-
tively. These events are very important and allow you to easily implement rules
like transactions, as you’ll see in a moment.

The HibernateSessionFactory lifecycle
Now that you understand what these events are, let’s look at what they’re doing.
On initialization, the component asks Hibernate to configure itself and create a
SessionFactory object, which it then stores in a local field. You make this field
accessible via the getSessionFactory() method required by HibernateSession-
Factory. Because init() is called only once during the entire lifetime of this com-
ponent, you know that only one SessionFactory will be made available.

 Hibernate requires that when a SessionFactory will no longer be used, it must
be closed. This lets Hibernate cleanly disconnect any open connections from the
database and flush any outstanding caches. You make sure this contract is hon-
ored by calling the close() method in the dispose event, as shown in the dis-
pose() method.

 Combined, the init() and dispose() methods make sure the SessionFactory
contract is honored. Let’s now look at how you can create a second component
that utilizes this HibernateSessionFactory component.

6.4.2 The PersistenceManager component

A Hibernate SessionFactory does only one thing: It creates Hibernate Sessions.
However, a Hibernate Session has a few more responsibilities: It handles transac-
tions, reads data from a database, stores data in the database, and communicates
with its SessionFactory for caching strategies.

 Because you want to encapsulate this behavior, you create an interface like
that seen in listing 6.4. Specifically, you provide access to the Session but also
allow control over transactional behaviors: starting, committing, and rolling back
transactions.

package org.hibernate.auction.persistence.components;

import net.sf.hibernate.Session;

public interface PersistenceManager {
 Session getSession();

Listing 6.4 The PersistenceManager interface
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

166 CHAPTER 6

Inversion of Control
 void begin();

 void commit();

 void rollback();

}

The PersistenceManager interface is simple enough. Let’s now look at the imple-
mentation, provided in listing 6.5. Remember, this implementation is responsible
for a few tasks:

■ Declaring that it requires a HibernateSessionFactory component

■ Opening a new Session object

■ Optionally supporting the transaction features: begin, commit, and rollback

■ Closing the Session properly

package org.hibernate.auction.persistence.components;

import com.opensymphony.xwork.interceptor.component.Initializable;
import com.opensymphony.xwork.interceptor.component.Disposable;
import net.sf.hibernate.*;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class PersistenceManagerImpl
 implements PersistenceManager, HibernateSessionFactoryAware,
 Initializable, Disposable {
 private static final Log LOG =
 LogFactory.getLog(PersistenceManagerImpl.class);

 SessionFactory sessionFactory;
 Session session;
 Transaction transaction;
 boolean rollback;
 boolean commited;

 public void setSessionFactory(
 HibernateSessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory.getSessionFactory();
 }

 public void init() {

Listing 6.5 The PersistenceManager implementation
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

An example from CaveatEmptor 167
 try {
 session = sessionFactory.openSession();
 session.setFlushMode(FlushMode.NEVER);
 } catch (HibernateException e) {
 LOG.error("Could not open Hibernate session.", e);
 throw new ExceptionInInitializerError(e);
 }
 }

 public Session getSession() {
 return session;
 }

 public void begin() {
 try {
 transaction = session.beginTransaction();
 } catch (HibernateException e) {
 LOG.error("Could not begin transaction.", e);
 throw new ExceptionInInitializerError(e);
 }
 }

 public void commit() {
 if (transaction == null) {
 throw new RuntimeException("Transaction must be " +
 "started before it can " +
 "be committed!");
 }

 if (!commited) {
 try {
 session.flush();
 transaction.commit();
 commited = true;
 } catch (HibernateException e) {
 LOG.error("Could not commit transaction.", e);
 }
 }
 }

 public void rollback() {
 if (transaction == null) {
 throw new RuntimeException("Transaction must be " +
 "started before it can " +
 "be rolled back!");
 }

 if (!commited) {
 try {
 transaction.rollback();
 rollback = true;
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

168 CHAPTER 6

Inversion of Control
 } catch (HibernateException e) {
 LOG.error("Could not roll transaction back.", e);
 }
 }
 }

 public void dispose() {
 try {
 if (transaction != null) {
 commit();
 }

 session.close();
 } catch (HibernateException e) {
 LOG.error("Could not close Hibernate session.");
 }
 }
}

Beginning again with the interfaces that the implementation implements again,
you see the three familiar interfaces: PersistenceManager, Initializable, and Dis-
posable. However, there is also a fourth interface: HibernateSessionFactoryAware.
This is the aware interface, which indicates that this particular class (Persistence-
ManagerImpl) requires a HibernateSessionFactory implementation before it can
be initialized.

 The rest of the implementation is fairly straightforward. The transactional
state is kept in the rollback, committed, and transaction fields. All persistence
sessions start the same way, as shown in init(), but not all are ended the same
way. As you can see in dispose(), if a transaction is still open, it’s closed out before
the session is closed.

 Unlike the previous examples in this chapter, this implementation combines
the persistence and transaction duties into a single component. Both approaches
are perfectly acceptable. Now that you’ve seen the two component interfaces and
implementations, let’s examine how they’re configured to work together.

6.4.3 Configuring the components

Remember that the SessionFactory is a one-time thing, whereas you need a new
Session every time the database is accessed. Armed with this information, it’s time
to determine the scope of these components. You already know how they behave in
their lifetime, based on how the init() and dispose() methods were imple-
mented. But you haven’t yet declared when and how often those methods are
called. Listing 6.6 contains the <component> configurations for both components.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

An example from CaveatEmptor 169
<component>
 <scope>request</scope>
 <class>
 org.hibernate.auction.persistence.components.
bbb➥PersistenceManagerImpl
 </class>
 <enabler>
 org.hibernate.auction.persistence.components.
bbbbbbb➥PersistenceManagerAware
 </enabler>
</component>

<component>
 <scope>application</scope>
 <class>
 org.hibernate.auction.persistence.components.
bbb➥HibernateSessionFactoryImpl
 </class>
 <enabler>
 org.hibernate.auction.persistence.components.
bbb➥HibernateSessionFactoryAware
 </enabler>
</component>

The important thing to note here is the scopes of the two components. The Session-
Factory, which is implemented only once, has an expected scope of application. On
the other hand, a new Session is created on every request, also as expected.

6.4.4 Using the new components

You already saw, in section 6.4.2, how the PersistenceManagerImpl declared that it
required the HibernateSessionFactory by using the aware interface for that com-
ponent. The way CaveatEmptor was designed, no other components should need
to talk to the HibernateSessionFactory. However, many components and actions
need access to the PersistenceManager to function properly. You declare this
need the same way, by implementing the proper Aware interface—in this case,
PersistenceManagerAware, shown in listing 6.7.

Listing 6.6 Configuration for the SessionFactory and
PersistenceManager components
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

170 CHAPTER 6

Inversion of Control
package org.hibernate.auction.persistence.components;

public interface PersistenceManagerAware {
 void setPersistenceManager(PersistenceManager persistenceManager);
}

All other components declared in components.xml can implement this interface
to get access to the PersistenceManager, provided those components are also in
the request scope. If an action needs access to this component, it too must imple-
ment the same interface. However, remember to place the component intercep-
tor in the action’s stack, or the component won’t be wired up.

 WebWork’s IoC container isn’t the only kid on the block. There are others that
are more configurable and might be worth looking at if you start to find Web-
Work’s IoC container limiting. In the next section, we outline the types of contain-
ers available and the projects that are most closely associated with those types.

6.5 Alternatives

WebWork’s IoC container is far from the only way to handle complex object
dependency and lifecycle needs. We want to spend a bit of time pointing you to
alternatives in the form of both IoC and non-IoC implementations. Inversion of
Control and lightweight containers are surrounded by a lot of hype, so be careful
that you don’t get caught up in the hype as well. For some needs, IoC makes a lot
of sense—for others, it doesn’t. Look at the alternatives, and decide for yourself
what technique will work best for you and your development team.

6.5.1 Alternative IoC containers

Now that you’re familiar with the concepts of IoC as well as how to use WebWork’s
IoC container, let’s examine some alternative IoC containers that are available in
the Java open source community. Because WebWork’s IoC container is optional,
you’re free to not use it and instead integrate with any other container. It’s gener-
ally accepted that three types of IoC are available to use. The type of IoC is based
on how resources are given to objects:

■ Type 1—Interfaces

■ Type 2—Setter methods

■ Type 3—Constructor

Listing 6.7 The aware interface for the PersistenceManager component
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Alternatives 171
WebWork is considered a Type 1 IoC implementation, although it may be changed
in the future to support Type 2 and possibly Type 3 in the future. We’ll now look
at what each type means by briefly examining open source projects that use them.

Type 1: A look at Avalon
The original IoC framework for Java is Apache Avalon. Like WebWork, Avalon
requires that an interface expose a single method, such as injectWidget(Widget
w), which will be used by the container. Because this style is just like WebWork’s,
we won’t spend much more time on it here.

 The important thing that Avalon brings to the table is a large suite of well-defined
lifecycle events. WebWork currently provides only two lifecycle events: initializing
and disposing. Avalon goes much further and provides many more lifecycle events,
thereby possibly allowing much greater external control over your components.

NOTE You can find Avalon at http://jakarta.apache.org/avalon. However, as
of late 2004, the Avalon project has closed down. Look toward Spring
and Pico for alternative IoC implementations. In addition, EJB 3.0 is
strongly influenced by Spring and can be expected to offer many IoC fea-
tures in the future.

Type 2: A look at Spring
After Avalon, some people began to wonder why implementing an interface was
necessary—and they found that it wasn’t. Spring uses setter methods to pass
resources to objects and doesn’t require that an interface expose a method that
provides access. Instead, Spring uses reflection to call the appropriate setWid-
get(Widget w) method if it exists.

 Spring also contains its own MVC implementation, although it isn’t uncommon
for people to use WebWork’s MVC and Spring’s IoC together. You can find Spring
at http://www.springframework.org. You can also learn more about Spring in the
book Spring in Action (Manning, 2005).

Type 3: A look at Pico
Shortly after the development of WebWork’s IoC container, someone asked, why
should I do this

MyObject o = new MyObject();
o.setWidget(new Widget());

when I can do this?

MyObject o = new MyObject(new Widget());
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

http://jakarta.apache.org/avalon

172 CHAPTER 6

Inversion of Control
And thus Type 3 IoC was born. Instead of using methods to pass resources in to an
object, Type 3 IoC promotes the notion that if an object such as MyObject can’t
exist without a resource such as Widget, that object should be passed in through
its constructor and not via a method after the object is already created.

 Pico is an IoC implementation that promotes this type of implementation. It’s
freely available at http://pico.codehaus.org.

6.5.2 Non-IoC alternatives

IoC doesn’t claim to be anything it isn’t. It doesn’t do more than a Turing machine
can do, it doesn’t solve world hunger, and definitely no one is claiming that it must
be used to develop a clean, modular, decoupled application. So the logical ques-
tion is, “What is an alternative that offers benefits similar to those of IoC?”

 At the beginning of this chapter, we discussed several patterns that have influ-
enced and led to the usage of IoC. However, those same influences also led to
another pattern that is widely used: the Service Locator pattern. This pattern is the
dual of Inversion of Control. That is, it offers all the same benefits of IoC, but
instead of assuming that a container is passively handing resources to your code, it
requires your code to actively get those resources.

 Active resource management doesn’t make your code more or less coupled
together. The only part that is more coupled is the coupling between your code
and the service location, but that is so minor that it can be often be dismissed.
Before we end this chapter, let’s look at what this pattern is, so you at least have a
different perspective on the problems IoC is attempting to solve. If you decide that
IoC isn’t useful for your project, then it might be helpful to look toward this
important pattern as an alternative.

 Recall the Factory pattern discussed at the start of this chapter. If you need to write
a block of code that requires access to a FooService, a BarService, and a BazService,
the code might look like the following if you implement it using factories:

FooService foo = FooServiceFactory.getFooService();
BarService bar = BarServiceFactory.getBarService();
BazService baz = BazServiceFactory.getBazService();
foo.doSomeThing();
bar.doAnotherThing();
baz.doThisAndThat();

This code is decoupled from the service implementations themselves but is now
tightly coupled to three factories. Worse, if the factories end up becoming more
complicated, such as having more configuration options, managing the factories
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

http://pico.codehaus.org

Summary 173
may become a problem. Using IoC, you would assume that local, private fields in
the class already had the services populated, so the code would just be as follows:

// 3 setters have already been called
foo.doSomeThing();
bar.doAnotherThing();
baz.doThisAndThat();

This is nice because the code is completely decoupled from the implementation of
the foo, bar, and baz services and their factories. But there is another way to do this
without using IoC: the Service Locator pattern. The idea is to take the logic (com-
plex and simple) of each factory and place it in a single class. The resulting code is

FooService foo = ServiceLocator.getFooService();
BarService bar = ServiceLocator.getBarService();
BazService baz = ServiceLocator.getBazService();
foo.doSomeThing();
bar.doAnotherThing();
baz.doThisAndThat();

This code isn’t tied to the factories or the service implementations, and so it has
almost all the same benefits your IoC example does. In fact, this example is nicer
for some developers because it’s much more straightforward—nothing is going
on behind the scenes that is required to make the code work. What you see is what
you get.

 The only downside to this code is that it’s coupled closely to the ServiceLoca-
tor class. The only downside to the IoC code is that it isn’t totally straightforward
or obvious. Otherwise, both techniques are conceptually the same. It’s up to you
to decide where and how you wish to handle resource management (or service
management, in this case). Neither approach is right or wrong—they’re just two
different ways to skin a cat.

6.6 Summary

In this chapter, we looked at the incremental steps that took engineers from
crude resource management to advanced techniques such as Inversion of Con-
trol. By first examining patterns such as the Singleton and Factory patterns, we
were able to explore the relationship between the problems these patterns were
trying to solve and those that IoC tries to solve.

 You also saw how two important components in CaveatEmptor were created.
These components, PersistenceManager and HibernateSessionFactory, both
demonstrate dependencies, scoping, and lifecycles in an easy-to-follow manner.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

174 CHAPTER 6

Inversion of Control
 In addition to showing you how to use WebWork’s IoC container, we introduced
the general concept of how complex dependencies and lifecycles work in a highly
componentized architecture. The fact is that no matter how hard you try to com-
ponentize your code, if you don’t deal with the basic issues of when the compo-
nents are created and destroyed, as well as how they depend on each other, your
code will inevitably fall back into a state of disarray. We hope that the technique of
Inversion of Control has excited you about ways you can cleanly handle resource
and component management.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Part 3

Displaying content

This part covers how data is displayed after it has been processed. Chapter 7
looks at the kinds of results WebWork supports, such as JSP, Velocity, and Jasper-
Reports. This chapter goes into great detail about the pros and cons of different
methods for displaying your content. Chapter 8 explains how WebWork’s expres-
sion language (EL) can be used in those result pages, regardless of the view tech-
nology. The EL provides a very loose coupling between your presentation layer
and your data.

Once you’ve gained a solid grasp of the EL, chapter 9 puts it to good use by
showing you the non-UI tags WebWork supplies. Chapter 10 presents a quick over-
view of Velocity; it’s a prerequisite for the next chapter. Chapter 11 discusses UI
tags; you’ll see how the tags and features covered in chapters 8 and 9 come
together to let you create rich, componentized, reusable templates.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using results
This chapter covers

■ The relationship between actions and their results

■ How to chain multiple actions together in a single
request

■ How to redirect to a new page after an action has
completed

■ Alternatives to JSP, such as Velocity and
FreeMarker

■ How to render reports in PDF, Excel, XML, and
HTML using JasperReports
177

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

178 CHAPTER 7

Using results
Newton’s third law of thermodynamics states that an action can’t happen without
a reaction. In the world of WebWork, an action usually shouldn’t happen without
a result. A result is a piece of code that is executed after your action has already
completed and returned a value such as success or error. But unlike actions, you
won’t find yourself writing many results while building your web application.
Rather, WebWork comes with most, if not all, of the results you’ll need. In this
chapter, we’ll discuss how results work in general; then we’ll examine the common
results (such as “servlet dispatcher,” used for JSPs, and Velocity) as well as alterna-
tive results such as FreeMarker and Jasper Reports (in PDF, XML, and HTML).

7.1 Life after the action

Before we discuss complex results, such as those that render a JSP page or pro-
duce a PDF chart, you need to understand not only how to configure a result but
also how results operate. This will be necessary if you want to write your own result
and also if you plan to write any interceptors or other add-ons to WebWork.

7.1.1 A simple result

All results must implement a single interface: com.opensymphony.xwork.Result.
This interface, like the Action interface, is simple:

package com.opensymphony.xwork;

public interface Result {
 public void execute(ActionInvocation invocation)
 throws Exception;
}

Just as in the Action interface, there is only a single execute() method. One dif-
ference, however, is that the execute() method in Action returns a String,
whereas the execute() method here returns void. This is the case because in an
action, the return code determines which result to execute. In results, there is no
need to determine what to do next, so no return value is necessary.

 Let’s run through a simple exercise that involves creating a new type of result
called debug. By going through this exercise, we’ll dive head first into the topic of
results. We’ll come up for air afterward and then take a detailed look at the topics
glossed over in this quick example.

 Imagine that you have an action that is behaving erratically, and you need to
determine the values of various properties in the action (see listing 7.1). This action
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Life after the action 179
returns SUCCESS, INPUT, or ERROR with an equally random chance. It also sets up the
properties foo, bar, and baz to have a value that contains that random number.

package examples.chap07;

import com.opensymphony.xwork.ActionSupport;

import java.util.Random;

public class TestAction extends ActionSupport {
 private String foo;
 private String bar;
 private String baz;

 public String execute() throws Exception {
 int random = new Random().nextInt(100);

 foo = "foo-" + random;
 bar = "bar-" + random;
 baz = "baz-" + random;

 if (random <= 33) {
 return SUCCESS;
 } else if (random <= 66) {
 return ERROR;
 } else {
 return INPUT;
 }
 }

 // getters and setters for all the properties
 ...
}

Debugging an action often involves trying to determine the values of various
properties after execution. To make your job of debugging easier, let’s build a cus-
tom result that lets you see the values of a specified property (see listing 7.2).

package examples.chap07;

import com.opensymphony.xwork.Result;
import com.opensymphony.xwork.ActionInvocation;
import com.opensymphony.xwork.Action;

Listing 7.1 An action that simulates random or erratic behavior

Listing 7.2 A complete result that prints out the value of a specified property
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

180 CHAPTER 7

Using results
import java.lang.reflect.Method;

public class DebugResult implements Result {
 public static final String DEFAULT_PARAM = "property";

 String property;

 public void execute(ActionInvocation invocation)
 throws Exception {
 String resultCode = invocation.getResultCode();
 System.out.println("Result code: " + resultCode);

 Action action = invocation.getAction();
 String methodName = "get" +
 property.substring(0, 1).toUpperCase() +
 property.substring(1);
 Method method = action.getClass()
bbbbbbbbbbbbbbb➥.getMethod(methodName, new Class[0]);
 Object o = method.invoke(action, new Object[0]);
 System.out.println(property + ": " + o);
 }

 public void setProperty(String property) {
 this.property = property;
 }
}

NOTE In listing 7.2, a static string defined as DEFAULT_PARAM exists. Ignore it for
now; we’ll come back to it in a second when we take a detailed look at
configuring results.

Recall that getter methods for properties are in the form of getXxx(). This code
converts a property name from the form xxx to a method name of getXxx. It then
invokes the corresponding getter to retrieve the property’s value. Finally, the
property name (in the form of xxx) and the value are printed to standard output.
This result is useful if you’re trying to debug what the state of your action looks
like after it has been executed. Let’s now look at how it would be configured in
xwork.xml so that you might use it.

7.1.2 Configuring a result

Just like actions and interceptors, you configure a result in xwork.xml. Results are
specified in packages and are inherited. You can also configure a default result per
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Life after the action 181
package, meaning that specifying the type attribute for your most common result
isn’t necessary. Listing 7.3 shows a configuration that uses your newly created result.

<!DOCTYPE xwork PUBLIC "-//OpenSymphony Group//XWork 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-1.0.dtd">
<xwork>
 <include file="webwork-default.xml"/>
 <package name="default" extends="webwork-default">
 <result-types>
 <result-type name="debug"
 class="examples.chap07.DebugResult"
 default="true"/>
 </result-types>

 <action name="test" class="examples.chap07.TestAction">
 <result name="success" type="debug">
 <param name="property">foo</param>
 </result>
 <result name="error">
 <param name="property">bar</param>
 </result>
 <result name="input">baz</result>
 </action>
 </package>
</xwork>

Reading from top to bottom, the first important thing to note is the <result-
types> section. In it, all results are defined. All the other results you have been
using and will use are already defined in webwork-default.xml, which is why you
extend that package. In this section, you define the name of the result type as well
as the class in listing 7.2. Finally, you decide to make this result the default, mean-
ing that if a result type isn’t specified, this one will be assumed.

NOTE In webwork-default.xml, the default result type is dispatcher or the serv-
let dispatch result. We’ll discuss this result in a moment, but it’s almost al-
ways a good idea to leave it as your default result for web applications
build using JSPs. We changed the default in this example to showcase the
effects of a default result.

The next thing to look at in listing 7.3 is the result for the action. This is where the
result code is mapped to an actual result. You’ve defined three mappings in this
case: success, error, and input. In each of these mappings, a value for the property

Listing 7.3 A configuration that ties your actions in with the result you just created
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

182 CHAPTER 7

Using results
property is specified (foo, bar, baz). This means that when the result is instantiated,
it will have setProperty() called with the value specified.

 The mapping for success is the most verbose form of defining a result: The
type has been specified, and the property parameter has been explicitly called
out. The error mapping is a bit less verbose in that the default result type is
assumed and therefore not specified. The input mapping is the least verbose
because it assumes the default result as well as the default parameter. You’ll use
this last form most frequently when you’re building web applications.

 Recall that listing 7.2 defined a DEFAULT_PARAM static string. This string defines
the default parameter name for DebugResult. This allows results to be specified in
the much more simplified form of the input mapping. All results that are
included with WebWork have a DEFAULT_PARAM specified. We’ll look at those
results, as well as their default parameters, in section 7.2. In chapter 2, you already
saw results specified in this form:

<result name="success">/hello.jsp</result>

That’s all there is to configuring and using results. Now let’s come up for a breath
of fresh air and look at some of the common results you’ll most likely be using
when building a WebWork-powered application.

7.2 Common results

WebWork comes bundled with most if not all of the result types you’ll need when
building web applications. Although the DebugResult has some usefulness, you
can’t build applications without displaying something to the user. The most com-
mon way to do this is with a JSP page. The three most common results are as follows:

■ Dispatching to a page from within the same HTTP request

■ Redirecting the browser to a page

■ Directly chaining to another WebWork action

7.2.1 Dispatching to a page

Because the ActionContext and the value stack in particular are ThreadLocal and
therefore associated with a single request, any page that needs to display dynamic
data prepared by an action must be rendered in the same HTTP request. Display-
ing a different page (whether a JSP or a servlet or anything else) under the same
HTTP request is possible using the Servlet APIs and the RequestDispatcher class.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Common results 183
In webwork-default.xml, the default result type is dispatcher, which does exactly
that: It makes a request and renders the output of that request in the same
response that the original HTTP request came from. Figure 7.1 illustrates how a
RequestDispatcher works when used in the result of an action.

Configuring a dispatch result
As long as you’re including webwork-default.xml and your packages inherit
(directly or indirectly) from webwork-default, no configuration should be
required to use the dispatcher result. This is because webwork-default.xml
includes the following entry in the webwork-default package:

<result-type name="dispatcher"
 class="com.opensymphony.webwork.dispatcher.
bbbbbbbbbbbbbbb➥ServletDispatcherResult"
 default="true"/>

Notice that this result type is configured to be the default result. So, if you don’t
specify the result type in the results for your actions, it will be assumed to be a
dispatcher result. As you saw in chapter 2, a result definition can look like this:

<result name="success">/hello.jsp</result>

As we noted in section 7.1, most WebWork results have a DEFAULT_PARAM defined,
allowing for a much simpler configuration form. In the case of the dispatcher
result, the default parameter is location. This means a more formal way to dis-
patch to hello.jsp would be

<result name="success" type="dispatcher">
 <param name="location">/hello.jsp</param>
</result>

HTTP Request
RequestDispatcher (forward)

Action SUCCESS
Dispatcher

Result

Servlet

Resource

(JSP, servlet,

etc.)

Request

Response

Figure 7.1 A request for an action that invokes a RequestDispatcher
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

184 CHAPTER 7

Using results
Parsing variables
In addition to the location parameter, there is another supported parameter
called parse. This parameter is a boolean and is true by default. When set to false,
the dispatcher result won’t parse the location parameter for variable replace-
ment. Variable replacement is the act of changing a string such as "/view-
Cart.jsp?ID=${ID}" in to "/viewCart.jsp?ID=54". The dispatcher result looks in
the location string for anything matching the form ${...} and extracts the Object
Graph Navigation Language (OGNL) expression between the curly braces. It then
evaluates the expression against the value stack and replaces the entire thing with
the result of the evaluation.

NOTE For dispatcher results, parsing variables in the location isn’t important
because the same information can be retrieved in the JSP by using the
property tag. However, as you’ll see in a moment, it’s extremely powerful
when redirecting to another page.

This gives you the ability to use dynamic pages and URLs for your results. Setting
the parse parameter to false tells the result not to do any parsing, leaving the final
location that the RequestDispatcher attempts to find complete with the ${...}
characters. Unless you have a specific need to turn off parsing, it’s recommended
you leave it on.

Context matters
Depending on the context in which the dispatcher result is called, how the dis-
patch occurs may be slightly different. This is because the Servlet specification has
a few restrictions about how the two types of dispatching (includes and forwards)
can happen. The dispatcher result checks for and acts on three types of contexts:

■ JSP context

■ Normal context

■ Included context

The JSP context is automatically discovered with the presence of a PageContext
object in the ActionContext. If a PageContext exists, then its include() method is
called with the location specified in the result. This allows for a JSP to include an
action and its corresponding result as a component, as illustrated in figure 7.2
and demonstrated in listing 7.4.

 Remember that the dispatcher result is responsible for sending arbitrary
requests to any servlet resource. Typically you’ll dispatch to JSPs, as shown in fig-
ure 7.2. However, you could theoretically dispatch to any resource, such as other
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Common results 185
servlets, HTML files, Velocity or FreeMarker templates, or even other actions.
WebWork provides other results, which we go over later in this chapter, for more
specialized uses, such as rendering a template in Velocity or invoking a second
action (called action chaining).

<%@ taglib uri="webwork" prefix="ww" %>
<html>
 <head>
 <title>JSP Context</title>
 </head>
 <body>
 The following content was included because it is in a JSP
 context:
 <hr/>
 <ww:action name="helloWorld" executeResult="true" />
 </hr>
 </body>
</html>

Don’t worry about the ww:action tag just yet (it will be covered in chapter 9, “Tag
libraries”). Just know that a call to this tag effectively invokes an action and its
result, thereby creating the JSP context the dispatcher result needs to be aware

Listing 7.4 A JSP that invokes an action under a JSP context

HTTP Request

Request Dispatcher (include)

(include)

:

JSP Page

<ww action … /> Action

JSP View

Tag Dispatcher

Dispatcher

Result

Request

S
U

C
C

E
S

S

Response
Figure 7.2
The dispatcher result when under
the JSP context
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

186 CHAPTER 7

Using results
of. The outcome is that the output of that action will stream directly into this JSP
in the form of a RequestDispatcher include.

 In the normal context, an action executes due to a direct request from a web
browser, and the result is a dispatcher result. There is no PageContext in the
ActionContext. Under this context, the RequestDispatcher is used to forward to
another resource. That resource, for example, might be a JSP, which in turn
invokes another action, resulting in the JSP context previously described. Such a
scenario of an action-JSP-action is presented in figure 7.3.

 A third, rarer, context is the included context. This occurs whenever the request
for an action is due to an include rather than a forward. This context is similar to
the JSP context, except that instead of executing the action in the JSP, the action is
executed because of a RequestDispatcher include. This can happen when a JSP
uses jsp:include rather than ww:action to display a resource for an action. The
difference is subtle, but it can create different contexts in which the dispatcher

HTTP Request

RequestDispatcher (forward)

Action SUCCESS
Dispatcher

Result

R
e

q
u

e
s
t

R
e

s
p

o
n

s
e

RequestDispatcher

(

(include)

JSP Page

<ww:action ... />Action

JSP View

Tag Dispatcher

Dispatcher

Result

Response

Request

S
U

C
C

E
S

S

Figure 7.3
The dispatcher result under a normal
context and a JSP context
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Common results 187
result is invoked. To demonstrate the difference, listing 7.5 shows a JSP that causes
both a JSP context and an included context.

<%@ taglib uri="webwork" prefix="ww" %>
<html>
 <head>
 <title>Included Context</title>
 </head>
 <body>
 The following content was included because it is in an
 included context:
 <hr/>
 <jsp:include page="helloWorld.action"/>
 </body>
</html>

The key thing to note is that the included context uses the *.action extension to
identify the action request. This is because an actual RequestDispatcher must be
used to execute the action and its view. In figure 7.2, only one RequestDispatcher
must be used, thereby making everything simpler and faster. Figure 7.4 demon-
strates how the page in listing 7.5 would be executed. As you can see, the JSP and
normal context are a bit simpler (and more common) than the included context.

NOTE The differences between a forward and an include can sometimes be dif-
ficult to understand. A close read of the Servlet specification as well as the
API documentation will clear things up. But if you want to avoid reading
that information, the main difference between the two to keep in mind is
this: Forwards can happen unlimited times until an include takes place,
after which only includes may occur. The dispatcher result obeys this
rule and never calls for a forward after an include has already taken place.

Error cases
In the case where an error occurs in either finding the resource specified in the
dispatcher location parameter or when executing the particular page, WebWork
will notify you. The dispatcher result only knows to return a 404 when it’s unable
to get a handle to a RequestDispatcher object. Depending on the implementation
of your servlet container, this may or may not happen when the resource you’re
dispatching to doesn’t exist. If the servlet container tries to serve content that
doesn’t exist, a 404 won’t be returned; rather, a general exception will take place
when the result tries to dispatch the request.

Listing 7.5 A JSP that invokes an action under the included context
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

188 CHAPTER 7

Using results
General exceptions produce a 500 error code. These errors happen whenever
WebWork encounters an unknown error of any form. A stack trace is included that
will help you track down where the error occurred. In the case of a resource not
being found, the servlet container reports that fact in the exception being thrown.
In the case where your resource (such as a JSP) is causing an error, the stack trace
includes the exception message. If you’re working with JSPs, the trace may include
the JSP filename and line number, further helping you debug the problem.

7.2.2 Redirecting to a page

Although dispatcher results are important and even required when you need to
display data that was generated or retrieved from an action, many times all you
need to do is point the browser to a new location. You can do this by using the
redirect result that is included with WebWork (see figure 7.5).

HTTP Request

RequestDispatcher (include)

RequestDispatcher (include)

.

JSP Page

<jsp :include

page =”foo action” />

JSP View
Dispatcher

Result

Response

Request

SU
C
C
ESS

R
e
q
u

e
s
t

R
e

s
p
o
n

s
e

Action

Figure 7.4
The dispatcher result under
the included context
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Common results 189
NOTE Although figure 7.5 is a diagram of a redirect result type sending the
browser off to another action, this isn’t always the case. You’re free to re-
direct the user to any URL, even a URL that isn’t part of your web applica-
tion (such as http://www.google.com).

Configuring a redirect
Just like with the dispatcher result, as long as you’re including webwork-default.xml
and your packages inherit (directly or indirectly) from webwork-default, no con-
figuration should be required to use the dispatcher result. The entry in webwork-
default.xml that is part of the webwork-default package is as follows:

<result-type name="redirect"
 class="com.opensymphony.webwork.dispatcher.-
ServletRedirectResult"/>

Notice that unlike the dispatcher result, this result type isn’t configured to be the
default. Thus in the results for your actions, you must specify the result type as
redirect in order to use this result. A sample usage looks like this:

<result name="success" type="redirect">/hello.jsp</result>

As we stated before, all WebWork results have a default parameter specified. For
redirect results, the default parameter is the same as the dispatcher result: loca-
tion. The redirect result also takes the other optional parameter that dispatcher

HTTP Request

SUCCESS

HTTP Request
Response

Request Dispatcher

(forward)

Dispatcher

Result
JSP View

Action

Request

Redirect

Result

Response

SUCCESSAction

Figure 7.5 A request for an action that calls HttpServletResponse.sendRedirect()
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

190 CHAPTER 7

Using results
does: parse. This means the redirect result is also capable of generating requests
dynamically by evaluating expressions that use data from the value stack.

Differences between redirects and dispatchers
Comparing figure 7.1 to figure 7.5, you can see how the redirect result and the
dispatcher result are very different. Redirects work by sending a 302 HTTP return
code back to the browser along with the new location in the HTTP headers. The
browser then issues an HTTP request to that location automatically. This is unlike
the dispatcher result, which issues an internal request to the resource, giving the
appearance to the browser that only one request has been made.

NOTE Using a redirect causes some small performance penalties. That is the
case because the browser now has to do two round-trip network calls rath-
er than one (if a dispatcher was used). This effect is minor, but it should
be noted.

The consequence is subtle but also very important. Imagine the following
configuration:

<action name="checkout-order" class="com.acme.CheckoutOrder">
 <result name="success">order-confirmation.jsp</result>
</action>

If a user shopping for online books clicks the Checkout button—a link to /checkout-
order.action—the order is processed and a confirmation page is displayed. The URL
in the web browser stills points to checkout-order.action. This means that if the user
clicks the Reload button, the order will be checked out again—not the most desir-
able behavior. Now, let’s look at a slightly different configuration:

<action name="checkout-order" class="com.acme.CheckoutOrder">
 <result name="success" type="redirect">
 order-confirmation.jsp
 </result>
</action>

Using this configuration, when the user checks out, the final browser location is
order-confirmation.jsp. This means that reloading the page won’t cause the
checkout action to be issued again—a much better behavior. But what if order-
confirmation.jsp requires data that CheckoutOrder contains?

 If the result needs data from the original action, redirection isn’t much of an
option: The new HTTP request will almost certainly be processed on a new thread
in the servlet container, and all the state in the ActionContext (such as the value
stack and the action itself) will be lost. Fortunately, there is a way to pass state
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Common results 191
across redirects. Suppose order-confirmation.jsp needs to display the confirma-
tion number to the user. Assuming that the confirmation number is stored in a
property in CheckoutOrder named confirmationNumber, you can modify the con-
figuration as follows:

<action name="checkout-order" class="com.acme.CheckoutOrder">
 <result name="success" type="redirect">
 order-confirmation.jsp?confirmationNumber=
bbbbbbbb➥${confirmationNumber}
 </result>
</action>

The resulting location in the web browser is order-confirmation.jsp?confirmation-
Number=123, where 123 is the confirmation number for that order. Now users
can reload to their heart’s content and a dynamic page will still be displayed, but
orders won’t be repeated.

Redirecting to another action
Suppose that the confirmation page is a bit more complex than just displaying the
confirmation number. You could pass all the variables it needs through to the
request the same way, but the URL could end up being very long. Another idea is
to redirect to an action that takes the confirmation number as an input and then
loads all the details of that order. The view for that action is a JSP that displays the
confirmation screen.

 To do a redirect to another action, you need to tweak your configuration only
slightly. You must change the success result’s location as well as add another action:

<action name="checkout-order" class="com.acme.CheckoutOrder">
 <result name="success" type="redirect">
 confirmation.action?confirmationNumber=
bbbbbbbb➥${confirmationNumber}
 </result>
</action>

<action name="confirmation" class="com.acme.Confirmation">
 <result name="success">order-confirmation.jsp</result>
</action>

Now the final URL is confirmation.action?confirmationNumber=123. Reloading
won’t cause any harm, because the confirmation action is a simple read-only
action. This technique is highly recommended and can help you build many
small-grained simple actions that can be loosely tied together to form complex
application flows.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

192 CHAPTER 7

Using results
7.2.3 Chaining to another action

We just looked at a technique that allows you to build small-grained actions and
then link them together by using the redirect result and passing the required
parameter (confirmationNumber) through via a GET parameter. Sometimes you
want to use fine-grained actions, but instead of redirecting between them, you’ll
execute one directly after another. This is called action chaining, and it’s also a
powerful technique for building complex dynamic web-based workflows using
fine-grained actions.

 The disadvantage of not using a redirect has already been pointed out: The
browser location doesn’t change, meaning a reload will cause the entire chain to
be executed again. On the other hand, the advantage of action chaining is that
you can easily share data between actions. This is the case because both actions
are executing during the same request, meaning they share the same ActionCon-
text and OgnlValueStack. The possibility for building detailed workflows is now
wide open.

 In figure 7.6, you can see how the chain result invokes another action, which
in turn ends up at the dispatch result, bringing an end to an action chain. This
diagram shows a short chain of only two actions; but depending on the granularity
of your actions, you could easily have chains of five or six actions.

HTTP Request

Action SUCCESS

RequestDispatcher

(forward)

Dispatcher

Result
JSP View

Request

Response

Action

Chain
 In

te
rc

epto
r

SUCCESS

Norm
al I

nte
rc

epto
rs

Chain

Result

Figure 7.6 An action that chains to another action
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Common results 193
NOTE Sometimes people think that dispatching to another action is the same as
action chaining. They share some similar qualities—namely, that they ex-
ecute in the same thread/request—but, they don’t do exactly the same
thing. An action chain executes both actions in the same action invoca-
tion, whereas dispatching to a second action causes two invocations to take
place. Also, dispatching doesn’t copy the parameters of the first action
and set them on the second action. As a general rule, if you find yourself
dispatching to another action, you probably should use action chaining.

Configuring an action chain
Like the dispatch and redirect results, using the chain result should require no
or very few configuration changes as long as your action packages extend web-
work-default. That is the case because a chain result is already defined in web-
work-default.xml:

<result-type name="chain"
 class="com.opensymphony.xwork.ActionChainResult" />

Listing 7.6 shows how two actions might chain together to form a single request.
The two actions, Authenticate and Login, might be split up because they serve dif-
ferent purposes and could be reused independently of each other. For example,
during user registration, if the user created an account in the current session, you
don’t need to ask for authentication.

<package name="example3" extends="webwork-default">
 <action name="authenticate"
 class="examples.chap07.example3.Authenticate">
 <result name="success" type="chain">login</result>
 <result name="input">login.jsp</result>
 </action>

 <action name="login" class="examples.chap07.example3.Login">
 <result name="success">home.jsp</result>
 </action>
</package>

This chain result has two parameters: namespace and actionName. The default
parameter is actionName, whereas the namespace parameter defaults to the current
namespace. That is the case because more often than not, you’ll find yourself
chaining to actions in the same namespace; so, having to specify it all over the
place would become tedious. In case you do need to chain beyond the current
namespace, a complete example with two namespaces is given in listing 7.7.

Listing 7.6 Two actions that chain together to form authentication and login
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

194 CHAPTER 7

Using results
<package name="default" extends="webwork-default">
 <interceptors>
 <interceptor-stack name="myDefaultStack">
 <interceptor-ref name="chain"/>
 <interceptor-ref name="defaultStack"/>
 </interceptor-stack>
 </interceptors>

 <default-interceptor-ref name="myDefaultStack"/>
</package>

<package name="foo" extends="default" namespace="/foospace">
 <action name="foo" class="com.acme.Foo">
 <result name="success" type="chain">
 <param name="actionName" value="bar"/>
 <param name="namespace" value="/barspace"/>
 </result>
 </action>
</package>

<package name="bar" extends="default" namespace="/barspace">
 <action name="first-login" class="com.acme.Login">
 <result name="success">welcome.jsp</result>
 </action>
</package>

Unlike the other results we’ve looked at, the chain result requires one additional
configuration element: An interceptor must be configured for any action that is being
chained to. Actions that use the chain result don’t need the interceptor unless
they’re just a link in a long chain and are therefore also an action being chained to.

 As you learned in chapter 5, you can configure this interceptor on an individ-
ual basis for each action, or you can configure it for an entire package. Because
this interceptor only does work when an action returns a result code that invokes
a chain result, configuring it for every action is usually the simplest and easiest
choice. Listings 7.7 and 7.8 show a complete xwork.xml file that demonstrates
action chaining.

How action chaining works
Understanding what is going on under the hood with action chaining will enable
you to maximize the full potential of this feature. The key thing to remember is that
every action executed is pushed onto the stack. This is nothing new. In fact, this is the nor-
mal behavior you’ve been accustomed to. The only new aspect is that during action

Listing 7.7 Chaining between two namespaces
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Common results 195
chaining, multiple actions are executed, meaning that multiple actions are pushed
onto the stack.

 In the example in listing 7.8, the two different chains result in either wel-
come.jsp or home.jsp being displayed with the stack having a size of 2 and the stack
configured with Login on top and Register or Authenticate on the bottom, respec-
tively. An expression that requests a property that both actions have will result in
the Login (top) action being used to retrieve the property value. Figure 7.7 illus-
trates the order in which actions are executed and placed in the value stack. Notice
that the actions are first placed in the stack and then executed.

<package name="default" extends="webwork-default">
 <interceptors>
 <interceptor-stack name="myDefaultStack">
 <interceptor-ref name="chain"/>
 <interceptor-ref name="defaultStack"/>
 </interceptor-stack>
 </interceptors>

 <default-interceptor-ref name="myDefaultStack"/>

 <action name="authenticate" class="com.acme.Authenticate">
 <result name="success" type="chain">login</result>

Listing 7.8 Login and registration configuration showing action chaining and reuse

Value Stack

Step 3
Login

Step 5: execute()

Register

Login

welcome.jspStep 6

S
tep 1

Register

Step 2: execute()

S
te

p
 4

Figure 7.7 How actions are placed on the stack during chaining
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

196 CHAPTER 7

Using results
 <result name="input">login.jsp</result>
 </action>

 <action name="login" class="com.acme.Login">
 <result name="success">home.jsp</result>
 </action>
 <action name="register" class="com.acme.Register">
 <result name="success" type="chain">first-login</result>
 <result name="input">register.jsp</result>
 </action>
 <action name="first-login" class="com.acme.Login">
 <result name="success">welcome.jsp</result>
 </action>
</package>

To see how expressions are evaluated, look at figure 7.8. Note that the value for X
is different in the first action and the second. As long as you’re using the chain
interceptor, as shown in listing 7.8 and illustrated in figure 7.6, all common values
among actions in a chain are set to be the same. The only way for the values to differ
is if the action modifies those values during execution. In figure 7.7, assume that
the Login action also modifies the value of X by adding 3 to it. This means that when
the Login action starts, the value is 1; but when it’s finished and welcome.jsp begins
to render, the value is now 4.

 The chain interceptor works by copying common values from every object on
the stack (all the previous actions in the chain) to the most recent action in the
chain. The means that common properties between all actions in the chain, not
just the contiguous ones, are copied. To use the login and registration example

Value Stack

Login
x=4
z=3

welcome.jsp
Register
x = 1
y = 2

Value Stack

Register

Value Stack

Register

Login

“x” -> null
“y” -> null
“z” -> null

“x” -> 1
“y” -> 2
“z” -> null

“x” -> 4
“y” -> 2
“z” -> 3

Figure 7.8
An illustration of how expressions
evaluate to different values during
the course of chaining
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Other results 197
you’ve seen, this would be useful to pass around a username property among all
the actions.

7.3 Other results

The three results you’ve seen so far—dispatcher, redirect, and chain—are the
most common. But that doesn’t mean they’re the only results WebWork supports.
Three other useful results also ship with WebWork. Two of these results are for
template languages that can be used as an alternative to the heavier-weight JSP
pages you’ve seen up until now. The other result is used to build reports in various
formats, such as PDF and Excel.

7.3.1 Streaming Velocity templates directly to the output

Many developers feel that JSP is too heavy for their tastes. The ability to write
scriptlets (essentially, Java code embedded in the JSP) is often a big turn-off.
Although scriptlets are seen as a feature by some, advanced Java developers know
that scriptlets always result in poorly designed code, especially when less experi-
enced programmers use them. A few reasons often cited for using Velocity instead
of JSP are as follows:

■ Velocity is much faster than JSP in most servlet containers. Only the fastest
servlet containers, such as Orion and Resin, can serve JSPs as fast as the
Velocity templating engine can render Velocity templates.

■ Scriptlets lead to a “code smell”—that is, if you give developers the option
to write Java code in their pages, odds are they will use it when in a crunch,
which is almost always considered a bad thing.

■ Because Velocity has a simpler format (no angled brackets), it tends to inte-
grate better with existing tools such as XML editors and HTML editors.

NOTE Because Velocity is a core part of WebWork (all the form tags are built us-
ing Velocity templates), chapter 10 is devoted to helping you understand
the basics of Velocity. This section is here to help you understand the ve-
locity result itself. Chapter 10 will bring you up to speed on the Velocity
language before we begin to look at the form tags in chapter 11.

Velocity is part of the Apache Jakarta project and is released under the Apache
license. You can find it freely available at http://jakarta.apache.org/velocity.
Velocity currently comes included with WebWork versions 2.0 and 2.1; but in the
future it may become optional, meaning that you’ll need to download it and
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

198 CHAPTER 7

Using results
include it in your project’s classpath to be able to utilize the Velocity features
included with WebWork.

Velocity means speed
Recall that until now, we’ve been talking about RequestDispatchers (dispatcher
result) and redirects as the two ways to render content to the browser. The veloc-
ity result introduces a new technique for rendering content: streaming the con-
tent directly to the response, without a need for an expensive RequestDispatcher.
Figure 7.9 shows how a Velocity template is streamed directly to the HTTP
response without the need for any of the overhead that the dispatcher result
incurs or a more restrictive redirect.

 One of Velocity’s other speed improvements isn’t in the form of execution
speed but rather in compilation time. Unlike JSP, which must be compiled into
Java and then into a .class file, Velocity is parsed and ready to be executed much
more quickly (milliseconds instead of seconds). Although this difference may
seem minor, when you’re developing web applications, waiting one or two seconds
after every change can become frustrating. Velocity helps with that aggravation.

Velocity for components, JSP for pages
RequestDispatchers are expensive. Of course, the magnitude of cost is different on
each application server, but it’s significant even on the fastest servers. This cost
may not be noticeable if you’re using a Front-controller style design (where there
is one action and one page being rendered). It’s much more noticeable if you’re
using a Page-controller style, where you’ve embedded many actions (and sub-
pages, or views) in your main page.

HTTP Request

Action SUCCESS
Velocity

Result

Velocity

Template

Request

Response

Figure 7.9 The velocity result streams output directly back to the browser without
the need for a dispatcher.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Other results 199
NOTE J2EE application servers have become much better recently, and the over-
head of RequestDispatchers mentioned in this chapter is no longer as
large as it used to be. However, the simplified code path, represented in
figure 7.9, is much nicer to work with than that seen at the start of this
chapter in figure 7.1.

Suppose you’re building an application that includes portal-like behavior—
including 20 or so components nested on a single page. The cost of 20 Request-
Dispatchers would cripple the performance of your application. Instead, it’s rec-
ommended that you make each of those embedded components use Velocity as
the view technology. You can still use JSP for the view of the main page, meaning
that one RequestDispatcher may still be occurring.

 WebWork developers often use this technique: Velocity for embedded compo-
nents, and JSP for pages that include those components. It’s a balance between
speed and familiarity. Of course, some prefer Velocity so much that they use it for
everything, which makes their applications that much faster.

Configuring the velocity result
Just like with the other results you’ve seen, the velocity result is preconfigured as
long as you include webwork-default.xml and extend the webwork-default pack-
age in xwork.xml. The name of the result is velocity. The result-type is config-
ured in the webwork-default package as follows:

<result-type name="velocity"
 class="com.opensymphony.webwork.dispatcher.
bbbbbbbbbbbbb➥VelocityResult" />

If you want to use Velocity as your primary view technology, you may wish to rede-
fine the velocity result such that it’s the default result instead of the dispatcher
result. Chapter 10 includes much more information about various configuration
elements that are specific to Velocity when used with WebWork.

 The velocity result supports the same parameters that the dispatcher and
redirect results support. That is, it supports the location parameter (default) as
well as the parse parameter.

An example using Velocity
Now that you know what Velocity is, why it’s useful, and how to configure it, let’s look
at a simple Velocity-based view. Given the action in listing 7.9 and the configuration
in listing 7.10, listing 7.11 shows what the contents of the template would be if you
wished to print out a member directory.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

200 CHAPTER 7

Using results
package examples.chap07.example4;

import com.opensymphony.xwork.ActionSupport;

import java.util.List;
import java.util.ArrayList;

public class ListMembers extends ActionSupport
 implements MemberDAOAware {

 MemberDAO memberDAO;
 List members;

 public void setMemberDAO(MemberDAO memberDAO) {
 this.memberDAO = memberDAO;
 }

 public String execute() throws Exception {
 members = memberDAO.getAllMembers();

 return SUCCESS;
 }

 public List getMembers() {
 return members;
 }
}

public class Member {
 String email;
 String firstName;
 String lastName;

 public Member(String email, String firstName, String lastName) {
 this.email = email;
 this.firstName = firstName;
 this.lastName = lastName;
 }

 // getters and setters
 ...
}

This action delegates to an IoC component (see chapter 6) to retrieve all the
members in the application. This is nice abstraction, and it also happens to make

Listing 7.9 An action that retrieves a list of members
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Other results 201
this example stay to the point. The members in the list are of type Member, which
have bean properties for firstName, lastName, and email. This is the information
you will display in your page.

<package name="example4" extends="webwork-default">
 <action name="list-members-vm"
 class="examples.chap07.example4.ListMembers">
 <result name="success" type="velocity">
 list-members.vm
 </result>
 </action>
</package>

This configuration maps a single action, list-members-vm, to a velocity result,
using the file list-members.vm. Note that the type is velocity. Without this, the
dispatcher result would be used instead, possibly causing undesired behavior.

<html>
 <head>
 <title>Members</title>
 </head>
 <body>

 <h1>Member Directory</h1>
 <hr/>

 #foreach ($member in $members)
 $member.email –
 $member.firstName $member.lastName
 #end

 </body>
</html>

The template you use to display the member directory is extremely simple. It’s a
combination of HTML, directives, and variables. Directives start with #, and variables
start with $. (In chapter 10, you’ll get a crash-course on Velocity and learn about all
the other types of directives and variables available to you.) The key thing to note
here is that $members is a variable referencing the members property in your action.

Listing 7.10 Configuration for the member directory action and velocity result

Listing 7.11 list-members.vm, a Velocity template to display a member directory
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

202 CHAPTER 7

Using results
7.3.2 FreeMarker: an alternative to Velocity

Velocity isn’t the only template engine on the block. Another popular choice is
FreeMarker. Whereas Velocity strives to be strictly a template engine with no bells
and whistles, FreeMarker provides many more features, such as the ability to use
any JSP tag library. We’ll take a brief look at a result that uses FreeMarker. If you’d
like to learn more, the FreeMarker website has excellent documentation.

NOTE FreeMarker is freely available at http://www.freemarker.org. WebWork
currently provides optional support for FreeMarker, meaning that it
doesn’t ship with the required FreeMarker libraries. To use FreeMarker,
you must download the library and include it in your classpath.

Velocity doesn’t support JSP tag libraries natively, but WebWork adds
support for them as an extra feature that is specific to WebWork only.

Configuring the freemarker result
As you might have guessed, the FreeMarker result is also preconfigured as long as
you include webwork-default.xml and extend the webwork-default package in
xwork.xml. The name of the result is freemarker. The result-type is configured in
the webwork-default package as follows:

<result-type name="freemarker"
 class="com.opensymphony.webwork.views.freemarker.
bbbbbbbbbbbbb➥FreemarkerResult" />

You also need the optional FreeMarker libraries in your classpath in order to be
able to use this result. Consult chapter 3, “Setting up WebWork,” for a complete
list of the required and optional dependencies for WebWork, including the JAR
files necessary to use FreeMarker.

 The freemarker result supports the same parameters as the dispatcher, redi-
rect, and velocity results. That is, it supports the location parameter (default)
as well as the parse parameter. In addition, it supports a contentType parameter
that you can use to set the resulting content-type. This is useful if you’d like to out-
put something other than text/html, such as a CSV file, plain text, or XML.

An example using FreeMarker
Listing 7.12 shows a very simple example of FreeMarker, which re-implements the
Velocity example from listing 7.11. As you can see, it’s similar to the Velocity
example. The key differences is that directives are in the form of <#directive> ...
</#directive> rather than Velocity’s #directive ... #end. The other difference
is that complex expressions, such as member.firstName, must be referenced using
${member.firstName}, as opposed to Velocity’s $member.firstName.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

http://www.freemarker.org

Other results 203
<html>
 <head>
 <title>Members</title>
 </head>
 <body>

 <h1>Member Directory</h1>
 <hr/>

 <#list members as member>
 ${member.email} –
 ${member.firstName} ${member.lastName}
 </#list>

 </body>
</html>

In this example, Velocity and FreeMarker share more in common than they differ.
However, if you examine either template language in depth, you’ll find unique
characteristics for both projects. Depending on your needs and development
style, one may be more suitable than the other. Fortunately, WebWork supports
both. Switching from Velocity to FreeMarker (or vice versa) is trivially easy to do,
in terms of both code and in configuration, as shown in listing 7.13.

<package name="example5" extends="webwork-default">
 <action name="list-members-ftl"
 class="examples.chap07.example4.ListMembers">
 <result name="success" type="freemarker">
 list-members.ftl
 </result>
 </action>
</package>

Now let’s look at a result supported natively by WebWork that lets you generate
reports in many different formats.

7.3.3 Generating reports with JasperReports

Sometimes, you don’t want to display a web page as the result of an action, but
rather a PDF or Excel report. Fortunately, libraries are available that can help you

Listing 7.12 list-members.ftl, a FreeMarker template to display a member directory

Listing 7.13 Configuration for the member directory action and freemarker result
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

204 CHAPTER 7

Using results
create these types of graphics and reports. One such library is called JasperRe-
ports. Let’s examine how a single report originally built using a JSP can be ren-
dered in both HTML and PDF using this library.

NOTE JasperReports is freely available under the LGPL license at http://jasperre-
ports.sourceforge.net/. Because WebWork provides optional integration
with JasperReports, it isn’t included with the normal WebWork distribu-
tion; you’ll need to download JasperReports separately.

Configuring the jasper result
Once again, the JasperReports result is preconfigured as long as you include web-
work-default.xml and extend the webwork-default package in xwork.xml. The
name of the result is jasper. The result-type is configured in the webwork-default
package as follows:

<result-type name="jasper"
 class="com.opensymphony.webwork.views.jasperreports.
bbbbbbbbbbbbb➥JasperReportsResult" />

You also need the optional JasperReports libraries in your classpath in order to be
able to use this result. See chapter 3 for a complete list of the required and optional
dependencies for WebWork, including the JAR files necessary to use JasperReports.

 The jasper result supports the same parameters as the dispatcher, redirect,
and velocity results: location and parse. In addition, it supports a dataSource
parameter that indicates the property of the action that will be used to populate
the results. A format parameter species what format the report should be gener-
ated in. Valid formats are PDF, HTML, XML, CSV (comma-separated value), and
XLS (Excel). There is no default parameter, because the jasper result requires at
a minimum that the dataSource and location parameters be specified.

 In addition to the result configuration, the jasper result requires that a special
1 pixel by 1 pixel image be located in your web application at /images/px (note that
there is no extension). This image is required for HTML reports and is used as a spacer.
You can find this image included with the WebWork examples in the distribution.

An example: from JSP to JasperReports
Using the same member directory example you first saw when we introduced
Velocity, let’s write a JSP that displays an HTML table listing all the members’ email
addresses in your application along with their first and last names. The JSP is
shown in listing 7.14.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Other results 205
<%@ taglib uri="webwork" prefix="ww" %>
<html>
 <head>
 <title>Members</title>
 </head>
 <body>
 <table border="1">
 <tr>
 <th>Username</th>
 <th>First Name</th>
 <th>Last Name</th>
 </tr>
 <ww:iterator value="members">
 <tr>
 <td><ww:property value="email"/></td>
 <td><ww:property value="firstName"/></td>
 <td><ww:property value="lastName"/></td>
 </tr>
 </ww:iterator>
 </table>
 </body>
</html>

Now suppose that management needs this report in several formats: PDF (for
printing), HTML (for the Web), and Excel (for data manipulation). Rather than
write an action and/or servlet for each different format, you can let JasperReports
do all this work for you.

 The first step is to set up a report definition file in XML. We won’t go into
detail about how these definition files are created—you can learn about them on
the JasperReports website, which includes very good documentation. The report
in listing 7.15 defines a simple table with rows 20 pixels high and columns 100
pixels wide.

<?xml version="1.0"?>
<!DOCTYPE jasperReport PUBLIC
"-//JasperReports//DTD Report Design//EN" "http://

➥jasperreports.sourceforge.net/dtds/jasperreport.dtd">

<jasperReport name="members">
 <field name="email" class="java.lang.String">
 <fieldDescription>email</fieldDescription>
 </field>

Listing 7.14 A simple JSP result that displays users

Listing 7.15 A simple JasperReports definition
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

206 CHAPTER 7

Using results
 <field name="firstName" class="java.lang.String">
 <fieldDescription>firstName</fieldDescription>
 </field>
 <field name="lastName" class="java.lang.String">
 <fieldDescription>lastName</fieldDescription>
 </field>
 <detail>
 <band height="20">
 <textField>
 <reportElement x="0" y="3" width="100" height="15"/>
 <textFieldExpression>$F{email}</textFieldExpression>
 </textField>
 <textField>
 <reportElement x="100" y="3" width="100"
 height="15"/>
 <textFieldExpression>
 $F{firstName}
 </textFieldExpression>
 </textField>
 <textField>
 <reportElement x="200" y="3" width="100"
 height="15"/>
 <textFieldExpression>
 $F{lastName}
 </textFieldExpression>
 </textField>
 </band>
 </detail>
</jasperReport>

Next you need to compile the report. You can do so by using the class com.open-
symphony.webwork.views.jasperreports.CompileReport. You’ll need to run this
class with webwork-2.0.jar and jasperreports.jar in the classpath. You must pass the
XML definition file in as a program argument as well. This produces a mem-
bers.jasper output file, which will be used to generate reports in PDF, Excel,
HTML, CSV, and XML.

 Listing 7.16 shows the configuration for the same action using three different
results:

■ A JSP-based HTML result, as shown in listing 7.14

■ A JasperReports-based HTML result

■ A JasperReports-based PDF result
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 207
<package name="example6" extends="webwork-default">
 <action name="list-members-jsp"
bbbbbbbbbbbb➥class="examples.chap07.example4.ListMembers">
 <result name="success">list-members.jsp</result>
 </action>

 <action name="list-members-pdf"
bbbbbbbbbbbb➥class="examples.chap07.example4.ListMembers">
 <result name="success" type="jasper">
 <param name="location">members.jasper</param>
 <param name="dataSource">members</param>
 <param name="format">PDF</param>
 </result>
 </action>

 <action name="list-members-html"
bbbbbbbbbbbb➥class="examples.chap07.example4.ListMembers">
 <result name="success" type="jasper">
 <param name="location">members.jasper</param>
 <param name="dataSource">members</param>
 <param name="format">HTML</param>
 </result>
 </action>
</package>

As you can see, the same action can be used for all three very different results. By
changing the format parameter from PDF to HTML, you can display the same
report in either format. With a bit more effort, you can easily create a beautiful
report in multiple formats.

7.4 Summary

In this chapter, we looked at a variety of topics. The two most important concepts
presented are pluggable result types and how redirects, chaining, and dispatching
affect the workflow of your web application. When you’re building complex web-
based workflows, understanding the strengths and weaknesses of redirects, action
chains, and dispatchers is extremely important. Generally, you can follow these
rules of thumb:

Listing 7.16 Configuration showing JasperReports results and normal results for the
same action
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

208 CHAPTER 7

Using results
■ Dispatchers are good for serving JSP content but typically nothing else.

■ Use the Velocity or FreeMarker result type when you’re serving the respec-
tive templates, even if a dispatcher works.

■ Action chaining is good when you have modular actions that you wish to
combine to form unique behavior—but don’t overuse it!

■ Redirects should be used when the workflow is finished and you wish to send
the user to a landing spot where clicking Reload won’t cause the workflow
to be re-executed.

In addition to these rules, knowing what view technology (JSP, Velocity,
FreeMarker, JasperReports) to use is important. As you saw in the examples,
switching between results isn’t difficult if you’re careful to keep the coupling
between your view and your action very loose. We recommend that you do this not
only to allow yourself room for change in the future, but also because loose cou-
pling between views and actions tends to promote good, modular template
design. We’ll explore this type of modular design further in chapter 11, when we
look at the UI components WebWork offers.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Getting data with
the expression language
This chapter covers
■ Accessing data in your actions
■ Showing how the value stack interacts with

WebWork’s expression language
■ Accessing elements in Maps and Lists
■ Dynamically creating Maps and Lists

expression scripts
209

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

210 CHAPTER 8

Getting data with the expression language
A key feature of WebWork is that it provides read and write access to the data pre-
pared by your actions. This is done through an expression language—a scripting lan-
guage that allows for simple and concise access to JavaBeans, collections, and
method calls. In this chapter, we’ll explore all the power (and simplicity) that is
offered by WebWork’s expression language. At the end of this chapter we’ll pro-
vide a quick reference table that will outline all the expression language features
learned here.

 In this chapter, we’ll take a break from using examples from CaveatEmptor
and add a little fun by replacing the mundane object User with a Muppet. But
don’t despair—both objects are very similar, and the lessons learned while work-
ing with Muppets can be applied when you go back to working with Users. Both
have common properties like firstName, lastName, and age. And when you’re
using a loose-coupling technology like an expression language, the typing of the
object matters much less than the properties that are available on that object.
Let’s start by defining an expression language.

8.1 What is an expression language?

Before we dig in to WebWork’s expression language (EL), let’s explore what an
expression language is in general. We’ll look at what constitutes an EL, and then
we’ll discuss why WebWork’s EL—Object Graph Navigation Language (OGNL)—is
the best choice for web page scripting. Finally, we’ll take a quick look at other
common expression languages, many of which can also be used in WebWork.

8.1.1 Why an expression language?

Expression languages are by their nature designed to help you write simple
expressions that perform common tasks. Usually, ELs are included with particular
frameworks with the intent to make your life easier. For example, the Hibernate
project includes a special EL called Hibernate Query Language (HQL) that acts as
a buffer between you and complex SQL statements.

 In web frameworks, expression languages have similar goals. They exist to elim-
inate the repetitive code that you might otherwise write if you didn’t have an EL.
For example, without an EL, the act of getting a shopping cart from the session and
then displaying its ID on the web page requires a few lines of Java code in a JSP:

<%
 ShoppingCart cart = (ShoppingCart) session.get("cart");
 int id = cart.getId();
%>
<%= id %>
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

What is an expression language? 211
You can condense the code down to a single line, as follows, but now the code
looks ugly and is hard to read. In addition, the same parts of the original state-
ments are still required, such as casting to ShoppingCart—you’ve moved three
statements to a single statement, but the complexity remains the same:

<%= ((ShoppingCart) session.get("cart")).getId() %>

An expression language for a web framework buffers you from this kind of com-
plexity. Rather than require you to use the Servlet APIs, cast an object, and then
call a getter method, most ELs simplify this down to a much more readable
expression similar to #session.cart.id.

 The expression #session.cart.id has all the same keys, variables, and getters
as the Java code. What it lacks, however, is all the Java language overheads such as
calls to get() methods and casting. Because these kinds of operations are so com-
mon, using an EL makes perfect sense. You can use a much more loosely typed
and dynamic language to act as a buffer between you and that nasty Java code
you’d have to write otherwise.

8.1.2 Why OGNL?

If all ELs are designed to reduce the amount of tedious code you write, why is one
better than another? Better is a subjective word, but some rational choice is
involved in the decision of choosing an expression language. The key is to make
an outline regarding the context in which the EL will be used. In the web environ-
ment, particularly programs built on the Servlet and JSP specifications, you can
make the following assertions and conclusions:

■ Assertion: All request parameters are type-agnostic, meaning they come in as
Strings or String arrays.

Conclusion: There is a strong need to convert from Strings and String
arrays to other data types, such as ints, booleans, dates, and possibly many
others.

■ Assertion: Because HTML doesn’t do internationalization when displaying
content, values must be converted to the correct localized String on the
server side.

Conclusion: The need to convert to a String is just as strong as the need to
convert from Strings.

■ Assertion: During the course of a typical session on a web application, a piece
of data may be converted many times back and forth between String and its
native data type, such as 17 -> "17" -> 17.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

212 CHAPTER 8

Getting data with the expression language
Conclusion: The Web is a loosely typed platform, and some code must act as
the buffer between it and a much more strictly typed Java platform.

■ Assertion: Often you take a large, complex object such as a Person and wish
to display parts of it, such as first name and last name, in multiple and dif-
ferent places on a single web page.

Conclusion: Accessing parts of an object in a granular manner is important.

You could derive many other assertions and conclusions; these are just a few of
those that came into play when the WebWork developers choose WebWork’s
expression language: Object Graph Navigation Language (OGNL) (available for
download at http://www.opensymphony.com/ognl). OGNL goes beyond “just” an
expression language by providing many advanced but necessary features, particu-
larly in the area of type conversion. As you’ll learn later in this chapter (as well as
in chapter 12, “Type conversion”), OGNL is a natural fit to act as a buffer between
a loosely typed world (HTTP) and a strictly typed one (Java).

WARNING OGNL also provides advanced expression features such as static or in-
stance method execution, projection across collections, and dynamic
lambda expression definition, so you never need to write Java code in
your view. The hope is, however, that these advanced features won’t be
necessary very often. Although most developers claim that there should
never be Java code in your JSPs, they generally mean that the JSPs
shouldn’t be complex. Switching from Java to scripting language X
doesn’t usually simplify much. In fact, it most likely complicates the situa-
tion, because the Java language is the most comfortable language for
most JSP developers. Features such as lambda expressions are nice, but
introducing them too often will have the same result as coding Java di-
rectly in your view layer. However, sometimes these advanced features
come in handy, so we’ll discuss them in this chapter.

8.1.3 Other expression languages

OGNL isn’t the only kid on the block. In fact, there are more expression languages
and scripting languages than we care to count. We’ll quickly outline a few of the
popular ones that could potentially work with WebWork:

■ JSTL—Independently developed in the Java Community Process, JSP Stan-
dard Tag Library (JSTL) has since been integrated into JSP 2.0 as the standard
scripting and expression language for JSP. Some WebWork users prefer JSTL
because it’s a standard. Using JSTL with WebWork involves almost no work.
You can find out how to do so by consulting the WebWork documentation.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Basic expression language features 213
■ Groovy—A fairly recent player in the space, Groovy builds on the Java syntax
and adds a dash of Ruby. The end result is a loosely typed language that offers
a lot of functionality with minimal typing. Groovy has been integrated into
the Web (in a form called a Groovlet, similar to a JSP), and it isn’t difficult to
picture Groovy being used as a potential view for WebWork in the future.

■ Velocity—Although Velocity isn’t exactly an expression language, the syntax
for writing Velocity templates is very similar to OGNL and other ELs. People
who use Velocity as their view rarely need to use OGNL.

NOTE Even if you use another EL, such as JSTL, OGNL will still be used for all
the type-conversion functionality—a core feature in WebWork. Some
ELs, such as JSTL, integrate with WebWork almost seamlessly. Other
scripting languages, such as Groovy, may require creating your own re-
sult. Consult chapter 7, “Using results,” as well as the documentation for
the scripting language if you wish to use one of these other languages as
the view technology.

8.1.4 Key OGNL concepts

Everything in OGNL is centralized around a context that contains one or more Java-
Beans from which you evaluate your expressions. One of those JavaBeans is spe-
cial because it’s considered to be the root of the context. An object that is the root
is assumed to be the object your expressions are concerned with if no other object
from the context is specified.

 What does this mean to you? Not much right now; but shortly we’ll look at the
concepts of the value stack and the related ActionContext and see how they
related to these key concepts. In the meantime, know that when we give examples
in this chapter, we’ll indicate what the context contains as well as what object in
the context is configured to be the root.

 Now, let’s explore some code samples using OGNL.

8.2 Basic expression language features

WebWork lets you write powerful expressions, but its greatest advantage is in the
simplicity of basic features such as accessing bean properties and calling methods.
Let’s look at some examples of these basic features so you can get accustomed to
OGNL as a language. After that, we’ll examine intermediate and advanced fea-
tures offered by OGNL and WebWork, all of which will help you write cleaner, sim-
pler, more focused web applications.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

214 CHAPTER 8

Getting data with the expression language
8.2.1 Accessing bean properties

By far the most common expression you’ll use in WebWork accesses bean proper-
ties. Accessing bean properties occurs whenever you want to get data from an
action or set data on an action. Right off the bat in chapter 2, “HelloWorld, the
WebWork way,” you saw examples of accessing bean properties, and you’ve contin-
ued to see suggestions of it until this point. We’ll now formally explain what is
going on.

 According to the JavaBeans specification, bean properties are a getter method
and/or a setter method using a standard format such as getXxx(), setXxx(),
isXxx(), or hasXxx(). The isXxx() and hasXxx() formats are used for boolean
properties and are only provided to make the code more readable. In WebWork,
accessing those properties (either setting or getting data) involves referencing the
property as xxx. This probably isn’t new to you, considering that we’ve been hint-
ing about it throughout the book.

 Let’s look at a few simple examples that access a property from the root object.
Suppose the context contains one object, Muppet, which is also set as the root (we
won’t concern ourselves with nonroot objects for the time being). Muppet is a class
with a few properties, as indicated in listing 8.1.

package examples.chap08;

import java.util.List;
import java.util.Set;
import java.util.Map;

public class Muppet {
 public static final String OG_MUPPET = "Kermit";

 public static Muppet getOgMuppet() {
 Muppet og = new Muppet();
 og.setName(OG_MUPPET);
 return og;
 }

 private String name;
 private int age;
 private boolean lifesized;
 private Muppet father;
 private Muppet mother;
 private List children;
 private Set foods;

Listing 8.1 Sample class Muppet, which is used to demonstrate expression
language features
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Basic expression language features 215
 private Map favorites;

 public int avgParentsAge() {
 return ((father.getAge() + mother.getAge()) / 2);
 }

 // getters and setters
 ...
}

We’ll use the Muppet class for all the examples in this chapter; as such, it contains
many different types of properties and methods. Let’s start with the simplest prop-
erties: name and age. The expression for accessing the values of these properties is
as simple as the property names themselves. The expressions name and age
retrieve the name and age of the muppet, respectively.

 It’s possible (and common) to chain properties together in order to navigate
deep into the object graph. For example, the expression father.age retrieves the
muppet’s father’s age. Likewise, father.mother.age gets the muppet’s grand-
mother’s age (on the father’s side). This is equivalent to calling muppet.getFa-
ther().getMother().getAge() on the Muppet object. Table 8.1 contains some
sample Java code snippets and compares them to their OGNL equivalents.

8.2.2 Literals and operators

Accessing data isn’t useful if you can’t do things to it. Fortunately, OGNL supports
the same literals and mathematical operations found in Java. Table 8.2 lists the lit-
erals supported by OGNL and gives examples of their usage.
Notice that String literals in OGNL can be surrounded by either single or double
quotes. This is designed to make embedding OGNL easier in languages like XML
and JSP. Because characters are also identified by single quotes, Strings are only
identified using single quotes when the String is more than one character. If you
need to make a String literal that is one character long, you must use double

Table 8.1 Comparison of Java code and OGNL expressions for accessing bean properties

Java code OGNL expression (Muppet is the root)

muppet.getName() name

muppet.getMother().getName() mother.name

muppet.getFather().getFather().getAge() father.father.age
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

216 CHAPTER 8

Getting data with the expression language
quotes. If you’re doing this in JSP, you’ll most likely need to escape your double
quotes, as shown here:

<ww:property value="\"a\""/>
is not the same as
<ww:property value="'a'"/>

In addition to literals, OGNL lets you use all the Java operations, such as addition
(+) and division (/). Table 8.3 contains all the expressions that OGNL supports as
well as an example of each one in use.

Table 8.2 All the literals supported by OGNL

Literal type Example

char 'a'

String 'hello world'
"hello world"

Boolean true
false

int 123

double 123.5

BigDecimal 123b

BigInteger 123h

Table 8.3 Operators supported by OGNL

Operation Example

add (+) 2 + 4
'hello' + 'world'

subtract (-) 5 – 3

multiply (*) 8 * 2

divide (/) 9 / 3

modulus (mod) 9 mod 2

increment (++) ++foo
foo++

decrement (--) bar--
--bar

equality (==) foo == bar
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Basic expression language features 217
8.2.3 Calling methods

Even though accessing properties is technically making method calls, OGNL also
supports the ability to call any method. It does so because not all methods are in
the form of getXxx(); sometimes you need to call non-property methods. The
Muppet class includes an avgParentsAge() method that you might want to call; you
can do so by evaluating the expression avgParentsAge().

 You can also combine property expressions and method call expressions. For
example, mother.avgParentsAge()evaluates to the average age of the muppet’s
grandparents’ ages (on the mother’s side). Table 8.4 contains sample expressions
compared to their Java counterparts.

NOTE For security reasons, method calls (nonstatic and static alike) aren’t al-
lowed during the part of the WebWork request lifecycle where POST and
GET parameters are applied to your action (when the ParametersInter-
ceptor is applied, as explained in chapter 5, “Adding functionality with
interceptors”). Without this restriction, there would be no stopping an at-
tacker from executing System.exit(0) or even more damaging code by
submitting a request that includes a specially formatted parameter name.

inequality (!=) foo != bar

in foo in someList

not in foo not in someList

assignment (=) foo = 123

Table 8.3 Operators supported by OGNL (continued)

Operation Example

Table 8.4 Sample method and property OGNL expressions
compared to their Java equivalents

Java code OGNL expression (Muppet is the root)

muppet.avgParentsAge() avgParentsAge()

muppet.avgParentsAge()—muppet.getAge() avgParentsAge() – age

(muppet.getMother().getAge() +
muppet.getFather().getAge()) / 2

(mother.age + father.age) / 2

muppet.getMother().getAge() getMother().age or
mother.getAge() or mother.age
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

218 CHAPTER 8

Getting data with the expression language
8.2.4 Setting values and expression lists

OGNL lets you execute multiple expressions in a single statement by separating
your expressions with a comma. The last expression is returned as the output of
the entire statement. For example, if foo evaluates to 123 and bar evaluates to
789, then foo, bar calls both getFoo() and getBar(), but only 789 is returned.

 Generally, you’ll never need to do this. However, it will be necessary on a few
occasions. For example, if you want to set the ages of Kermit’s parents and then
display their average age, you can do this: father.age = 27, mother.age =
25, avgParentsAge(). The return value is the average age, 26.

8.2.5 Accessing static methods and fields

OGNL supports accessing static properties as well as static methods. In OGNL, you
can call static fields and methods by using the notation @[ClassName]@[FieldOr-
Method]. The class name must be referenced with the complete package, as well:

@examples.chap8.Muppet@OG_MUPPET
@examples.chap8.Muppet@getOgMuppet()

In addition to using the standard OGNL format for calling statics, WebWork lets
you avoid having to specify the full package name and call static properties and
methods of classes in the value stack using the vs prefix (where vs stands for Value
Stack). Instead of examples.chap8.Muppet, you can use vs to tell WebWork to use
the class of the object on the top of the stack:

@vs@OG_MUPPET
@vs@getOgMuppet()

You can also specify a number after vs, such as vs1, to indicate a selection of an
object deeper in the stack. This is similar to the way accessing the value stack
works, as we’ll discuss in section 8.4.1. In general, using the vs notation is only
good if you know what will be on the stack at all times. Otherwise, it’s better to use
the complete package and class name—especially because most modern refactor-
ing tools know to rename examples.chap8.Muppet to examples.chap9.Muppet if
you move the package, but they won’t know that the Muppet object is now deeper
in the stack and vs needs to be renamed vs1.

8.2.6 Accessing the OGNL context and the ActionContext

So far, you’ve only worked with the root object: Muppet. However, OGNL lets you
access any element in its context map, called the OgnlContext. WebWork also has
its own context called the ActionContext. One of the many ways WebWork is
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Basic expression language features 219
integrated with OGNL is that the two contexts, OgnlContext and ActionContext,
are the same thing.

 Many objects are often found in the ActionContext. Because these two con-
texts are the same, you can access those objects using OGNL’s standard contextual
access notation: the pound sign (#). Let’s see how you might get access to some of
those objects stored in the context. Table 8.5 provides a few examples using fea-
tures of OGNL you’ve learned about thus far.

Many of the items in the ActionContext are identified by long and unique keys.
For example, the key that is used to store the HttpServletRequest is com.opensym-
phony.webwork.dispatcher.HttpServletRequest. Obviously, you don’t want to
type that when you’re using an otherwise simple expression language. To help
you, WebWork identifies a few of the items in the context and aliases them with
shorter identifiers:

■ Parameters—A Map that contains all the HttpServletRequest parameters for
the current request

■ Request—A Map that contains all the HttpServletRequest attributes for the
current request

■ Session—A Map that contains all the HttpSession attributes for the current
session

■ Application—A Map that contains all the ServletConfig attributes for the
current application

■ Attr—A special Map that searches for attributes from the request, session,
and application maps (in that order)

In the next section, you’ll learn how to access collections, including
java.util.Map, so that you can begin to get data from these five elements if you
wish to.

Table 8.5 Examples that access the ActionContext using OGNL

Java code OGNL expression

ActionContext().getContext().getParameters() #parameters

ActionContext().getContext().getParameters().size() #parameters.size

((Kermit) ActionContext.getContext().get
("kermit")).getAge()

#kermit.age
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

220 CHAPTER 8

Getting data with the expression language
8.3 Working with collections

One of OGNL’s primary features as compared to other expression languages is its
very good support for the Java Collections API. Creating and working with collec-
tions, lists, and maps is a fundamental feature in OGNL. We’ll look at ways to
dynamically access and create new collections as well as how you can filter and
project based on their contents.

8.3.1 Working with lists and arrays

In OGNL, lists and arrays are generally treated the same. Thus offset notation that is
normally reserved for arrays is also used to access list elements. Table 8.6 demon-
strates some simple examples using array notation to work with lists and arrays.

In addition to accessing the values of lists, OGNL lets you construct lists dynami-
cally using curly braces with the elements inside separated by commas. Table 8.7
demonstrates how you can use a simple notation to quickly create lists. These lists
(and maps, as you’ll see shortly) are useful for presenting small pieces of data to a
user or looping over a known set of items.

Table 8.6 Examples of array and list notation

Java code OGNL expression

list.get(0) list[0]

array[0] array[0]

((Muppet) list.get(0)).getName(); list[0].name

array.length array.legnth

list.size() list.size

list.isEmpty() list.isEmpty

Table 8.7 Examples of constructing lists in the simplified notation

Java code OGNL expression

List list = new ArrayList(3);
list.add(new Integer(1));
list.add(new Integer(3));
list.add(new Integer(5));
return list;

{1, 3, 5}
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Working with collections 221
8.3.2 Working with maps

Maps are similar to lists, but instead of only being able to access elements by a
numbered index, you can access elements with any object key. Their syntax for
element access, however, is virtually identical. In the situation where primitives are
used as keys, OGNL does autoboxing for you—this means it automatically converts a
primitive int into an Integer object or a boolean into a Boolean object. Table 8.8
demonstrates how you can access maps as well as how OGNL automatically takes
care of converting types for you, such as 1 (int) to 1 (Integer).

As with lists, you can create maps dynamically. The syntax for doing so is slightly dif-
ferent: You must place a pound sign (#) before the opening curly brace. Table 8.9
contains a few examples of creating maps dynamically.

NOTE Chapter 11, “UI components,” covers UI tags. Dynamic maps are especial-
ly useful for radio groups and select tags. For example, if you wanted to
offer a true/false selection that displays as a Yes/No choice, #{true :
'Yes', false : 'No'} would be the value for the list attribute. The val-
ue for the value attribute would evaluate to either true or false.

List list = new ArrayList(2);
list.add("foo");
list.add("bar");
return list.get(1);

{"foo", "bar"}[1]

Table 8.7 Examples of constructing lists in the simplified notation (continued)

Java code OGNL expression

Table 8.8 Examples of map notation

Java code OGNL expression

map.get("foo") map['foo']

map.get(new Integer(1)) map[1]

Muppet muppet = (Muppet)
map.get("Kermit");
return muppet.getAge();

map['kermit'].age

map.put("foo", "bar"); map['foo'] = 'bar'

map.size() map.size

map.isEmpty() map.isEmpty
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

222 CHAPTER 8

Getting data with the expression language
OGNL also supports a shorthand notation for accessing elements. Rather than use
the array-style notation, you can use bean property notation. This makes it especially
easy to access parameters and request/session/application attributes. Table 8.10
provides several examples using this notation.

8.3.3 Filtering and projecting collections

OGNL has two interesting features when it comes to working with collections: fil-
tering and projection. Filtering is the technique of taking a collection (a List or

Table 8.9 Creating maps dynamically

Java code OGNL expression

Map map = new HashMap(2);
map.put("foo", "bar");
map.put("baz", "whazzit");
return map;

#{ "foo" : "bar",
"baz" : "whazzit" }

Map map = new HashMap(3);
map.put(new Integer(1), "one");
map.put(new Integer(2), "two");
map.put(new Integer(3), "three");
return map;

#{ 1 : "one",
2 : "two",
3 : "three" }

Map map = new HashMap(2);
map.put(kermit.getName(),
kermit.getMother().getName());
map.put(oscar.getName(),
oscar.getMother().getName());
return map;

#{ #kermit.name :
#kermit.mother.name,
#oscar.name :
#oscar.mother.name }

ActionContext.getContext().getParameters().get("id") #parameters['id']

String name = muppet.getName();
Map map = ActionContext.getContext().getSession();
return map.get("muppet-" + name);

#session["muppet-" + name]

session.put(“mupper-kermit”, muppet); #session['muppet-kermit']
= muppet

Table 8.10 Shorthand notation for accessing map values

Array-style notation Shorthand notation

#parameters['id'] #parameters.id

#request['id'] #request.id

#application["config"] #application.config
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Working with collections 223
Set or Collection) and producing a new collection with only objects that pass
through the filter. The syntax for filtering is as follows:

collection.{? expression }

The expression is the actual filter that is evaluated for every object in the collec-
tion. The special variable #this is used to identify the object being evaluated. For
example, the expression to filter for Kermit’s children who are age 2 or younger is
#this.age <= 2.

NOTE In addition to using the foo.{? bar } syntax for filtering, you can also se-
lect just the first or last match by using the foo.{^ bar} and foo.{$ bar}
syntaxes, respectively.

Whereas filtering takes a collection of size N and returns a potentially smaller col-
lection of size between 0 and N, projecting always returns a collection of size N.
However, whereas filtering returns the same objects that were in the original col-
lection (provided they passed the filter), projection mutates the data according to
the projection rule. The syntax for projection is as follows:

collection.{ expression }

The expression here is used to evaluate against the object currently being iterated
over in the original collection. For example, if you want a list of the names of Ker-
mit’s children, you can project the children collection (Muppets) into a collection
of names (Strings). The expression to do this is name. Table 8.11 shows several
examples of filtering and projection.

8.3.4 The multiple uses of "#"

You’ve now seen three different uses of the # operator. For the sake of clarity, we’ll
outline these uses here. You may see the # character in various OGNL expressions
when

Table 8.11 Examples of filtering and projection

OGNL expression Description

children.{name} Projects the names of all the children

children.{?#this.age > 2} Filters for children who are more than 2 years old

children.{?#this.age <= 2}.{name} Projects the names of a filtered list of all children who are
2 or younger

children.{name + ' -> ' +
mother.name}

Projects a list of strings of the form name -> motherName
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

224 CHAPTER 8

Getting data with the expression language
■ Referring to values in the ActionContext

■ Constructing Maps on the fly

■ Filtering or projecting a collection

Remember, a simple expression that includes something like #foo is using the # char-
acter to refer to a value in the ActionContext. This is different than an expression
that is creating a Map on the fly, because the # character isn’t followed by curly braces
({). Whereas #foo refers to an ActionContext variable, #{1 : 'one', 2 : 'two'}
doesn’t. Instead, that expression creates a new Map, as explained in section 8.3.2.
Finally, you saw in section 8.3.3 a special case where #this doesn’t refer to a variable
in the ActionContext but is instead a special notation used to indicate how to do pro-
jection or filtering. In the next section, we’ll look at advanced features of OGNL that
also use the #this keyword, so it’s important to understand now how these three uses
of the pound sign (#) work and that they aren’t related.

8.4 Advanced expression language features

OGNL and WebWork include advanced features in the expression language that
we should mention. These features set WebWork apart from many other MVC
frameworks available. The first one we’ll discuss is accessing the value stack
through the expression language. We’ll then look at how data-type conversion
happens when you’re getting and setting values as well as what happens when you
attempt to set a property on a null object. Finally, we’ll show you a quick way to
develop lambda expressions (functions) from within the expression language.

8.4.1 Linking the value stack to the expression language

The biggest addition that WebWork provides on top of OGNL is support for the
value stack. OGNL operates under the assumption there is only one root object,
but WebWork’s value stack concept requires there to be many virtual roots.

 In WebWork, the entire value stack is the root object in the context. But rather
than have your expressions get the object you want from the stack and then get
properties from that (for example, stack[1].someProperty), WebWork provides
special integration with OGNL that automatically looks at all the entries in the stack
(from the top down) until it finds an object with the property you’re looking for.

 For example, suppose the stack contains two objects: Muppet and Person. Both
objects have a name property: Muppet has a lifeSized property, and Person has a
salary property. Muppet is on the top of the stack, and Person is below it. This
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced expression language features 225
example is represented in Figure 8.1. Table 8.12 demon-
strates how different expressions evaluate against differ-
ent objects in the stack.

 WebWork introduces a new keyword: the top key-
word. It indicates that you would like to have the entire
object on the top of the stack returned. This pseudo-
property is especially useful when you’re iterating over a
collection of objects, such as Strings, and you wish to
output the entire object rather than a property of the
object. Table 8.12 also demonstrates an example of how
you can use top.

WebWork’s value stack will become increasingly important over time as you build
more applications. The iterator tag you’ll learn about in chapter 9, “Tag libraries,”
pushes the object it’s currently iterating onto the stack. By doing that, an expres-
sion such as name + '(' + [1].name + ')' makes sense if you’re iterating over the
children of a particular person (or Muppet), because it would show the child’s
name and then the parent’s name in parentheses.

 Take special care to understand the array index notation when it’s used in this
manner. [1] doesn’t mean “Get the object in the array index 1 on the stack.”
Instead, it means “Get a sliced version of the existing value stack.” There is a dif-
ference. Suppose the stack has three objects, and object 0 and 2 both have the

Table 8.12 Examples of expressions accessing the value stack

OGNL expression Description

lifeSized Calls muppet.isLifeSized()

salary Calls person.getSalary()

name Calls muppet.getName() because mup-
pet is on top of person in the stack

[1].name Calls person.getName() because the
[1] syntax indicates to WebWork that it
should start looking down the stack at
position 1 (instead of position 0)

top Returns Muppet

[1].top Returns person because first a smaller
stack is returned, in which the expres-
sion top is requested, and person is
the top of the new, smaller stack

Value Stack

name

salary

Person

name

lifeSized

Muppet Top

Figure 8.1 A sample value
stack containing a Muppet
and Person
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

226 CHAPTER 8

Getting data with the expression language
property name (this example is represented in figure 8.2). The expression name is
evaluated against object 0, because it’s on top of the stack. The expression
[1].name is evaluated against object 2, because [1] is a stack of objects 1 and 2,
and in that stack, only object 2 has the property name.

8.4.2 Data type conversion

HTTP does nothing to ensure that parameters passed in from GET and POST requests
have any data types associated with them. Looking at the Servlet APIs makes this
obvious: getParameter(String name) returns a String rather than a generic
Object. Of course, most code isn’t so lax when it comes to data types. We use prim-
itives such as int, boolean, and float; simple objects such String and Date; and
complex objects like Muppet. You often need to get the data submitted from a web
page into these variables. Similarly, you often need to take that data and show it on
another web page in its original String form. You need data type conversion.

 OGNL natively supports conversion for properties being set as well as retrieved.
For example, suppose you try to set someInt with "5" (note that "5" is different
than 5). In a type-agnostic world such as the Web, this is an important feature—so
much so that we have devoted an entire chapter to type conversion: chapter 12.

Value Stack

Object 1

name

Object 0

name

Object 2

Stack [1]

Object 1

name

Object 2

findValue ('name')

name

Object 0

findValue ('[1]. name')

Figure 8.2 A value stack with three objects, indicating how the [n]
notation is used
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced expression language features 227
We’ll take an in-depth look at type conversion and explore building your own type
converters. In the meantime, table 8.13 shows two simple cases of type conversion.

These examples are here to help you understand that one of WebWork’s major goals
is to ensure that you never get stuck having to write conversion code in your actions.
Let’s now look at a special kind of data type conversion: converting from null.

8.4.3 Handling null property access

As you become more familiar with writing WebWork applications, you’ll often find
yourself setting the values of properties using complex expressions. For instance,
if you need to write a page that asks for Kermit’s name, his father’s name, and his
grandfather’s name, you can do one of two things:

■ Set the properties name, fatherName, and grandfatherName in your action,
and then write code that creates three Muppets, sets their names, and recon-
nects their relationships.

■ Set the properties kermit.name, kermit.father.name, and
kermit.father.father.name, and include a single Muppet object, kermit, in
your action.

Clearly, the second choice is simple: It involves only one property in your action
instead of three, and it doesn’t require you to reconstruct the objects. But how?
Recall that there is no constructor in Muppet that places stubs for the father prop-
erty, which means that attempting to set kermit.father.name with a value will
result in a NullPointerException.

 This is where OGNL steps in. It provides a way to swap in a null object with a
real object whenever access to a property on a null object is detected. With Web-
Work’s assistance, OGNL essentially constructs the object graph of the son-father-
grandfather relationship automatically, reducing the code you need to write.

 There is more to null property access, especially when it comes to Lists and
Maps. We’ll discuss these topics in detail in chapter 12.

Table 8.13 Two examples of data type conversion

OGNL expression Description

#kermit.age = "25" Sets an int to a String value, which is then converted to 25

#kermit.name = 25 Sets a String to an int value, which is then converted to "25"
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

228 CHAPTER 8

Getting data with the expression language
8.4.4 Creating lambda expressions on the fly

In a few rare cases, it may be necessary (or at least easier to read) to declare a
small function, or lambda expression, in your OGNL context that can be used by
other expressions. The syntax for defining a lambda expression is :[...].
Lambda expressions can only take one argument, which can be referenced using
the keyword #this. For example, to write a lambda expression that checks
whether a muppet’s name is Kermit, you can define the function as follows:

#isKermit = :[#this.name == @vs@OG_MUPPET ? true : false]

It can then be called as if it’s a method that isn’t part of any object but rather in
the OGNL context itself. Table 8.14 gives three examples of calling the lambda
expression.

The important thing to remember is that you shouldn’t overuse lambda expres-
sions. The few times you’ll need them should be when the only other option is to
use a series of conditional tags in your JSPs (if/else/then) multiple times, leading
to code duplication. A good example of lambda expression usage is converting a
status code (int) to a String that might be displayed several times on a page.

8.5 Summary

WebWork provides a rich language for accessing and updating data. The most
important features, however, are the simplest ones. Complex expressions and
accessing collections are by far the most common features of the expression lan-
guage you’ll be using. That isn’t to say that advanced features like lambda expres-
sions won’t be used, but they shouldn’t be over-emphasized.

 In later chapters, we’ll use the basics learned here to dive into some of Web-
Work’s more interesting (and beneficial) use cases. Specific features to watch out
for are type conversion and null property handling, both discussed in chapter 12.
Similarly, chapters 9 and 11 cover JSP tags and explore 90 percent of the situations
in which you’ll need to write WebWork expressions.

Table 8.14 Examples of lambda expressions

OGNL expression Description

#isKermit(top) Determines whether the object at the top of the stack has Kermit’s name.

#isKermit(#kermit) Is kermit Kermit? We hope so.

#isKermit(#piggy) This one won’t be true.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 229
 The most important thing you can take away with this chapter is how the
expression language interacts with the value stack. As we mentioned at the start of
this chapter, we decided to use Muppet objects rather than CaveatEmptor’s User
objects for these examples. And yet, because we’re going through an expression
language (rather than writing native Java code to get and set various data
elements), all that matters is that they share common properties and are available
in the value stack. Take advantage of this loose coupling by not being afraid to
utilize the value stack. In chapter 9, we’ll discuss the <ww:push> tag. Once you
understand the concept of pushing objects on to the stack, you’ll soon find
yourself embedding the same block of JSP on two pages that are rendered by
different actions—all because the context in which those JSP blocks render is with
the same object on the stack.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Tag libraries
This chapter covers

■ The syntax used in WebWork tags

■ Tags for manipulating data

■ Tags for controlling the flow of execution

■ Other miscellaneous non-UI tags
230

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Getting started 231
In chapter 7, “Using results,” you learned how WebWork can support various view
technologies, including JSP and Velocity. In chapter 8, “Getting data with the
expression language,” you learned how to use the expression language to access
and manipulate data in the action context and value stack. Armed with this infor-
mation, we can now explore the rich library of tags and components that Web-
Work provides. WebWork tags are split into two groups: non-UI tags and UI tags.
Non-UI tags assist with control flow and data access. UI tags are used to let you
build consistent user interfaces and forms. In this chapter, we’ll cover non-UI tags.
In chapter 11, “UI components,” we’ll look at WebWork’s UI tags.

9.1 Getting started

The WebWork JAR file (webwork.jar) contains a tag library definition (TLD) file
that describes all the tags that WebWork provides. Listing 9.1 provides a small sam-
ple of what that TLD looks like. We recommend that you look at the complete TLD
sometime to get a review of every tag WebWork supports.

<tag>
 <name>bean</name>
 <tagclass>com.opensymphony.webwork.views.jsp.BeanTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 Create a JavaBean and instantiate its properties. It
 is then placed in the ActionContext for later use.
 </info>
 <attribute>
 <name>name</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>id</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
</tag>

Listing 9.1 describes the bean tag. This particular tag has two attributes, name and
id; the name attribute is required. In order to use this tag or any other tag described

Listing 9.1 Snippet from WebWork’s TLD file
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

232 CHAPTER 9

Tag libraries
in the TLD, you must first register it with your web application by editing web.xml.1

Here are the new elements you need to add to web.xml:

<taglib>
 <taglib-uri>webwork</taglib-uri>
 <taglib-location>/WEB-INF/lib/webwork.jar</taglib-location>
</taglib>

Once you’ve done this, you can use all the WebWork tags in your JSPs by adding a
standard taglib directive at the beginning of your page: <%@ taglib prefix="ww"
uri="webwork"%>. Note that all the JSP pages in the CaveatEmptor application
start with this directive. Here’s a very simple JSP that uses the property tag, one of
the most commonly used tags in WebWork:

<%@ taglib prefix="ww" uri="webwork"%>
<html>
 <head>
 <title>A simple page</title>
 </head>
 <body>
 Hello, <ww:property value="name"/>!
 </body>
</html>

Now that you know how to set up your application to use WebWork’s tags, let’s
explore the rich set of tags that are bundled with WebWork.

9.2 An overview of WebWork tags

WebWork comes with many different types of tags. They can be broken into four
categories: data tags, control flow tags, UI tags, and miscellaneous tags. As already
noted, we’ll leave the UI tags for chapter 11; this chapter examines the other
three categories. Data tags focus on ways to extract data from the value stack and/
or set values in the value stack. Control flow tags give you the tools to alter the flow
and/or output based on the state of the system. Miscellaneous tags, although hard
to categorize, are no less useful and will be explored in depth. These tags include
useful functionality such as rendering URLs and outputting internationalized text.
However, before we can begin looking at any of WebWork’s tags, we must first
examine the general syntax that all tags adhere to.

1 Depending on your Servlet container and the JSP specification it implements, this may not be necessary.
JSP 1.2+ containers can automatically find taglib.tld files under the META-INF directory of tag library
JAR files.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

An overview of WebWork tags 233
9.2.1 The WebWork tag syntax

In this book, we chose to take a forward-looking approach at documenting and
teaching how to use WebWork. Instead of focusing on the default tag syntax that
every version of WebWork has supported, we decided you’ll be better served if we
document the new tag syntax set to replace the existing syntax when WebWork 2.2
comes out (which should be shortly after this book is released).

 This means we’ll document the latest and greatest details of WebWork, but you
must be aware that what we describe in this book is not the default behavior of
WebWork 2.1.x (the version that CaveatEmptor is using). We’ll document the
default tag syntax as well as the new tag syntax, so you can identify the difference.
We’ll also show you how to instruct WebWork to use the new syntax and thereby
utilize the examples given throughout this book.

The old syntax
In the original versions of WebWork, every tag attribute was evaluated against the
value stack. This allowed for the most flexibility when developing JSP pages. For
example, you’d render a URL that pointed to http://www.opensymphony.com
using the URL tag, as follows:

<%@ taglib prefix="ww" uri="webwork"%>
<html>
 <head>
 <title>A simple page</title>
 </head>
 <body>
 Click <a href="<ww:url value="'http://www.opensymphony.com'"/>"/>
bbbbbbbb➥here.
 </body>
</html>

As you can see, the value attribute is 'http://www.opensymphony.com' (note the
single quotes), because in the old syntax, every attribute was evaluated against the
value stack. Thus if you wanted to set an attribute to have a string value, you had
to create an Object Graph Navigation Language (OGNL) expression that was a
string literal (as described in chapter 8). Setting the value to http://www.opensym-
phony.com would result in an OGNL parse error and an evaluation to null.

 The advantage of this syntax was that everything was evaluated; users were
never caught unable to set an attribute value to something dynamic from the
value stack. The downside was that pages quickly began to have single quotes and
double quotes everywhere, confusing page authors. So, for WebWork 2.2, the
team decided it was time to change the syntax so it’s easier for new users but also
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

234 CHAPTER 9

Tag libraries
allows existing users to not have to upgrade all their pages right away. A migration
path was created, and the new syntax was introduced in WebWork 2.1.4 as an
optional setting.

The new syntax
The goal of the new syntax was to make tag attributes much easier to deal with,
avoiding the single quote/double quote mess. This syntax instead assumes that
generally, when users are filling out a tag attribute that’s a string, they don’t want it
to evaluate against the value stack. However, to avoid losing any of the flexibility you
previously had, you still have the ability to render expressions from the value stack.

 The new syntax only changes for tag attributes that have a data type of String.
If a tag attribute is meant to evaluate to a List or Object, then nothing changes—
the entire attribute is evaluated from the value stack. This makes sense, given that
the only value you can write inline in a JSP tag is a String. Tag attributes that are
meant to evaluate to Strings are no longer evaluated but instead are parsed.

 In the new syntax, parsing the attribute means that WebWork looks for the pat-
tern %{...} and then evaluates the expression between the curly braces. This
allows attributes to now be a mix of plain text and OGNL expressions, such as
hello, %{name}. The previous example can be rewritten such that the attribute
value is http://www.opensymphony.com—without any single quotes. Alternatively, if
the value stack contains a URL you wish to display, you can still make the value
attribute get its content dynamically, as shown here:

<%@ taglib prefix="ww" uri="webwork"%>
<html>
 <head>
 <title>A simple page</title>
 </head>
 <body>
 Click <a href="<ww:url value="%{url}"/>"/>here.
 </body>
</html>

As you can see, the new syntax is much easier to work with.

Enabling the new syntax
Because WebWork 2.1.x doesn’t have the new syntax enabled by default, you must
enable it before you can use any of the examples in this book or in CaveatEmptor.
This is easy to do—edit webwork.properties (located in WEB-INF/classes), and
add the following entry:

webwork.tag.altSyntax = true
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Data tags 235
NOTE Remember that in the new syntax, any attribute that isn’t listed as a string
data type is automatically evaluated against the value stack. On the other
hand, any attribute that is a string data type is parsed, with anything be-
tween %{ and } evaluated against the value stack. As we detail the tags in
this chapter and in chapter 11, it’s important to remember this difference.

9.3 Data tags

Data tags let you either get data out of the value stack or place variables and objects
in the value stack. In this section, we’ll discuss the property tag, set tag, push tag,
bean tag, and action tag. The property tag is used to extract values from the value
stack and display them to the user. The set tag is useful for defining temporary
variables in your pages. The push tag is great for avoiding repetition. Finally, the
bean and action tags are good for building reusable display-level components.

9.3.1 The property tag

The property tag is probably the most commonly used tag in WebWork. It’s very sim-
ple in what it does: It lets users output the value of on OGNL expression. Table 9.1
shows the attributes (as well as the data types) the property tag supports.

If the value attribute isn’t specified, it’s assumed to be top—which, as explained
in chapter 8, returns the object from the top of the value stack. Note that because
the value data type isn’t a string, it’s automatically parsed. You’ve already seen
examples of the property tag. The default attribute is useful if you want a value to
be displayed when the value can’t be evaluated to a non-null value.

 The escape attribute is useful if you want the output to be HTML escaped. By
default, the values printed out by the property tag aren’t escaped. This means
that if a string contains the value this & that, it will be printed out exactly like
that, which is technically invalid HTML. If you wish for the output to be this
& that, then you must set escape to true.

Table 9.1 Property tag attributes

Attribute Data type Required Description

value Object No Expression to be evaluated.

default String No A default value if no value is found in the
value attribute.

escape Boolean No Should the output be HTML escaped
(& -> &)?
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

236 CHAPTER 9

Tag libraries
9.3.2 The set tag

The set tag is useful for evaluating an expression in the value stack and assigning
it to a name in the specified scope. This is especially useful for placing temporary
variables in your JSP, thereby making your code easier to read and slightly faster.
Table 9.2 details the attributes that the set tag supports.

To understand how you typically use the set tag, let’s look at a simple example.
The following example shows the property tag accessing several fields of a User
object that is stored in the session:

<ww:property value="#session['user'].username" />
<ww:property value="#session['user'].age" />
<ww:property value="#session['user'].address" />

Repeating #session['user'] every time is not only tiresome, it’s error prone. A
better way to do this is to set up a temporary variable that points to the User
object. Here’s the set tag in action, making the overall code easier to read:

<ww:set name="user" value="#session['user']" />
<ww:property value="#user.username" />
<ww:property value="#user.age" />
<ww:property value="#user.address" />

The set tag makes your pages simpler because it lets you refactor your expres-
sions to smaller, more manageable pieces. However, the set tag can be used for
more than just refactoring. It can also set values in different scopes.

A note about scopes
The set tag supports five scopes: default (action context), application, session,
request, and page. You’ve already seen the default scope in the previous exam-
ple: It places objects in the action context, which can then be retrieved using the
#foo notation you’re already familiar with.

Table 9.2 Set tag attributes

Attribute Data type Required Description

name String Yes Reference name of the variable to be set in
the specified scope

value Object Yes Expression of the value you wish to set

scope String No application, session, request, page,
or default
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Data tags 237
 The other four scopes map directly to the four scopes that servlet applications
provide. Typically, you won’t need to set values into these scopes unless you’re try-
ing to integrate with a tag or servlet that doesn’t know how to communicate with
WebWork. We won’t cover these scopes because they’re most often used for legacy
code. However, you should know their names.

9.3.3 The push tag

Whereas the set tag allows you to place values in the action context, the push tag
allows you to push references onto the value stack. This is useful when you wish to
do a lot of work revolving around a single object. Rather than having to prefix every
expression with the object name, you can push the object down on the value stack
and then operate on it directly. Table 9.3 provides the attribute for the push tag.

Extending the previous example, here’s how the push tag can be used to simplify
the view even further:

<ww:set name="user" value="#session['user']" />
<ww:push value="#user" >
 <ww:property value="username" />
 <ww:property value="age" />
 <ww:property value="address" />
</ww:push>

As you can see, the push tag makes it easy to work with a single object. It can be
especially useful when you’re trying to include a common snippet of JSP even
when the value stack has vastly different values. For example, suppose you have
two pages being rendered. The contents of the value stack are very different when
both pages are invoked, but you still want to display the contents of a user profile.

 Suppose that in page 1, the user model can be accessed via the expression
cart.user, and in page 2, the user model can be accessed via the expression
order.user. Using the push tag and a static JSP include, you can easily render the
same user details. The following examples provide a simple JSP for page 1:

<%@ taglib prefix="ww" uri="webwork"%>
<html>
 <head>

Table 9.3 Push tag attribute

Attribute Data type Required Description

value Object Yes The expression of the value to push
on to the stack
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

238 CHAPTER 9

Tag libraries
 <title><title>
 </head>
 <body>
 <ww:push value="cart.user">
 <%@ include file="/shared/jsp/user-details.jspf">
 </ww:push>
 </body>
</html>

and for page 2:

<%@ taglib prefix="ww" uri="webwork"%>
<html>
 <head>
 <title><title>
 </head>
 <body>
 <ww:push value="order.user">
 <%@ include file="/shared/jsp/user-details.jspf">
 </ww:push>
 </body>
</html>

Here’s the common JSP fragment included by both pages:

<%@ taglib prefix="ww" uri="webwork"%>

 Username: <ww:property value="username"/>
 Age: <ww:property value="age"/>
 Address: <ww:property value="address"/>

These three examples show how common JSP fragments can be shared through
the power of the value stack. The value stack allows you to write views that make
assumptions about the top of the stack without having to worry what might be
lower in the stack. In the JSP for page 1 the stack may have very different values
than it has in the JSP for page 2, but it doesn’t matter because by the time the final
fragment is included, the top of the stack is the same in both pages.

9.3.4 The bean tag

Sometimes you need to provide more complex logic or data processing than the
basic WebWork JSP tags can provide. The bean tag lets you create a simple Java-
Bean and push it on to the value stack. In addition to pushing the bean onto the
stack between the opening and closing tags, you can also optionally assign a vari-
able name for the bean to be accessible in the action context, just as the set tag
lets you do. Table 9.4 details the attributes for the bean tag.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Data tags 239
The bean tag is the first of a few tags we’ll explore that are parameterized. That is, the
tag is designed to surround the param tag, allowing you to customize the behavior
of the tag by providing parameters. In the case of the bean tag, the parameters are
used to set values on the properties of the bean. In order to understand the bean
tag best, let’s explore some of the beans that are included with WebWork and
designed for use with the bean tag. We start with the Counter bean.

Counter bean
The Counter bean is good for tracking a count. It implements Iterator, meaning
you can also loop over using the iterator tag (discussed later in this chapter). For
example, to create a Counter bean that can be used to loop from 1 to 100, you can
use the following code:

<%@ taglib prefix="ww" uri="webwork"%>
<ww:bean name="com.opensymphony.webwork.util.Counter" id="counter">
 <ww:param name="last" value="100"/>
</ww:bean>
<ww:iterator value="#counter">
 <ww:property/>
</ww:iterator>

In this example, the Counter bean is created, and setLast() is called with 100 as
the argument. It’s then looped over using the iterator tag, and the current value
(a long) is printed out for each iteration.

DateFormatter bean
Recall that the bean tag pushes the bean onto the stack and then pops it off when
the tag closes. The following example uses the included DateFormatter bean to
print out a formatted date:

<%@ taglib prefix="ww" uri="webwork"%>
<ww:set name="user" value="#session['user']" />
<ww:bean name="com.opensymphony.webwork.util.DateFormatter" >
 <ww:param name="format" value="'MM/dd/yyyy'"/>

Table 9.4 Bean tag attributes

Attribute Data type Required Description

name String Yes Package and class name of the bean
that is to be created

id String No Reference name used if you want to
reference the bean outside the scope
of the closing bean tag
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

240 CHAPTER 9

Tag libraries
 <ww:param name="date" value="#user.birthdate"/>
 The user's birthdate is: <ww:property value="formattedDate"/>
</ww:bean>

Note that this example not only sets parameters but also renders output within
the body of the bean tag. This is possible because the bean tag pushes the JavaBean
onto the stack, allowing you to access the properties on the bean without having
to prefix the bean’s ID as you did in the previous example. This is effectively the
same as using the bean tag as you did earlier plus the push tag.

 Although you can use this class to print out formatted dates, we recommend
that you utilize internationalization (see chapter 14) to do your formatting. Not
only is that approach generally easier, but you also get the added benefit of sup-
porting multiple languages.

9.3.5 The action tag

Sometimes the bean tag isn’t enough to implement complex or reusable views.
Taking advantage of the existing WebWork infrastructure, you can use the action
tag to add more advanced behavior to your pages. Rather than just putting Java-
Beans into your action context, you can execute actions and then access the data
in your JSP. Table 9.5 provides the attributes associated with the action tag.

Only the name attribute in the action tag is required. By default, the action tag
won’t execute the result of the action, making it safe to execute actions that might
otherwise normally cause a different page to be rendered. Also, the namespace
parameter is required only if the namespace of the action you’re executing is dif-
ferent than the current namespace of the original action.

 The action tag is great for creating simple reusable components without hav-
ing to add scriptlets to your JSP pages. In CaveatEmptor, we wanted to display a

Table 9.5 Action tag attributes

Attribute Data type Required Description

name String Yes The action name

namespace String No The action namespace; defaults to the
current page namespace

id String No Reference name of the action bean
for use later in the page

executeResult Boolean No When set to true, executes the result
of the action (default value: false)
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Data tags 241
tree selection of all the categories in many different places in the web application.
Rather than make every action that might have a result that wants to display the
category tree be responsible for getting the data needed to do so, we built a small
action that got that data independently. Here’s what the action definition looks
like in xwork.xml:

<action name="categoryTree"
 class="org.hibernate.auction.web.actions.categories.CategoryPicker">
 <result name="success">/categoryTree.jsp</result>
</action>

Anywhere you want to display a category tree listing, you can invoke the action
tag and tell it to execute its result. This will render the output of categoryTree.jsp
directly inline in any of your pages. The following JSP displays the category listing:

<%@ taglib uri="webwork" prefix="ww"%>
<html>
 <head>
 <title>Dashboard</title>
 </head>

 <body>
 <hr/>
 <ww:action name="categoryTree" executeResult="true"/>
 </body>
</html>

Note that executeResult is set to true. This is necessary if you wish to tell Web-
Work to invoke the typical output you would expect if you made an HTTP request
directly to categoryTree.action. If executeResult weren’t set, it would default to
false; although the action would execute, nothing would be rendered.

 The action tag, in essence, allows you to implement the Page-Controller pat-
tern as discussed in chapter 1, “An overview of WebWork.” Remember, typical
action invocation until now has used the Front-Controller pattern. As you can see
here, using both patterns together is possible and even encouraged.

 Like the bean tag, the action tag may also be parameterized. However, unlike
with the bean tag, the body of the action can’t contain any content besides the
<ww:param> tag. This is the case because action invocation isn’t as simple as creat-
ing a bean and putting it on the value stack. Just like any other action, the set of
interceptor stacks are invoked, the action is executed, and then (optionally) the
result is rendered.

 Instead, if you wish to access the action bean after it has been executed, you
must provide an ID. You’re then free to access it just as you can with the bean tag.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

242 CHAPTER 9

Tag libraries
This is useful when you have a common set of logic you wish to execute but not
necessarily a common result you wish to render.

9.4 Control tags

Now that you know how to manipulate and display data, it’s time to learn how to
navigate around it as well. Like every other language, the WebWork JSP tags have a
set of tags that make it easy to control the flow of page execution. Using the iter-
ator tag to loop over data and the if/else/elseif tags to make decisions, you can
develop rich pages.

9.4.1 The iterator tag

Other than the property tag, the other most commonly used tag in WebWork is
the iterator tag. The iterator tag allows you to loop over collections of objects
easily. It’s designed to know how to loop over any Collection, Map, Enumeration,
Iterator, or array. It also provides the ability to define a variable in the action
context that lets you determine certain basic information about the current loop
state, such as whether you’re looping over an odd or even row. Table 9.6 provides
the attributes for the iterator tag.

One of the nicest features about the iterator tag is that it can iterate over just
about any data type that has a concept of iteration. When iterating over a Map, it
iterates over the Set returned by Map.entrySet(), which is a set of Map.Entry
objects, which in turn has the methods getKey() and getValue() to retrieve the
associated key/value pairs.

 The following example provides a simple way to iterate over the items made
available by the Search action in CaveatEmptor:

<ww:iterator value="items">

 <ww:property value="name"/>, <ww:property value="description"/>

Table 9.6 Iterator tag attributes

Attribute Data type Required Description

value Collection, Map, Enumera-
tion, Iterator, or Array

Yes The object to be looped over.

status String No If provided, an IteratorStatus
object is placed in the action context.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Control tags 243

</ww:iterator>

You could easily create a more advanced user interface. The expression items
invoke Search.getItems(), which returns a List of Item objects. As each object is
iterated over, it’s temporarily pushed onto the value stack while the body of the
iterator tag is invoked. After the body is complete, the value is popped off the
stack and the process is repeated until no more items remain in the list.

 Because the Item objects are pushed on the stack, the property tags can use
the expressions name and description to invoke getName() and getDescription(),
respectively. Once again, you see the power and simplicity of having a stack to
evaluate expressions against.

Using IteratorStatus
Sometimes it’s desirable to know status information about the iteration that’s tak-
ing place. This is where the status attribute steps in. The status attribute, when
defined, provides an IteratorStatus object available in the action context that
can provide simple information such as the size, current index, and whether the
current object is in the even or odd index in the list. Listing 9.2 provides the com-
plete code for the IteratorStatus class as it is in WebWork.

package com.opensymphony.webwork.views.jsp;

/**
 * The iterator tag can export an IteratorStatus object so that
 * one can get information about the status of the iteration,
 * such as the size, current index, and whether any more items
 * are available.
 *
 * @author Rickard Öberg (rickard@dreambean.com)
 */
public class IteratorStatus {
 protected StatusState state;

 public IteratorStatus(StatusState aState) {
 state = aState;
 }

 public int getCount() {
 return state.index + 1;
 }

 public boolean isEven() {

Listing 9.2 IteratorStatus source code
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

244 CHAPTER 9

Tag libraries
 return ((state.index + 1) % 2) == 0;
 }

 public boolean isFirst() {
 return state.index == 0;
 }

 public int getIndex() {
 return state.index;
 }

 public boolean isLast() {
 return state.last;
 }

 public boolean isOdd() {
 return ((state.index + 1) % 2) == 1;
 }

 public int modulus(int operand) {
 return (state.index + 1) % operand;
 }

 public static class StatusState {
 boolean last = false;
 int index = 0;

 public void setLast(boolean isLast) {
 last = isLast;
 }

 public void next() {
 index++;
 }
 }
}

The most common use for the iterator status feature is to render a table of values
and shade even-numbered rows one color and odd rows another color. You may
find other uses for the tag; however, without knowing how to use if/else tags, you
can’t conditionally output HTML. So, let’s take a moment to learn about these tags
and then come back to the task of rendering a table with different shading for
even and odd rows.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Control tags 245
9.4.2 The if and else tags

The if, else, and elseif tags are required to do any sort of basic page flow and
presentation. As in any other programming language, you can use the if tag
alone, or with an elseif tag, or with an else tag. Not surprisingly, the else tag has
no attributes. The if and elseif tags have a single attribute, which is outlined in
table 9.7.

Looking at the iterator example we just discussed, let’s now implement a table
that has three shades: even, odd, and selected. Selected is a special shade used for
only a single element in the entire list of objects. Listing 9.3 shows how you can
use the iterator tag’s status feature as well as the if, else, and elseif tags to cre-
ate the table.

<table>
<thead>
 <tr>
 <th>Name</th>
 <th>Description</th>
 </tr>
</thead>
<tbody>
<ww:iterator value="items" status="status">
 <tr class="
 <ww:if test="id == itemId">row-selected</ww:if>
 <ww:elseif test="#status.even">row-even</ww:elseif>
 <ww:else>row-odd</ww:else>
 ">
 <td><ww:property value="name"/></td>
 <td><ww:property value="description"/></td>
 </tr>
</ww:iterator>
</tbody>
</table>

Table 9.7 If and elseif tag attribute

Attribute Data type Required Description

test Boolean Yes Boolean expression that is evaluated
and tested for true or false

Listing 9.3 A table that has three shades for rows: even, odd, and selected
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

246 CHAPTER 9

Tag libraries
In this example, the class attribute (CSS) can have three possible values: row-
selected, row-even, or row-odd. It’s row-selected if the ID of the item is equal to
the itemID. Remember, the value stack works this way: If itemId can’t be found on
the first item in the stack, each item lower down in the stack is searched until a
property is found. The expression id == itemId causes the left side, id, to match
against Item.getId(), whereas the right-hand side, itemId, matches against the
action Search.getItemId() if it exists.

 If the current item isn’t the one that is requested to be selected, then the flow
falls through to the elseif tag. In this example, the expression #status.even
causes the IteratorStatus object to be queried. Note that the status attribute of
the iterator tag is set to the value status. This is how you can access all those
properties shown in listing 9.3.

NOTE Although there is no requirement that if tags and else tags be directly
next to each other, we highly recommend that you don’t spread them
too far apart. Your code can become very confusing if you place text or
other logic in between if and else tags.

9.5 Miscellaneous tags

As we mentioned at the start of this chapter, WebWork includes a few different
types of tags. You’ve already seen how the data tags and control tags work. Let’s
now look at the miscellaneous tags that, although very useful, can’t be easily classi-
fied. In this section, we’ll discuss WebWork’s include tag (a slight variation of the
<jsp:include> tag), the URL tag, and the i18n and text tags (both used for inter-
nationalization). Finally, we’ll take another look at the param tag you’ve already
seen and show how it can be used to its full power.

9.5.1 The include tag

Whereas JSP has its own include tag, <jsp:include>, WebWork provides a version
that integrates with WebWork better and provides more advanced features. Like
some of the other WebWork tags you’ve seen, the include tag can be parameter-
ized. Table 9.8 provides the attribute for the include tag.

Table 9.8 Include tag attribute

Attribute Data type Required Description

value String Yes Name of the page, action, servlet, or
any referenceable URL.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Miscellaneous tags 247
The include tag behaves very similarly to the JSP include tag. However, it’s more
useful when you’re developing with WebWork, for two reasons: It integrates better
with WebWork, and it provides native access to the value stack and a more extensi-
ble parameter model.

 Let’s start with the WebWork integration: The JSP include tag includes the out-
put of any URL you give it, but WebWork’s include tag is smarter. For example,
you can determine that a page that will be included by evaluating against the
value stack using the %{ ... } notation. Similarly, you give the include tag parame-
ters with the <ww:param> tag (discussed in a moment). This tag also ties into the
value stack, making it much easier to use than the <jsp:param> tag.

 WebWork’s include tag is also more user friendly. If you wish to include the
URL ../index.jsp, you’re free to do so even though some application servers don’t
support that type of URL when using the JSP include tag. That’s the case because
WebWork’s include tag will rewrite ../index.jsp to an absolute URL based on the
current URL where the JSP is located. To learn more about how includes work,
look back at chapter 7.

9.5.2 The URL tag

When you’re building web applications, it’s extremely common to create URLs
that link your various pages together. WebWork provides a URL tag to help you do
this. The tag is simple: It renders relative or absolute URLs, handles parameters,
and encodes the URL so it can be used with browsers that don’t have cookies
enabled. If you’re planning to build a robust site that works with many different
browsers and can be deployed in any application context, we highly recommend
that you render all your URLs using the URL tag. Table 9.9 lists its attributes.

Table 9.9 URL tag attributes

Attribute Data type Required Description

value String No The base URL; defaults to the current URL
the page is rendering from

includeParams String No Selects parameters from all, get, or none;
default is get

id String No If specified, the URL isn’t written out but
rather is saved in the action context for
future use

includeContext Boolean No If true, then the URL that is generated
must be prepended with the application’s
context; default is false
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

248 CHAPTER 9

Tag libraries
Let’s begin by discussing each attribute. The value attribute is the most com-
monly used. When it’s specified, the value is used as the basis for rendering the
URL. When it isn’t specified, the current URL, such as search.action, is used as
the basis for rendering. For example, you can render a URL that points to http://
www.opensymphony.com with <ww:url value="http://www.opensymphony.com"/>.
You can render a URL that points back to the current URL with <ww:url />.

 Like other WebWork tags, the URL tag can be parameterized. The parameters
are used to construct the URL and make up the query string. The following exam-
ple generates the URL string search.action?query=XXX, where XXX is the value
the expression name evaluates to:

<ww:url value="search.action">
 <ww:param name="query" value="name"/>
</ww:url>

Often, when rendering URLs, you’ll wish to include any parameters that are
present in the current URL. For example, if you’re looking at a list of auction items
in a category in CaveatEmptor, and you want to display 20 items per page, the URL
tag becomes handy. Because the current URL might be something like list-
items.action?categoryId=123&page=0, rather than pass the categoryId and page
attributes for the link associated with the Next Page link, you can do the following:

<a href="<ww:url>
 <ww:param name="page" value="page + 1"/>
</ww:url>">Next page

Of course, this example isn’t pretty. The href tag looks odd with all those line
breaks in it. WebWork provides a way around this. If you provide a value for the id
attribute in the URL tag, the URL isn’t rendered out to the page. Rather, the URL is
saved as a String in the action context, allowing you to access it later. This func-
tionality is useful when you have complex logic for constructing a URL and don’t
want to embed it directly in your HTML tags. Rewriting the last example to take
advantage of this feature produces the following:

encode Boolean No Adds the session ID to the URL if cookies
aren’t enabled for the visitor

scheme String No Allows you to specify the protocol; defaults
to the current scheme (http or https)

Table 9.9 URL tag attributes (continued)

Attribute Data type Required Description
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Miscellaneous tags 249
<ww:url id="url">
 <ww:param name="page" value="page + 1"/>
</ww:url>
<a href="<ww:property value="#url"/>">Next Page

By default, WebWork includes all params in the current page’s query string. This
is the same thing as specifying the includeParams attribute to get. If you don’t
want any parameters to be included, you can set this value to none. Alternatively,
you can force all parameters, including those submitted via a POST request, by set-
ting the value to post.

 Building web applications that can be deployed under any context on a web
server can be a pain. Typically, web developers solve this issue by putting the fol-
lowing in their JSPs:

<a href="<%= request.getContextPath() %>/search.action">Search

You can achieve the same effect by using the includeContext attribute. By default,
the value is false, meaning that if your application is in the context of /auction
and you do <ww:url value="/search.action"/>, the link won’t point to /auction/
search.action. However, setting includeContext to true does this. Typically, you
want to do this whenever you’re using absolute URLs (those that start with /) and
are linking to other places in your web application.

 As you may already know, servlet containers keep track of session state by plac-
ing a session-level cookie in the browser. You may have seen the string jsession
while browsing through web applications. This cookie holds the ID of the session
object on the server side. If cookies aren’t enabled, sessions aren’t supported
automatically. However, there is a way around this: Use the encode attribute when
rendering URLs. Doing so causes the URL to be encoded such that even if cookies
are disabled, the servlet container knows how to look up the proper session.

 Also remember that URLs may use either the http scheme or the https
scheme. By default, the URL tag renders URLs using the same scheme the current
URL is using. That means if the page is rendered using HTTPS, then the URLs
printed out use the https scheme. Likewise, they use http if the user isn’t at an
https URL. Sometimes you wish to render URLs that don’t use the same scheme.
For example, you might want to redirect the user from a nonsecure page to a
secure page. You can do so by setting the scheme attribute to https.

 Note that WebWork uses the default ports of 80 for HTTP and 443 for HTTPS.
If for any reason your application uses different ports, you can redefine them in
webwork.properties. Add the following entries:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

250 CHAPTER 9

Tag libraries
webwork.url.http.port = 8080
webwork.url.https.port = 8081

With these changes, WebWork will render URLs using your custom ports. Let’s
now look at the two tags WebWork provides to make writing internationalized
applications much easier.

9.5.3 The i18n and text tags

Many applications need to work in multiple languages. The process of making
this happen is called internationalization, or i18n for short. Chapter 14 discusses
WebWork’s internationalization support in detail, but we’d like to take a moment
to detail the two tags that are central to this functionality: the i18n tag and the
text tag.

 The text tag is used to display language-specific text, such as English or Span-
ish, based on a key lookup. For example, the key title can map to a text value for
each language. These mappings are specified in ResourceBundles, a standard class
in the Java language. Table 9.10 lists the attributes that the text tag supports.

Typical usage of the text tag is <ww:text name="title"/>. Like the URL tag, you
can specify the id attribute, and nothing will be printed out immediately. Thus
<ww:text id="title" name="title"/> won’t render anything, and the expression
#title now references the language-specific title.

 Also like the URL tag, the text tag is parameterized. However, unlike the
action, bean, or URL tags, i18n parameters don’t have names associated with them.
That’s because the standard message formatting supported by Java’s MessageFor-
mat class uses index parameters. For example, a resource bundle might specify

Table 9.10 Text tag attributes

Attribute Data type Required Description

name String Yes The key to look up in the ResourceBundle(s)

id String No If specified, the text is stored in the action context
under this name

value0 Object No Parameter 1 (deprecated)

value1 Object No Parameter 2 (deprecated)

value2 Object No Parameter 3 (deprecated)

value3 Object No Parameter 4 (deprecated)
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Miscellaneous tags 251
that the key searchResults be equal to the English text We searched {0} items in your
database and found {1} matches. You can parameterize that message like so:

<ww:text name="searchResults">
 <ww:param value="totalItems"/>
 <ww:param value="searchCount"/>
</ww:text>

We won’t discuss the text tag in much more detail, because this topic is covered
in depth in chapter 14. However, let’s touch on the i18n tag. The i18n tag is useful
when you have a resource bundle you wish to use in a certain part of your web
page. The tag pushes that resource bundle on to the stack, allowing you to access
the i18n resources associated with that bundle from within the body of the tag.
Table 9.11 provides the i18n tag attribute.

The i18n tag works much like the bean tag in that it pushes an object onto the
stack during the body of the tag and then pops it off when the tag closes. If you
have a resource bundle located at org.hibernate.auction.myBundle, you can
push this bundle onto the stack by doing the following:

<ww:i18n name="org.hibernate.auction.myBundle">
 <ww:text name="someKey"/>
</ww:i18n>

In this example, someKey is looked up from myBundle rather than the typical
resource bundles. This is described in chapter 14 as well.

NOTE In chapter 14, you’ll learn that resource bundles can either be simple
properties files or complex Java classes that look up key values from other
locations, such as a database. The i18n tag works with either form of re-
source bundle. If the bundle you wish to push on the stack is a properties
file, provide the name of the file (without .properties and any of the lo-
calization specifics, such as _en) and the package in which the file is lo-
cated. If the bundle you wish to use is a class, provide the fully qualified
class name.

Table 9.11 I18n tag attribute

Attribute Data type Required Description

name String Yes The name of the resource bundle
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

252 CHAPTER 9

Tag libraries
9.5.4 The param tag

The last tag we’ll discuss has been used throughout this chapter. The param tag
does nothing by itself, but at the same time it’s incredibly useful for many of the
tags you’ve seen here. It’s also useful when you’re working with the UI tags, as you’ll
see in chapter 11. Table 9.12 lists the attributes you’re now already familiar with.

Note that neither the name nor value attribute is required for the param tag. This
isn’t to say that <ww:param/> does anything useful; rather, there are some param tag
behaviors we haven’t yet explored.

 Remember that for all tags except the text tag, parameters are given in the
form of a name/value pair. But because parameters are given in an indexed form
for the text tag, you can’t require that the name attribute be given.

 Having an optional value may also seem a bit odd. That’s only because we
haven’t looked at the alternative way to supply a value with the param tag: via the
tag body content. Rather than provide an OGNL expression in the value attribute,
you can instead place any content in the body of the parameter; it will be ren-
dered and treated as a String parameter value. For example:

<ww:text name="searchResults">
 <ww:param>over 5 million</ww:param>
 <ww:param value="searchCount"/>
</ww:text>

Extending this example, you can internationalize the text over 5 million and
then do the following:

<ww:text name="searchResults">
 <ww:param><ww:text name="fiveMillion"/></ww:param>
 <ww:param value="searchCount"/>
</ww:text>

With careful use of the param tag, you can do some incredibly powerful things. In
chapter 14, we’ll look at another example where using the body content of the
param tag makes internationalization much easier.

Table 9.12 Param tag attributes

Attribute Data type Required Description

name String No all, get, or none

value Object No Get the URL for the requested page
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 253
9.6 Summary

This chapter has introduced you to the JSP tags that are included with WebWork.
You’ve seen how each tag integrates with WebWork’s value stack. We’ve also
looked at the deprecated tag syntax and shown you why the new syntax is better
and how to enable it. Remember, the examples in this book won’t work until you
turn on the newSyntax option or unless you’re using WebWork 2.2.

 Now that you have a grasp of the basic JSP tags WebWork offers, the next step is
to look at the UI tags. However, before we can do that, you must understand the
technology the UI tags are built on: Velocity. In chapter 10, we’ll briefly explore
the Velocity language and show how you can use all the JSP tags WebWork pro-
vides from within Velocity.

 Don’t be afraid to take advantage of the tags discussed in this chapter. If you
find yourself putting too much logic in your JSPs, use the bean tag. If you start to
see a lot of common code being placed in many different, unrelated actions, it
might be a good time to break it out into a standalone action tag. Try to use the
URL tag when you’re generating links and image references; doing so will make
your application much more portable. Finally, take advantage of the behavior of
the param tag to integrate multiple tags, such as the text tag.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Velocity
This chapter covers

■ The Velocity template language

■ Static and dynamic languages
used for view technologies

■ Control statements in Velocity,
such as loops and if/else blocks

■ How to access utility objects in Velocity
254

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Introduction to Velocity 255
As we explored in chapter 7, “Using results,” WebWork supports many different
technologies for displaying data. Those technologies include JSP, FreeMarker, Jas-
perReports, XML, and Velocity. Velocity is a little more special to WebWork than
the rest because it’s not only a supported optional view technology, but it’s also
the default template language used for all the UI tag libraries supplied with Web-
Work. This is why we devote a chapter to the basics of Velocity but not to any of
the other technologies.

 In this chapter, we’ll cover Velocity from a high level and explore why it’s used
as a core technology in WebWork. We’ll also compare it to JSP and explain the
pros and cons of choosing Velocity as your view technology. By the end of this
chapter, you’ll understand how Velocity works, how WebWork integrates with it,
and how to write your own Velocity templates. For more in-depth coverage, we
recommend reading the excellent Velocity tutorial available on the Velocity web
site: http://jakarta.apache.org/velocity.

NOTE As of version 2.1.7, WebWork supports other view technologies besides
Velocity to render UI tag libraries. However, WebWork only ships tem-
plates written in Velocity; so, it’s a good idea to learn Velocity even if you
don’t plan to use it directly.

10.1 Introduction to Velocity

Before you can get started with the nitty-gritty of how Velocity and WebWork inte-
grate, we’ll do a quick overview of what Velocity is. Then we can go over the simple
steps required to set up Velocity in your environment. After that, we’ll explore exam-
ple templates, examine the language itself, and dive into WebWork integration.

10.1.1 What is Velocity?

Velocity is, in its most simplistic form, a template language. What does that mean?
A template is text that is used as a basis for documents that all have a similar struc-
ture. Parts of the template are replaced with text specific to the document. For
example, a Microsoft Word template for a Software License Agreement might
have everything prewritten except the company name, which would be a blank
space or highlighted text such as [COMPANY]. This way, a person could quickly
replace the place-holding text with the actual company name, thereby having a
license agreement that is customized for a particular company.

NOTE Although it was too late in the publishing process of this book, you
should know that WebWork 2.2, which is scheduled to be released in Fall
2005, is deprecating Velocity in favor of FreeMarker. Velocity templates
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

256 CHAPTER 10

Velocity
are still included in WebWork 2.2, but they will eventually be phased out
in favor of FreeMarker templates. However, it’s still a good idea to learn
Velocity, because it’s similar to FreeMarker and is still the basis for Web-
Work 2.1—the latest stable release of WebWork at this point.

Templating languages
We’ve defined a template, but what is a template language? It’s a standard format
for defining where variables should be replaced in a document. For example,
instead of the text [COMPANY], the Velocity language uses the dollar sign ($) to
indicate a variable that needs replacement. So, you’d write $companyName.

 As a template language, Velocity supports more than just variable replace-
ments. It also allows for simple control structures, such as loops and if/else state-
ments. This lends itself as a view technology in web-enabled MVC frameworks such
as WebWork. Unlike JSP, which allows the full Java language to be embedded in
HTML, Velocity provides only rudimentary access to data, forcing developers to
separate presentation logic from business logic.

Runtime vs. compile-time
This isn’t to say that Velocity is a perfect technology. Whereas JSP is a static,
compile-time language, Velocity is a runtime language. This means tool support for
Velocity is often bare bones or nonexistent. For example, if you have a JSP file that
prints out the creator of a Document object, it’s written using the expression <%=
document.getCreator() %> (assuming you aren’t using the JSP tags discussed in
chapter 9, “Tag libraries”). In Velocity, the expression is $document.creator.

 Now suppose you want to change the creator property in the Document class to
author. If you aren’t using an IDE with refactoring support, you can rename get-
Creator() to getAuthor()—and the next time you access the JSP, you’ll see a com-
pile error. If you’re using a refactoring IDE, the JSP is automatically updated.

 However, the Velocity template won’t automatically be updated to use $docu-
ment.author, because no IDEs support refactoring of Velocity files. This is due to
the fact that Velocity is runtime, and the velocity context (the area that determines
what is available when using the dollar sign notation) can be modified by anyone
during runtime. This is, in fact, how WebWork integrates into the Velocity lan-
guage and provides access to the value stack. So, unless your IDE knows about
WebWork, it will never know to change $document.creator to $document.author.
When you access the Velocity template that is still using the old $document.cre-
ator expression, no error will occur. Rather, the output will include the string
$document.creator. We’ll discuss this more shortly.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Introduction to Velocity 257
NOTE There is great interest in WebWork plug-ins for both the IntelliJ IDEA
and Eclipse IDEs. Although no fully working plug-in exists, it’s expected
that one of these IDEs will soon have support for the problem we’ve out-
lined. If you plan to use JSP and the WebWork tag libraries, you’ll also
face the issue of runtime versus compile-time: Tags like <ww:property
value="creator"/> won’t be rewritten to <ww:property value="au-
thor"/> even if you’re using a refactoring IDE.

10.1.2 Getting ready to use Velocity

Before we delve too deep into how to use Velocity, let’s examine how to configure
Velocity. As we discussed earlier, Velocity is a template language. It reads a tem-
plate file, merges the template with some data, and then renders a finished prod-
uct. This means that at a minimum, you need to tell Velocity where it can find the
templates and where it can find the data.

 The data used to render the template comes from the WebWork value stack, as
you saw in chapter 7. The template is based on the <result/> tag in your
xwork.xml file. So, as long as you include webwork-default.xml when you’re writ-
ing your xwork.xml file, there’s nothing to configure when you’re getting started
with Velocity.

 Sometimes, however, you’ll need to do additional configuration. Velocity-
related configuration can take place in three files: xwork.xml, webwork.proper-
ties, and velocity.properties.

xwork.xml
As you’ve already seen, the velocity result is automatically included as part of
webwork-default.xml. However, if you aren’t including this file as part of your con-
figuration or you wish to create your own default configuration to extend, you
need to add the following result type:

<result-type name="velocity"
 class="com.opensymphony.webwork.dispatcher.
bbbbbbbbbbbbb➥VelocityResult" />

Once this result type is added, you can then refer to the velocity result type. And
of course, you can make this result type the default if all your pages are velocity
based, allowing you to avoid referencing the type for every action.

webwork.properties
WebWork’s integration with Velocity can also be tuned. By default, the following
entries are automatically assumed, meaning that if you don’t need to change these
values, you don’t have to do anything. However, if you want to use a different
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

258 CHAPTER 10

Velocity
velocity.properties file, configure additional Velocity contexts, or add support for
other JSP tags, you must edit webwork.properties and override these values:

Location of velocity.properties file.
webwork.velocity.configfile = velocity.properties

Comma separated list of VelocityContext classnames
to chain to the WebWorkVelocityContext
webwork.velocity.contexts =

JSP tag packages
webwork.velocity.tag.path =
 com.opensymphony.webwork.views.velocity.ui

Later in this chapter, we’ll discuss more advanced WebWork-Velocity integration
features, such as custom Velocity contexts and JSP tag support.

velocity.properties
Velocity’s standard configuration takes place in velocity.properties. This configu-
ration isn’t WebWork-specific, and you can find in-depth configuration options in
the Velocity documentation. Typically, you should specify your own configuration
if you need to specify custom Velocity macros or override how Velocity templates
are loaded.

NOTE By default, WebWork loads resources from the file system as well as the
classloader (wwfile and wwclass). Later in this chapter, we’ll discuss how
those resources are loaded and point you in the right direction if you
wish to load resources from other sources, such as a database.

The following example shows sample velocity.properties content. This configura-
tion is for products offered by Jive Software and overrides how Velocity does its
logging, the template-loading options, and which macros are included by default
(webwork.vm):

runtime.log.logsystem.class = com.jivesoftware.base.log.JiveLogImpl
resource.loader = wwfile, wwclass, jive
jive.resource.loader.public.name = Jive
jive.resource.loader.description = Jive Velocity Resource Loader
jive.resource.loader.class =
 com.jivesoftware.util.JiveVelocityResourceLoader
velocimacro.library = webwork.vm

These properties are all part of the standard Velocity configuration options. You
can learn more about them in the Velocity documentation. However, we wish to
call special attention to the inclusion of the webwork.vm velocimacro library. This
file is included by default with WebWork and contains the following:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Basic syntax and operations 259
#macro(bean $bean_name $name)
 #set ($name = $webwork.bean($bean_name))
#end

#macro(includeservlet $name)
 $webwork.include($name,$req,$res)
#end

#macro(url $name)
 #set ($name =
 $webwork.bean("com.opensymphony.webwork.util.URLBean"))
 $name.setRequest($req)
 $name.setResponse($res)
#end

#macro(property $object $property)
$!{ognl.findValue($property, $object)}
#end

In section 10.3.2, we explain where $webwork comes from. In the meantime, know
that webwork.vm provides a few helpful macros you can use in your Velocity tem-
plates. More important, know that you can make your own Velocity macro files
modeled after this one and include them in velocity.properties. Once you do that,
the macros are available for any Velocity template you write. And on that note,
let’s look at the basic syntax of Velocity so you can start writing templates.

10.2 Basic syntax and operations

Now that you know how to configure Velocity and you understand the issues
involved when choosing a runtime or compile-time language, let’s begin to
explore Velocity’s basic features. These include simple things such as printing
data and calling methods. In addition to displaying data, you’ll almost always need
to use conditional logic and repeating loops. Finally, it’s sometimes helpful to save
the value of an expression in a variable so you can reuse it later without recomput-
ing the entire expression.

NOTE In all the examples in this chapter, we assume that the velocity result
type is being used and that a simple action similar to those found in
CaveatEmptor has been requested via a web browser.

10.2.1 Property access

Let’s begin by displaying simple data elements. Here’s what the JSP might look
like for a simple page displaying an item up for bid. Note that the JSP code does
not use the tag libraries you learned in chapter 9:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

260 CHAPTER 10

Velocity
<% Item item = request.getAttribute("item"); %>
<h3><%= item.getName() %></h3>
Seller: <a href="mailto:<%= item.getSeller().getEmail() %>">
 <%= item.getSeller().getUsername() %>

Description: <%= item.getDescription() %>

Date listed: <%= item.getStartDate() %>

Let’s now rewrite the example using the JSP tags you learned in chapter 9:

<h3><ww:property value="item.name"/></h3>
Seller: <a href="mailto:<ww:property value="item.seller.email"/>">
 <ww:property value="item.seller.username"/>

Description: <ww:property value="item.description"/>

Date listed: <ww:property value="item.startDate"/>

Finally, let’s rewrite the example one more time, using Velocity:

<h3>$item.name</h3>
Seller:
 $item.seller.username

Description: $item.description

Date listed: $item.startDate

Note that Velocity uses the familiar dot syntax that WebWork’s expression lan-
guage uses. Similarly, you can chain together properties, just as you did with
$item.seller.email. This is all exactly like WebWork’s expression language,
explained in chapter 8, “Getting data with the expression language.” However,
remember that this language is not WebWork’s expression language (EL); it’s still
Velocity. There are similarities but also differences, and using the two languages
can get confusing.

 You access these variables through a Velocity context (VelocityContext). This is
an object that contains all the available objects Velocity can access for a given page.
WebWork creates a special version of the VelocityContext that automatically maps
calls in the form of $xxx to the WebWork expression xxx. However, $xxx.yyy is not
the same as a WebWork expression xxx.yyy. Rather, it’s the WebWork expression
xxx; then Velocity takes the responsibility of finding the yyy property on the object
returned by WebWork. It’s a subtle but important difference.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Basic syntax and operations 261
 If any Velocity expression returns null, Velocity writes the expression out
directly: $fakeObject. This can be useful when you want to see where you aren’t
getting data that you thought you were. But other times, you’ll wish to display
nothing when the expression results in null. You can do this using the $! modifier
rather than the $ modifier. So now, if you have $!fakeObject, nothing is displayed.

10.2.2 Method calls

Sometimes, simple getters and setters aren’t enough. Just as WebWork’s EL pro-
vides a way to call methods, so does Velocity. Suppose you want to extend the pre-
vious example and display the number of bids an item has. Because Collections
use the method size() rather than getSize(), you need to use a method call
rather than a simple property:

<h3>$item.name</h3>
Seller:
 $item.seller.username

Description: $item.description

Date listed: $item.startDate

Bids: $item.bids.size()

Similarly, you could retrieve any of the properties using the getXxx() method syn-
tax, such as $item.getName(). Typically you should avoid method calls, because
the property syntax is easier to read and is less verbose.

10.2.3 Control statements: if/else and loops

Velocity also has simple control structure, just like the JSP tags from chapter 9. You
can loop over collections as well as provide if/else blocks. Let’s start with looping
over data and then see how you can conditionally display data using the if/else
directives.

Loops: the foreach directive
Continuing with our example, let’s look at this page from the point of view of the
item’s owner. The owner wants to be able to view the bids on the item. This is eas-
ily done in Velocity by invoking a #foreach loop:

<h3>$item.name</h3>
Seller:
 $item.seller.username

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

262 CHAPTER 10

Velocity

Description: $item.description

Date listed: $item.startDate

Bids: $item.bids.size()

<table>
<tr>
 <td>Bid Number</td>
 <td>Bidder</td>
 <td>Amount Bid</td>
 <td>Date Placed</td>
</tr>
#foreach($bid in $item.bids)
 <tr>
 <td>$velocityCount</td>
 <td>
 $bid.username

 </td>
 <td>$bid.amount</td>
 <td>$bid.created</td>
 </tr>
#end
</table>

Here you create a simple table with one row for each bid. In Velocity, the directives
are identified by the hash (#) character. This example uses the built-in directive
foreach. It works by specifying a variable name that is available in the loop ($bid)
as well as the values to loop over ($item.bids).

 Now let’s look inside the loop. You can see two variables that haven’t been used
before: $bid and $velocityCount. The $bid variable was defined in the foreach
directive arguments; Velocity will use this variable name for each object in the iter-
ation. The $velocityCount variable is created and populated for any foreach
directive; this value represents the count of the current loop.

 Velocity can iterate over Collections, Lists, Sets, Arrays, and even Maps. This is
somewhat similar to how the iterator JSP tag works but not exactly the same. For
example, when the iterator tag loops over a Map, the item in each loop is a
Map.Entry object. In Velocity, the item is the value of map. If you wish to loop over
the Map.Entry objects, you need to use $map.entrySet() rather than just $map as
your values, as shown here:

The values stored in the map are:
#foreach ($value in $map)
 $value#end<p/>
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Basic syntax and operations 263
The actual mappings in the map are:
#foreach ($entry in $map.entrySet())
 $entry.key -> $entry.value
#end

In addition, there is another key difference between the iterator tag and the
foreach directive: The iterator tag pushes each object onto the value stack, but
the foreach directive doesn’t. This is the case because Velocity has no concept of
the value stack. However, you can emulate the behavior of the iterator tag by
pushing the object directly on the stack yourself. The following example shows
both ways to loop over a list of bids:

Without pushing the bids on to the stack:
#foreach($bid in $item.bids)
 <tr>
 <td>$velocityCount</td>
 <td>
 $item.bidder.username

 </td>
 <td>$bid.amount</td>
 <td>$bid.created</td>
 </tr>
#end

With pushing the bids on to the stack:
#foreach($bid in $item.bids)
 $stack.push($bid)
 <tr>
 <td>$velocityCount</td>
 <td>
 $bidder.username

 </td>
 <td>$amount</td>
 <td>$created</td>
 </tr>
 #set ($trash = $stack.pop())
#end

In the first example, the contents of the loop refer to the values by prepending
every expression with $bid. In the second example, this is no longer needed
because the Bid object is pushed onto the value stack. Recall that $xxx maps to a
WebWork EL expression of xxx; inside the loop, $amount asks WebWork for the
output of the expression amount, which in turn accesses the Bid object before the
other items in the value stack.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

264 CHAPTER 10

Velocity
 This example introduces two new concepts: the $stack variable and the set
directive. We’ll discuss those shortly.

NOTE Velocity doesn’t have a concept of scopes like the Java language does. That
is, variables defined in loops and if/else blocks are still accessible after
those blocks have finished executing. For example, after the list of bids is
displayed, you can still reference $bid and get access to the most recent
bid. This often confuses new Velocity users, so you should remember it.
Consult the Velocity documentation for more information about the
consequences of this behavior.

Conditional logic using the if/else directives
Suppose you want to modify the working example such that a table is displayed
only if the user has one or more bids. Otherwise, the text No bids have been placed
should be displayed. Here’s how you can do this:

<h3>$item.name</h3>
Seller:
 $item.seller.username

Description: $item.description

Date listed: $item.startDate

Bids: $item.bids.size()

#if($item.bids.size() > 0)
<table>
<tr>
 <td>Bid Number</td>
 <td>Bidder</td>
 <td>Amount Bid</td>
 <td>Date Placed</td>
</tr>
#foreach($bid in $item.bids)
 <tr>
 <td>$velocityCount</td>
 <td>
 $item.bidder.username

 </td>
 <td>$bid.amount</td>
 <td>$bid.created</td>
 </tr>
#end
</table>
#else
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced techniques 265
 No bids have been placed.
#end

In addition to the if and else directives, an elseif directive is also available. Let’s
now look at the set directive you briefly saw earlier.

10.2.4 Assigning variables

From time to time, you’ll want to create your own Velocity variables. This is most
often done to simplify your templates. For example, rather than access
$some.long.expression all over the place, you may wish to alias it as $sle. This
can be accomplished with the set directive:

#set($seller = $item.seller)

Once you’ve done this, for the rest of the page you can reference the object
$seller directly. Not only is this easier on your fingers, but it also keeps the full
expression from being evaluated multiple times. You may see a performance gain
as well, depending on what your object graph looks like and whether any complex
operations are happening in the background when the expression evaluates.

 In the previous example, you saw the following:

#set ($trash = $stack.pop())

This line sets a variable $trash to the value of the item being popped off the value
stack. In that example, you did this (and called the variable trash) because you
needed to pop the value off the stack but not display it. If you used $stack.pop(),
the object would be written out.

10.3 Advanced techniques

In addition to the simple things you’ve already seen, Velocity has a few more tricks
up its sleeve. We won’t go through all the features and built-in directives it sup-
ports, because an entire book could be devoted to the topic. However, with the
information you learned in the last section, you should be able to produce com-
plete Velocity templates by now.

 Certain advanced topics aren’t Velocity-specific but rather are related to how
WebWork integrates with Velocity. In this section, we’ll go over these topics.

10.3.1 The VelocityContext

As we’ve mentioned, Velocity gets all its variables via a VelocityContext. The
VelocityContext is similar to the ActionContext in WebWork: It’s a simple map
where variables can be stored. When WebWork and Velocity are integrated
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

266 CHAPTER 10

Velocity
together, the difference is that WebWork provides a custom implementation
called the WebWorkVelocityContext. It checks local variables first; then, if nothing
can be found, it evaluates a WebWork expression against the value stack using the
requested variable as the expression.

 This is how $xxx turns into a WebWork expression of xxx, and why $xxx.yyy
doesn’t invoke an expression of xxx.yyy. The VelocityContext is asked to find xxx
first; once an object is found (via a request for the WebWork expression xxx),
Velocity calls getYyy() on the object returned.

10.3.2 WebWork-supplied objects in the context

WebWork automatically provides a set of objects in the value stack. These variables
aren’t evaluated against the value stack, because the stack is called only if nothing
is found in the base context. These variables are listed in table 10.1.

The req and res variables are straightforward—if you require access to the
request/response objects, they’re easily available. The stack variable is also pretty
straightforward: Methods such as push(), pop(), and findValue() are the most
often used. Consult the JavaDocs for OgnlValueStack for more details.

 The action variable may be useful if you wish to access your action class
directly. Typically, doing so is discouraged because it ties you down too tightly to
your action classes. However, sometimes direct access to the class (as opposed to
indirection via the value stack) is required.

 The webwork variable provides many utility functions, such as parsing numbers,
encoding strings as HTML, converting plain text to HTML, and including other
pages. Consult the JavaDocs for the VelocityWebWorkUtil and WebWorkUtil classes
for more information.

Table 10.1 Default objects in the WebWorkVelocityContext

Variable Class Description

req javax.servlet.http.HttpServletRequest The HTTP request object

res javax.servlet.http.HttpServletResponse The HTTP response object

stack com.opensymphony.xwork.util.OgnlValueStack The value stack

webwork com.opensymphony.webwork.util.VelocityWeb-
WorkUtil

Simple utility object

action com.opensymphony.xwork.Action (your action
class)

The action executed; useful if
you don’t wish to use the
value stack
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced techniques 267
10.3.3 Customizing the Velocity context

Sometimes, the default variables provided by WebWork aren’t enough. For exam-
ple, you may have a certain utility object you want to be available in all your Velocity
templates. You can accomplish this by creating your own VelocityContext class.
The default WebWorkVelocityContext is designed to chain together multiple con-
texts, allowing you to use WebWork’s context but also include additional variables.

 For example, Velocity doesn’t provide a simple way to access math functions
from your template. Because the Math class uses static methods, you can’t easily
access those functions. Instead, you can create a wrapper class and then make
sure that object is available using the math variable in your templates. Here’s a
complete example:

public class MathVelocityContext extends VelocityContext {
 public static final String MATH = "math";

 private static final MathUtil O_MATH = new MathUtil();

 public Object internalGet(String key) {
 if (MATH.equals(key)) {
 return O_MATH;
 } else {
 return super.internalGet(key);
 }
 }

 public boolean containsKey(Object o) {
 return MATH.equals(o) || super.containsKey(o);
 }

 public static class MathUtil {
 public long round(double a) {
 return Math.round(a);
 }

 public double ceil(double a) {
 return Math.ceil(a);
 }
 }
}

Configuring WebWork to chain with this Velocity context requires you to edit web-
work.properties. As you saw previously, the webwork.velocity.contexts key can
be configured as a comma-separated list of contexts. Adding the following to web-
work.properties configures the velocity context and guarantees that $math always
references to a single instance of the MathUtil class:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

268 CHAPTER 10

Velocity
Comma separated list of VelocityContext classnames
to chain to the WebWorkVelocityContext
webwork.velocity.contexts = com.acme.MathVelocityContext

That’s all there is to WebWork-specific configuration related to Velocity. We highly
recommend that you consult the Velocity documentation to get a better grasp of
the overall language. In the meantime, let’s go over two more features that are
unique to WebWork’s Velocity integration: JSP tag support and resource loading.

10.4 Using JSP tags in Velocity

WebWork provides limited support for using JSP tags in Velocity. Unfortunately,
the implementation is far from perfect and isn’t guaranteed to behave correctly
on all application servers. The general idea is that WebWork provides three new
directives: tag, bodytag, and param. Here are a few examples of using JSP tags in a
Velocity template:

Generate a query URL for Google:
#bodytag(URL "value=http://www.google.com")
 #param("name=q" "value=OpenSymphony")
#end

Generate a URL for the current page:
#tag (URL)

You specify tags by name ("URL") based on the classname of the tag implementa-
tion. Because the url tag is implemented as the class com.opensymphony.web-
work.views.jsp.URLTag, the string "URL" maps to this class. Remember,
webwork.properties by default contains the following value:

JSP tag packages
webwork.velocity.tag.path =
 com.opensymphony.webwork.views.velocity.ui

If you wish to use other JSP tags, you can add the packages of those tags to web-
work.properties. The tags’ classes may be in the form XxxTag or Xxx—WebWork
will search for both classes.

NOTE Although the WebWork JSP tags, including the UI tags, have been tested
and verified to work inside Velocity, other tags may not work so well. Sev-
eral critical bugs have been reported with JSP tag support, most relating
to how buffered content is handled. It’s highly recommended that you
not try to depend on this functionality. If you wish for a non-JSP template
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 269
language that supports JSP tags, we recommend the much more robust
FreeMarker template library. Future versions of WebWork may switch all
internal templates to FreeMarker due to its superior feature set.

10.5 Loading Velocity templates

Velocity supports the concept of resource loaders: pluggable classes that can load
templates from any location. Typically, templates are loaded from files on disk,
although sometimes they’re loaded from a database or even a URL. WebWork pro-
vides two default resource loaders: wwfile and wwclass, in that order.

 The wwfile resource loads templates from your web application using the Serv-
let API to access actual java.io.File objects (rather than access resource streams
through the class loader). That is, if your WAR file or expanded WAR has a file
located in /template/test.vm, and you have an action-result mapping of <result
name="success" type="velocity">/template/test.vm</result>, the wwfile

resource loader finds test.vm. Note that the root of the wwfile resource loader (/)
is relative to your web application, not your server’s file system.

 The wwclass resource loader loads templates from the classpath, including any
JAR in WEB-INF/lib as well as any resources in WEB-INF/classes. This is useful if
you want to package templates in your binary JAR files. Because the wwclass
resource loader comes after the wwfile resource loader, files take priority. So, you
can provide default templates in a JAR or in WEB-INF/classes but then override
some of them by providing them in your web application/WAR contextbase. This
ability becomes useful when you’re customizing the UI taglibs, as discussed in
chapter 15 (“Best practices”).

 Sometimes, you may also wish to provide your own resource loader implemen-
tation. For example, you might want to store templates in a database and load
from there. You can do so by editing velocity.properties, as shown at the start of
this chapter. You’ll probably also want to keep the wwfile and wwclass resource
loaders as well. See the first code snippet in this chapter for a real-world example
of an additional resource loader being used. Consult the Velocity documentation,
including the ResourceLoader interface, for more information.

10.6 Summary

This chapter provided a high-level introduction to Velocity as the template frame-
work as well as a low-level detailing of all the unique WebWork-Velocity integra-
tion points you should be aware of. However, it’s by no means meant to serve as a
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

270 CHAPTER 10

Velocity
complete guide to Velocity. We recommend that you check out the tutorials avail-
able on the Internet to learn more about Velocity if you’re going to get serious
about using alternatives to JSP.

 Velocity is extremely important to WebWork because all the default UI tags are
written in Velocity. They may change to another template language like
FreeMarker, but the fundamentals are essentially the same. The UI tags are a huge
part of WebWork’s functionality; in order to fully take advantage of them, know-
ing Velocity is a must. We highly recommend that you consult the Velocity docu-
mentation if you’re having any trouble—it’s an excellent resource and will
introduce you to other built-in directives not covered in this chapter.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI components
This chapter covers
■ Why WebWork’s UI tags are useful, even for

advanced HTML designers
■ Built-in UI tags, such as form, textfield,

and select
■ How to build your own themes by extending

existing ones
■ How to create your own templates using the

Component tag
271

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

272 CHAPTER 11

UI components
Professional web sites have a consistent look and feel. This standard look and feel
is typically achieved through many means, including standard colors and fonts,
layout, and page flow. Technologies like HTML, CSS, and Java can help address
these different requirements. WebWork goes one step further and provides a
framework in which all these technologies are integrated together, allowing you to
build rich, standardized web applications. Specifically, WebWork provides a great
set of tags that assist with building forms for users to use to interact with your web
site. These tags are different than those discussed in chapter 9 (“Tag libraries”) in
that they focus on producing HTML, especially for building HTML forms. These
tags are referred to as UI tags because they’re used to build up rich user interfaces.

 In this chapter, we’ll look at the pain that developers face when building forms
without frameworks like WebWork. We’ll then show you what the same forms look
like when they’re built using UI tags, and we’ll explain what each of those tags
does. This chapter includes a complete reference for every UI tag and shows you
how to customize the UI tags and build components that can be reused by content
developers. Chapter 15 will explore advanced WebWork topics, including build-
ing up your own theme library and other UI tag best practices.

11.1 Why bother with UI tags?

Many developers (especially those who come from a background of producing
HTML) complain that tags such as WebWork’s UI tags take away their ability to
build web applications that meet their specific needs. We’re going to show that
this initial reaction is incorrect and why UI tags are the only way to build large-
scale sites with a consistent look and feel while minimizing potential bugs.

NOTE WebWork’s UI tags are just one of many solutions that can help with a
consistent look and feel. Another project often used along side WebWork
is SiteMesh, which is used in the CaveatEmptor application, although it
isn’t detailed in this book. SiteMesh uses the Decorator pattern to apply a
common style to all your pages without your having to make any changes
to them. You can learn more about SiteMesh at http://www.opensym-
phony.com/sitemesh.

11.1.1 Eliminating the pain

Before we explain what the UI tags are, let’s first look at the problem that thousands
of Java developers face every day when building web applications. In this chapter,
we’ll focus on CaveatEmptor’s Update Profile screen, shown in figure 11.1.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Why bother with UI tags? 273
This is a typical form that every HTML developer is familiar with. It includes text
fields, radio buttons, drop-down selections, and checkboxes. We’ll now look at the
evolution of how this example turned from an ugly JSP-only implementation into
a clean implementation using WebWork’s UI tags.

Example: pure JSP
In order for you to understand why UI tags are necessary, we need to explore what
life is like without tags or components to assist with building HTML forms. The JSP
code in listing 11.1 is a simple implementation of the form in figure 11.1.

<%
 User user = ActionContext.getContext()
%>
<form action="updateProfile.action" method="post">
<table>
<tr>
 <td align="right"><label>First name:</label></td>
 <td><input type="text" name="user.firstname"
 value="<%= user.getFirstname() %>"/></td>
</tr>
<tr>
 <td align="right"><label>Last name:</label></td>
 <td><input type="text" name="user.lastname"
 value="<%= user.getLastname() %>"/></td>
</tr>
<tr>
 <td align="right"><label>Email:</label></td>
 <td><input type="text" name="user.email"
 value="<%= user.getEmail() %>"/></td>

Figure 11.1
Update Profile form

Listing 11.1 A simple JSP-only implementation

b Simple
text field
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

274 CHAPTER 11

UI components
</tr>
<tr>
 <td align="right"><label>Gender:</label></td>
 <td>
 <input type="radio" name="user.gender" value="0" id="user.gender0"
 <% if (user.getGender() == 0) { %>
 checked="checked"
 <% } %> />
 <label for="user.gender0">Male</label>

 <input type="radio" name="user.gender" value="1" id="user.gender1"
 <% if (user.getGender() == 1) { %>
 checked="checked"
 <% } %> />
 <label for="user.gender1">Female</label>
 </td>
</tr>
<%
 Address address = user.getAddress();
 boolean nullAddress = address == null;
%>
<tr>
 <td align="right"><label>Street Address:</label></td>
 <td><input type="text" name="user.address.street"
 value="<%= !nullAddress ?
 address.getStreet() : ""%>"/></td>
</tr>
<tr>
 <td align="right"><label>Zip Code:</label></td>
 <td><input type="text" name="user.address.zipcode"
 value="<%= !nullAddress ?
 address.getZipcode() : ""%>"/></td>
</tr>
<tr>
 <td align="right"><label>City:</label></td>
 <td><input type="text" name="user.address.city"
 value="<%= !nullAddress ?
 address.getCity() : ""%>"/></td>
</tr>
<tr>
 <td align="right"><label>State:</label></td>
 <td><select name="user.address.state">
 <option value="California"
 <% if (!nullAddress &&
 "California".equals(address.getState())) { %>
 selected="selected"
 <% } %>>California</option>
 <option value="Oregon"
 <% if (!nullAddress &&
 "Oregon".equals(address.getState())) { %>
 selected="selected"

CTwo radio buttons

DSimple text field
with null check

EDrop-down
selection field
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Why bother with UI tags? 275
 <% } %>>Oregon</option>
 </select></td>
</tr>
<tr>
 <td align="right"><label>Country:</label></td>
 <td><select name="user.address.country">
 <option value="USA"
 <% if (!nullAddress &&
 "USA".equals(address.getCountry())) { %>
 selected="selected"
 <% } %>>USA</option>
 <option value="Canada"
 <% if (!nullAddress &&
 "Canada".equals(address.getCountry())) { %>
 selected="selected"
 <% } %>>Canada</option>
 <option value="Mexico"
 <% if (!nullAddress &&
 "Mexico".equals(address.getCountry())) { %>
 selected="selected"
 <% } %>>Mexico</option>
 <option value="Other"
 <% if (!nullAddress &&
 "Other".equals(address.getCountry())) { %>
 selected="selected"
 <% } %>>Other</option>
 </select></td>
</tr>
<tr>
 <td colspan="2">
 <table>
 <tr>
 <td valign="middle">
 <input type="checkbox" name="user.address.poBox"
 value="true"
 <% if (!nullAddress && address.isPoBox()) { %>
 checked="checked"
 <% } %>/>
 </td>
 <td valign="middle" width="100%">
 <label>P.O. Box</label>
 </td>
 </tr>
 </table>
 </td>
</tr>
<tr>
 <td colspan="2"><div align="'right'">
 <input value="Update Profile" type="submit"/>
 </div></td>
</tr>

FSimple checkbox

E Drop-down
selection field
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

276 CHAPTER 11

UI components
</table>
</form>

This is a typical input field. Note that the name is user.firstname, which matches
the expression language graph for that action: getUser().setFirstname(...).
This is the least complex type of form element and is considered the base for
other form elements to build on. All elements in this example use the same nam-
ing convention.

The radio buttons associated with the Male/Female choice are another common
form element. This type is a bit more complicated for two reasons:

■ The labels for the radio buttons must be associated with the radio element,
so that clicking the label selects the element. This is done with the id
attribute in the input element and the for attribute in the label element.

■ In order to make an element be checked, the checked attribute must be set.
The code here must compare the real value to the different options and
determine which radio button should be preselected.

This is another typical input field, but with a twist. Because the Address object may
be null, you have to check it to avoid a NullPointerException. If the object is null,
you set the initial value to an empty string.

This select box is almost exactly like the radio buttons. Select boxes and radio but-
tons are, at least conceptually, pretty much the same thing. The only difference is
the layout and interface behavior.

Looking at figure 11.1 again, you can see that the checkbox element differs from the
rest because the label is to the right of the form element rather than to the left. This
is a common requirement because many users feel that it just makes sense. To ensure
that the checkbox row isn’t affected by the labels and form elements in the rest of
the table, you create a table inside the cell to allow the element to be independent.

Whew! That’s a lot of code, and it’s painful to look at. The main thing to notice is
that the listing contains well over 100 lines of code, and all it does is display a basic
form. Toss in styling, error reporting, and internationalization, and the number
of lines will grow even more.

Example: using simple tags
Let’s make the next evolution in form layout and address some of the pain that
each form element causes. Notice that every form element is responsible for

B

C

D

E

F

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Why bother with UI tags? 277
either setting a value attribute or ensuring that the correct value is preselected
(radio, checkbox, and select). We’ll look at an imaginary tag library that
addresses this pain and makes the JSP a little more readable. We won’t reprint the
entire example, because it’s still unnecessarily long, but listing 11.2 addresses the
five examples called out in listing 11.1.

<tr>
 <td align="right"><label>First name:</label></td>
 <td><form:textfield name="user.firstname"/></td>
</tr>
...
<tr>
 <td align="right"><label>Gender:</label></td>
 <td>
 <form:radio name="user.gender" value="0" id="user.gender0"/>
 <label for="user.gender0">Male</label>
 <form:radio name="user.gender" value="1" id="user.gender1"/>
 <label for="user.gender1">Female</label>
 </td>
</tr>
...
<tr>
 <td align="right"><label>Street Address:</label></td>
 <td><form:textfield name="user.address.street "/></td>
</tr>
...
<tr>
 <td align="right"><label>State:</label></td>
 <td>
 <form:select name="user.address.state">
 <form:option value="California"/>
 <form:option value="Oregon"/>
 </form:select>
 </td>
</tr>
...
<tr>
 <td colspan="2">
 <table>
 <tr>
 <td valign="middle">
 <form:checkbox name="user.address.poBox" value="true"/>
 </td>
 <td valign="middle" width="100%">
 <label>P.O. Box</label>
 </td>
 </tr>

Listing 11.2 A simple implementation using imaginary JSP tags

b Same simple
text element

CMuch
simpler radio

implementation

D No more
null checks

E Much simpler select
implementation

FMuch simpler checkbox
implementation
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

278 CHAPTER 11

UI components
 </table>
 </td>
</tr>

The base element, the text field, is slightly simpler. The value is determined based
on the name of the element, and the value is looked up using WebWork’s expres-
sion language. Keep in mind that these tags are made up for the purpose of this example
and do not exist!

The radio implementation is simpler now, too. You no longer have to include a
bunch of if statements to fill out the selected attribute. The tag handles this task,
leaving you to focus on the layout of the labels and form elements.

This field is exactly like the other text field. You no longer have to worry about
null checks—the tag takes care of that.

Like the radio selection, these new tags let you avoid worrying about the selected
attribute.

The checkbox still has the complicated table within a table layout, but at least you
don’t have to worry about setting the checked attribute.

This code looks nicer, but it still contains a lot of repetition. With these imaginary
tags, you avoid having to set the value of elements or indicate them as checked or
selected. You also avoid having to do any null checks. However, you’re left with the
problem of having to repeat the layout (table structure, in this example) over and
over again.

NOTE The Struts framework provides tags that are very similar to the imaginary
ones presented here. They work nicely, but we think the tags included
with WebWork go that extra mile in helping you reuse HTML and code,
thereby decreasing your development time as well as decreasing the
number of bugs that might occur due to long copy-and-paste exercises.

Example: WebWork UI tags
Let’s now examine the code that creates this form using the UI tags that are part
of WebWork. The tags build on the conceptual ideas represented by the imagi-
nary tag library, but they go even further: They let you build forms using much
larger building blocks, and you don’t have to worry about ensuring that your
HTML is standardized. Listing 11.3 demonstrates how much easier UI tags are to
work with.

B

C

D

E

F

F Much simpler checkbox
implementation
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Why bother with UI tags? 279
NOTE Unlike the example in listing 11.2, the example code in listing 11.3 is real
and is available for you to try out immediately.

<ww:form action="updateProfile" method="post">
<ww:textfield label="First name" name="user.firstname"/>
<ww:textfield label="Last name" name="user.lastname"/>
<ww:textfield label="Email" name="user.email"/>
<ww:radio label="Gender" name="user.gender"
 list="#{0 : 'Male', 1 : 'Female'"/>
<ww:textfield label="Street" name="user.address.street"/>
<ww:textfield label="Zip Code" name="user.address.zipcode"/>
<ww:textfield label="City" name="user.address.city"/>
<ww:select label="State" name="user.address.state"
 list="{'California', 'Oregon'}"/>
<ww:select label="Country" name="user.address.country"
 list="{'USA', 'Canada', 'Mexico', 'Other'}"/>
<ww:checkbox label="P.O. Box" name="user.address.poBox"
 fieldValue="true"/>
<ww:submit value="Update Profile"/>
</ww:form>

This time, you don’t even output the table rows and cells. Rather, the UI tag takes
care of the entire row. In section 11.2.2, you’ll see where the HTML came from.

Notice that there is no longer any HTML, including the HTML for the select and
option tags required to display a drop-down selection list. Instead, you specify the
name of the element (which, in turn, gets the value based on the assumption that
the name is the expression to retrieve the value) as well as a list of the possible
selection choices.

 Notice that the list attribute is actually a Map represented in the expression lan-
guage (see chapter 8 for a review). The Map contains two entries: a key of 0 (zero)
mapping to Male, and a key of 1 (one) mapping to Female. The tag looks at the
value of the expression user.gender and determines which should be selected.

Once again, you don’t have to do any null checking. This example is now exactly
like B.

Because radio buttons and select boxes are so similar, it isn’t surprising that the
tags to produce those elements are almost exactly the same. The only difference
from C is that the list attribute is a List rather than a Map.

Listing 11.3 A much simpler implementation using WebWork’s UI tags

B

C

D

E

B

C Outputs multiple
form elements

D

E Outputs select and
option elements

F Handles all
complex layout
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

280 CHAPTER 11

UI components
The checkbox is like the other tags, except for the additional attribute field-
Value. This tells the UI tag what the value of the parameter should be if the form
is submitted with the checkbox checked.

The code is much simpler now. Instead of the original 120+ lines of code, you have
fewer than 20 lines of code when the UI tags are used. That means you avoid writ-
ing at least 85 percent of the code you would have if you hadn’t use the UI tags. But
what happened to the HTML? It must be somewhere! In the next section, we’ll take
a detailed look at the UI tags and how they control layout and much more.

11.1.2 More than just form elements

As you saw in the last section, WebWork’s UI tags do a lot more than output the
HTML form elements. They also ensure that a common layout is followed and that
a consistent style is used. On top of that, the tags also take care of error reporting
and integrate seamlessly with the rest of the WebWork framework. In this section,
we’ll examine the individual features of the UI tags and go over the benefits they
bring to the table.

Layout
As you’ve seen, most forms use tables to align labels and form elements. WebWork
uses this assumption and automatically handles the entire form layout for you.
This means when you’re using the UI tags, you don’t need to write a single table,
row, or cell element in HTML: WebWork takes care of all that. Figure 11.2 shows
figure 11.1 again, but this time with the table cells
clearly outlined.

 The ww:form tag is responsible for creating the form
element as well as the surrounding table. The rest of
the tags are responsible for creating one row in the
table. Some tags, such as the checkbox and submit
button, don’t follow the standard two-column
approach. Rather, they output a single table cell that
spans both columns so they can do special formatting.

Errors
In addition to being responsible for creating a sin-
gle row, each tag is also responsible for displaying
any errors that may be associated with that field. For
example, if you try to submit the Update Profile

Figure 11.2 Figure 11.1 redrawn
with the table clearly outlined

F

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Why bother with UI tags? 281
form with a blank first name, WebWork’s valida-
tion framework will kick into place and return an
error indicating that the field is required.

 Displaying the actual error is up to the UI tags.
Figure 11.3 shows a form that has just been sub-
mitted and on which an error occurred. The
error is displayed above the row the tag renders,
and both the label and the error message are col-
ored red to gain the user’s attention.

 Suppose you want every field in the form to be
able to display errors. If you were using pure JSP,
the code for a single field would have to be
updated to check for any error messages and, if
there were any, to display another row for each
error immediately above the field. Here’s an
example of such code:

<%
 User user = (User) request.getAttribute("user");
 Map fieldErrors = (Map) request.getAttribute("fieldErrors");
 if (fieldErrors == null) {
 fieldErrors = Collections.EMPTY_MAP;
 }
%>
...
<%
 if (fieldErrors.containsKey("user.firstname")) {
 List errors = (List) fieldErrors.get("user.firstname");
 for (Iterator iterator = errors.iterator();
 iterator.hasNext();) {
 String error = (String) iterator.next();
%>
<tr>
 <td align="center" valign="top" colspan="2">
 <%= error %>
 </td>
</tr>
<%
 }
 }
%>
<tr>
 <td align="right"><label>First name:</label></td>
 <td><input type="text" name="user.firstname"

Figure 11.3 A form with an error
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

282 CHAPTER 11

UI components
 value="<%= user.getFirstname() %>"/></td>
</tr>
...

Recall that the ActionSupport base class exposes a Map for field-level errors via the
getFieldErrors() method. Also recall that the keys in that Map are the field
names, whereas the values in the Map are List objects, with each List containing
one or more errors associated with the field. This example shows how you could
manually display the field errors. Rather than go through all that hassle, the UI
tags do this for you automatically.

Styles
In addition to handling layout and error reporting, the UI tags also reference a set
of styles that you can define in your Cascading Style Sheets (CSS), thereby further
customizing the look and feel. The CSS classes referenced in the HTML produced
by the UI tags are identified in table 11.1.

The recommended values for those styles are included in the WebWork distribu-
tion, but typically developers wish to provide their own values. The default set is
shown here:

.wwFormTable {}

.label {font-style:italic; }

.errorLabel {font-style:italic; color:red; }

.errorMessage {font-weight:bold; text-align: center; color:red; }

.checkboxLabel {}

.checkboxErrorLabel {color:red; }

.required {color:red;}

Table 11.1 CSS classes referenced by the UI tags

Class name Description

wwFormTable Surrounding table produced by the ww:form tag

label Label associated with all UI tags except checkbox

checkboxLabel The label associated with the checkbox tag

errorLabel Used when an error is associated with that field

checkboxErrorLabel Just like errorLabel, except for checkboxes

errorMessage Error message being displayed

required Required notification: * (more on this later)
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag overview 283
These style definitions are very basic and aren’t intended to be the final styles you
use for your application. Rather, they’re meant to be a starting point from which
you can further customize the look of the form such that it fits with the rest of
your application.

Seamless integration
You’ve seen how the UI tags do much more than render HTML form elements. It’s
now time to understand how they work and how they integrate with WebWork.
For example, the ww:select and ww:radio tags are interesting because a single tag
is outputting not only layout HTML but also multiple HTML form elements, such
as select and option, based entirely on the contents of the value stack and the
evaluation of an expression.

 The UI tags are more than just simple tags to render HTML form elements.
We’ve shown how they integrate with ActionSupport to provide seamless error
reporting. To take full advantage of the benefits of the UI tags, it’s recommend
that you utilize all the other features of WebWork, including validation, interna-
tionalization, the expression language, and the value stack.

 During the rest of this chapter you’ll see more examples of how the UI tags
integrate nicely with many of the other features WebWork provides. Let’s now
begin our examination of the UI tags offered by WebWork.

11.2 UI tag overview

Until now, you’ve seen the code you’d need to write if you didn’t use the UI tags.
Because there’s no such thing as magic in programming, we need to explain how
we were able to avoid writing all that code. More specifically, we’ll examine the
templates that WebWork uses to render the various UI components you’ve seen
thus far.

 We’ve also only looked at form layouts using the traditional two-column
approach. Obviously, this won’t work for everyone. In this section we’ll also dis-
cuss the concept of themes and how you can use them to build up distinct sets of
templates for use in your application. Using themes and customized templates,
you can get all the benefits of the UI tags without compromising your site’s layout
and design.

11.2.1 Templates

As we explained in chapter 7, WebWork is a view-agnostic framework. That means
you’re free to write your user interface in JSP, Velocity, FreeMarker, or any other
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

284 CHAPTER 11

UI components
supported technology. The UI tags are no exception. By default, WebWork only
supports JSP tags as the method for invoking the UI tags. This generally isn’t a
problem, because FreeMarker supports JSP tag calls natively and Velocity has inte-
gration provided by WebWork, as explained in chapter 10. Although we don’t dis-
cuss them in this book, recent features in WebWork allow for native invocation
(no JSP tag invocation) to be created. It’s expected that native support for the UI
tags will be provided in WebWork 2.2 or later.

 WebWork UI tags can also be written in any template language, including JSP
and Velocity. However, only one language is provided out of the box: Velocity.
That is the case because Velocity is commonly used and extremely fast. As such, in
this chapter we’ll only review the most typical usage of calling the UI tags: tag calls
from JSP views with Velocity-backed templates.

NOTE To help clear up any confusion between the terms template, theme, and tag,
we provide the following descriptions. A template is a file written in
Velocity, JSP, or FreeMarker that renders HTML markup. A theme is a
collection of templates that, when combined together, form a common
look and feel. A tag is a JSP tag that reads in attributes and renders a
template using those values.

Template lookup
Templates are looked up the same way as all other Velocity templates: through
both the web application server’s ClassLoader and the web application’s file path.
Consult chapter 10 for more details about how this works.

Velocity integration
Using Velocity as a view for your action provides a few default variables in the
VelocityContext, such as $stack, $req, and others. The templates that back up
the UI tags and dictate the HTML that gets rendered are no exception. However,
in addition to those variables, templates invoked by the UI tags also have access to
one more variable: $parameters. This variable is a Map of all the parameters pro-
vided by you when invoking each UI tag. For example, $parameters.label refer-
ences the label specified in the tag.

 Let’s look at the contents of these templates and explain what they’re doing. List-
ing 11.4 shows a simplified version of the Velocity template for the textfield tag.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag overview 285
#parse("/template/xhtml/controlheader.vm")
<input type="text"
 name="$parameters.name"/>
#parse("/template/xhtml/controlfooter.vm")

The controlheader.vm template takes care of opening a new table row, printing
out the label and any errors associated with this input, and positioning the layout
according to the attributes given in the UI tag. Next comes the actual form ele-
ment that is being rendered: This element is included in the right-hand column
of the surrounding table. In this example, the template is much more simplified
than in reality. (You’ll see a complete example shortly.) For now, it’s important to
notice the use of $parameters.name, which prints out the name attribute of the UI
tag. The controlfooter.vm template is responsible for closing the right-hand col-
umn cells as well as the enclosing table row. As you’ll see shortly, this template is
much simpler than controlheader.vm.

 This example demonstrates how a typical UI tag utilizes the same header and
footer components. In the most common case, the header is responsible for print-
ing out the table row and other common features you’ve seen in the form exam-
ples so far. However, as we’ve mentioned, this two-column layout is far from the
only one you can use. In the next section, we’ll explore the concept of themes and
see how customized layouts can quickly be created.

11.2.2 Themes

Up to now, you’ve seen form layouts that use the typical two-column approach.
This approach works for most usages; but when it doesn’t, it can be very frustrat-
ing to try to work around. Some engineers, not knowing they could use alternative
themes, have gone so far as to create surrounding tables for every UI tag just to
ensure that proper HTML is rendered.

 Themes define layout and style. WebWork ships with two themes, both of
which you can extend or copy for your own customized themes. We’ll first look at
the default theme, XHTML, which we’ve been using in all our examples thus far.
Then we’ll look at the simple theme the XHTML theme builds on. Later in this
chapter, we’ll explore the process of creating your own themes.

Listing 11.4 A simplified Velocity template for the textfield tag
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

286 CHAPTER 11

UI components
XHTML theme
The XHTML theme is named that way because it’s the
default theme and renders XHTML-compatible
HTML. However, it does much more than the name
suggests. As you’ve seen, this theme is responsible
for rendering UI tags using the two-column form
layout. The left column is used for the label, and
the right column is used for the actual form ele-
ment, as shown in figure 11.4.

 This theme also provides an alternative way to
render the labels and form elements. Figure 11.5
shows the same form as figure 11.4, using the
alternate label position.

 Let’s explore how these two different layouts
can be rendered by the same theme. The answer
lies in how the header of each template, control-
header.vm, renders the table row. The template is
shown in listing 11.5.

Only show message if errors are available.
This will be done if ActionSupport is used.
#if($fieldErrors.get($parameters.name))
 #set ($hasFieldErrors = $fieldErrors.get($parameters.name))
 #foreach ($error in $fieldErrors.get($parameters.name))
 <tr>
 #if ($parameters.labelposition == 'top')
 <td align="left" valign="top" colspan="2">
 #else
 <td align="center" valign="top" colspan="2">
 #end

 $!webwork.htmlEncode($error)

 </td>
 </tr>
 #end
#end
if the label position is top,
then give the label its own row in the table
<tr>
#if ($parameters.labelposition == 'top')
 <td align="left" valign="top" colspan="2">

Listing 11.5 The contents of controlheader.vm

Figure 11.4 A simple form using
the default label position

Figure 11.5 A simple
form using the top label
position

C

B

C

 Preceding row(s) that
display field errors

Label
position

Label
position
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag overview 287
#else
 <td align="right" valign="top">
#end

#if ($parameters.label)
 <label
 #if ($parameters.id)
 for="$!webwork.htmlEncode($parameters.id)"
 #end
 #if ($hasFieldErrors)
 class="errorLabel"
 #else
 class="label"
 #end>
 #if ($parameters.required)
 *
 #end
 $!webwork.htmlEncode($parameters.label):</label>
#end

</td>

add the extra row
#if ($parameters.labelposition == 'top')
</tr>
<tr>
#end

 <td>

If any field errors are associated with the name of the UI tag, each error is dis-
played as its own row that precedes the label and form element. Note that the error
is HTML-encoded using the $webwork.htmlEncode() utility method. This ensures
that characters like & are converted to HTML-compatible strings such as &.

This is the logic that determines how the table row is laid out. Note that this logic
is required in a few places in the header to provide a good look and feel. Some of
the adjustments are subtle, such as alignment of the error messages, but all are
required in order to give a consistent form layout.

The label is rendered here. Notice that the label is rendered differently, including
an alternative CSS class, depending on whether any errors are associated with the
field.

B

C

D

D

C

E

Actual label

Label position

Opening cell for
form element

C Label
position
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

288 CHAPTER 11

UI components
This is where the right-hand column (or the second row, if you’re using a label-
position of top) is opened. The contents in this cell are the form element itself
and are determined by the template that included controlheader.vm.

The contents of controlheader.vm are fairly complicated but provide some power-
ful features. The most obvious features to note are as follows:

■ Controlheader.vm automatically displays field errors and provides a differ-
ent CSS style for fields that have errors.

■ It allows for a horizontal (two-column) and vertical (two-row) approach to
laying out HTML forms.

■ It provides for a feature-rich label, including a required marker (which
does not currently tie in with the validation framework—it’s merely a visual
indicator), HTML character escaping, and a link from the label to the form
element using the for attribute.

NOTE In HTML, the for attribute on the label tag allows you to link a label to a
form element. The value given for the for attribute must be the ID of the
form element. When they’re properly linked, clicking the label causes the
cursor to focus on the form element specified.

Fortunately, the footer is much simpler than the header. Listing 11.6 shows the
complete contents of controlfooter.vm. As you can see, it merely closes the table
cell (for both two-column and two-row label positions) and the table row.

 </td>
</tr>

That’s all there is to the XHTML theme. It’s the default theme in WebWork and
tends to work well 90 percent of the time. As we mentioned previously, the XHTML
theme extends the simple theme. Let’s now look at the simple theme and see why
it’s called simple.

The Simple theme
Sometimes, a two-column or two-row approach doesn’t work. And sometimes, you
need to use something other than the XHTML theme only once. Rather than make a
new template or theme that won’t be reused, you may want to render the form ele-
ment independently of layouts, labels, and field errors. You can do so using the
simple theme.

Listing 11.6 Contents of controlfooter.vm

E

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag overview 289
 In listing 11.4, you saw an example of a simplified Velocity template for the
textfield tag. Listing 11.7 shows the contents of the textfield template for the
XHTML theme.

#parse("/template/xhtml/controlheader.vm")
#parse("/template/simple/text.vm")
#parse("/template/xhtml/controlfooter.vm")

Notice that the XHTML template wraps a header and footer around the simple tem-
plate. This is how the XHTML theme extends the simple theme—they both use the
same core templates to render the form elements.

 Let’s now look at the contents of the simple theme’s textfield template. List-
ing 11.4 only displayed a simple template that rendered an input element with
the type and name attributes populated. Listing 11.8 shows the complete template,
including all the optional parameters you haven’t seen before.

<input type="text"
 name="$!webwork.htmlEncode($parameters.name)"
#if ($parameters.size)
 size="$!webwork.htmlEncode($parameters.size)" #end
#if ($parameters.maxlength)
 maxlength="$!webwork.htmlEncode($parameters.maxlength)" #end
#if ($parameters.nameValue)
 value="$!webwork.htmlEncode($parameters.nameValue)" #end
#if ($parameters.disabled == true)
 disabled="disabled" #end
#if ($parameters.readonly)
 readonly="readonly" #end
#if ($parameters.tabindex)
 tabindex="$!webwork.htmlEncode($parameters.tabindex)" #end
#if ($parameters.id)
 id="$!webwork.htmlEncode($parameters.id)" #end
#if ($parameters.cssClass)
 class="$!webwork.htmlEncode($parameters.cssClass)" #end
#if ($parameters.cssStyle)
 style="$!webwork.htmlEncode($parameters.cssStyle)" #end
#parse("/template/simple/scripting-events.vm")
/>

Listing 11.7 Template for the XHTML textfield template

Listing 11.8 Template for the simple textfield template

Most parameters
are HTML encoded

Optional
parameters are

checked with an
if statement

Common set of
JavaScript events
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

290 CHAPTER 11

UI components
Most of listing 11.8 is straightforward. Optional attributes are printed out only if
specified, and almost all attributes are encoded using the htmlEncode() helper
method. The only interesting part of this template is the inclusion of the script-
ing-events.vm template. This template is responsible for rendering all the sup-
ported JavaScript event handlers. Because every UI tag supports the same events,
the code is shared among all the simple UI tag templates. Here’s part of scripting-
events.vm, to give you an idea of how WebWork renders the event handlers:

#if ($parameters.onclick)
 onclick="$!webwork.htmlEncode($parameters.onclick)" #end
#if ($parameters.ondblclick)
 ondblclick="$!webwork.htmlEncode($parameters.ondblclick)"#end
...

Once again, the template is simple. All scripting events are handled the same way:
An optional check occurs, and then, if required, the attribute is printed out with
the value escaped for special HTML characters.

 That’s all there is to the simple theme. A complete XHTML UI tag may be a lot
to take in all at once, but it isn’t that bad once all the various templates are broken
down. In figure 11.6, the XHTML textfield template is represented graphically in
two-column mode. You can see how the header is responsible for the error mes-
sages (the top row or rows) and the label (the left-hand column). The XHTML
textfield template then includes the simple textfield template to render the
form element, which in turn calls out to the common scripting events template.
Finally, the footer is included, which closes the row.

 Now that we’ve explored the basics of UI tags, it’s almost time to look at the UI
tags that are available and how to make your own components and themes. But
before you can do any of that, let’s take a quick refresher look at how tag
attributes are evaluated in WebWork; this will affect how you read the UI tag refer-
ence in section 11.3.

XHTML Textfield

XHTML

Footer

Simple Textfield

Simple scripting

events

XHTML Header

Figure 11.6
Graphical representation of the relationship
between the simple and XHTML themes
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag reference 291
11.2.3 Tag attributes

Recall in chapter 9 how tag attributes are parsed. The same applies for the UI tags
discussed in this chapter as well. As we mentioned in that chapter, it’s extremely
important that you understand that this book doesn’t document or cover the nor-
mal syntax that the tags use in WebWork 2.1.x. Rather we decided to focus on the
default syntax that will be used when WebWork 2.2 comes out in the fall of 2005.
We feel that the new syntax is easier to read and new users can get up to speed
much quicker.

 As a reminder, if you’re using WebWork 2.1.4 or higher, you must remember to
enable the alternative syntax order to use the examples in this book. You can do
that by adding the line webwork.tag.altSyntax = true in webwork.properties.

 Please refer to chapter 9 for more detail on how the tag attributes behave. Spe-
cifically, it’s important to understand which attributes are parsed for the %{...}
notation and which are evaluated completely. As a general rule, attributes that are
designated as a String type are parsed for the %{...} notation, while non-String
attributes are automatically evaluated. While this may seem like you’re required to
remember the data type for each attribute, it’s actually very easy to work with. Spe-
cifically, almost all attributes are of type String except for the very few that are
always going to be evaluated (such as the list attribute for Collection-based tags).

 Now that you know how the UI tags work in general, it’s time to look at each
tag offered by WebWork.

11.3 UI tag reference

We’ll now explore several classes of UI tags, ranging from the simple tags you’ve
already seen—such as form and textfield—all the way to Collection-based and
advanced tags. Collection-based tags offer the user a choice of values to select
and/or allow users to select multiple values for a single field. Advanced tags
include custom templates and tags that offer more interactive functionality
through JavaScript.

11.3.1 Common attributes

Every UI tag has a common set of attributes. Before we examine the simple UI
tags, let’s take a moment to discuss the common attributes that all tags support
(although some may choose to ignore certain attributes, depending on the type
of tag). All the attributes except those that deal with labels work for both the sim-
ple and XHTML themes. Table 11.2 lists all the common attributes for the UI tags,
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

292 CHAPTER 11

UI components
the theme they work with (the simple theme implies XHTML by extension), the data
type of that attribute, and the attribute description.

It’s important to underscore the relationship between the tag attributes and the
parameters available to the Velocity templates. Recall from previous code listings
that attributes are available through the $parameters map. That is, the foo
attribute can be retrieved by using the expression $parameters.foo.

 There are a few exceptions to this rule, namely the theme and template
attributes. Because these attributes are used to help determine which template to
load, they aren’t useful as parameters inside the template itself.

Table 11.2 Common attributes for all UI tags

Attribute Theme Data type Description

name simple String Field name the form element maps to.

value simple Object Value of the form element.

label XHTML String Label used by the XHTML theme (ignored by the
simple theme).

labelposi-
tion

XHTML String Location of the element label. By default, the label
is to the left of the element; but specifying top indi-
cates that the label should be in its own row above
the element.

required XHTML Boolean If true, an asterisk appears next to the label indi-
cating the field is required. By default, the value is
true if a field-level validator is mapped to the field
indicated in the name attribute.

id simple String HTML id attribute, allowing for easy JavaScript inte-
gration.

cssClass simple String class attribute of the form element.

cssStyle simple String style attribute of the form element.

disabled simple Boolean disabled attribute of the form element.

tabindex simple String tabindex attribute of the form element.

theme N/A String Theme in which the template should be looked up.
By default, this is either the theme specified in web-
work.properties or the XHTML theme.

template N/A String Template to look up to render the UI tag. All UI tags
have a default template (except the component
tag), but the template can be overridden.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag reference 293
The nameValue parameter
The other exception to that rule is much more important. Rather than the value
attribute being available with the expression $parameters.value, it’s available as
$parameters.nameValue. This is the case because the name and value attributes
have an intertwined relationship. To understand their relationship, look at this
simple form:

<ww:form action="updateProfile">
 <ww:textfield name="user.firstName" value="%{user.firstName}"/>
</ww:form>

As you can see, the value attribute is the evaluation of the name attribute. This is
almost always what you want when building a form, because 99 percent of the
time the field on which you set form data (determined by the name attribute) is
also the field you wish to get data from and display in the form (determined by
the value attribute).

 Rather than enter redundant data for every UI tag, you can define the name of
the field, and WebWork automatically assumes the value for you. Here you can see
what the same tag looks like when the value is implicitly assumed:

<ww:form action="updateProfile">
 <ww:textfield name="user.firstName"/>
</ww:form>

Of course, sometimes you may not want the default value displayed in the form to
be the value of the field. For example, if you were asking a user to pick a screen name
and that screen name had already been selected by a different user, you might wish
to suggest an alternative. You could do so by using a value of %{suggestedUsername}.

The id attribute
Except for the form tag (discussed in section 11.3.2), all UI tags have a default
value for their id attribute. Having a value for the id attribute is nice for a couple
of reasons. First, it makes the form labels more tightly integrated into your form
because they specify the for attribute. Second, knowing that every form element
has an ID allows for easy JavaScript integration. You’re always free to specify your
own id attribute, but by default the value is [formName]_[elementName]. Thus if
you have a form named updateProfile and a field named user.firstname, the id
attribute is updateProfile_user.firstname.

JavaScript events
In addition to the common attributes in table 11.2, all the UI tags in the simple
theme (and, thus, the XHTML theme) support the common setup JavaScript event
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

294 CHAPTER 11

UI components
attributes as well (see table 11.3). These allow for easy JavaScript integration and
let you make your forms much more interactive.

Now that you’re familiar with the common set of attributes, let’s dive into the
basic UI tags.

11.3.2 Simple tags

Simple tags are UI tags that are bound to a single element (rather than Collection-
based tags, which we’ll discuss in section 11.3.3). In addition to these tags, we’ll
also discuss the form tag, which acts as a container for all the tags in this chapter.
The simple tags we’ll discuss are textfield, password, textarea, and checkbox.
These, alone with the form tag, make up the basic elements necessary to get
started with any web-based form. Once you’ve mastered how these tags work, mov-
ing on to the Collection-based and advanced tags should be no problem.

Table 11.3 Common JavaScript event attributes for all UI tags

Attribute Theme Data type

onclick simple String

ondblclick simple String

onmousedown simple String

onmouseup simple String

onmouseover simple String

onmousemove simple String

onmouseout simple String

onfocus simple String

onblur simple String

onkeypress simple String

onkeydown simple String

onkeyup simple String

onselect simple String

onchange simple String
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag reference 295
The form tag
The form tag is unique among all the UI tags because it acts as a container. That is,
it has a start (<ww:form>) and an end (</ww:form>). In the simple theme, it ren-
ders the opening and closing form elements. In the XHTML theme, it renders the
surrounding table in addition to the form elements.

 As such, the form tag maps to two templates: form.vm and form-close.vm. The
common attribute template is mapped to form-close.vm by default. In table 11.4,
you can see another attribute, openTemplate, which by default maps to form.vm.
The other attributes the form tag supports are also listed in table 11.4.

NOTE Some of the common attributes previously listed aren’t applicable to the
form tag. For example, the label attributes don’t affect the form tag’s
behavior.

The two most important attributes to note are action and namespace. When
combined, they’re used to link your form to a particular action. For example,
<ww:form action="updateProfile" namespace="/secure"> submits to /secure/
updateProfile.action. Often, the request that is rendering the current form is
in the same namespace to which you’re submitting, so you can leave out the
namespace. For example, if the form is rendered because of a call to /secure/
updateProfile!default.action, then the namespace is assumed to already be
/secure, and you can use <ww:form action="updateProfile">.

NOTE Notice that the action extension, .action, is used in this example. Recall
that you can change this extension to any value you’d like by editing the
servlet-mapping in web.xml and editing the extension value in

Table 11.4 The form tag attributes

Attribute Data type Description

action String Name of the action to submit to.

namespace String Namespace of the action; defaults to the namespace based on
the current request.

method String POST or GET.

target String Target to which the form submits. Typically a frame name,
_blank, _top, or any of the other special target values.

enctype String Set to multipart/form-data when you’re doing file uploads.

openTemplate String Maps to form.vm by default.

validate Boolean Used for client-side validation.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

296 CHAPTER 11

UI components
webwork.properties. The value in webwork.properties must be the same
as the servlet-mapping, because it’s used to generate the URL used by
the form tag in this example.

This works great when you’re submitting a form to a WebWork action that is part
of your web application. But sometimes you may want to submit to a location that
isn’t a WebWork action or is otherwise unknown by WebWork. Doing so is simple
enough: Provide the URL (complete or relative, it doesn’t matter) in the action
attribute. The form tag can recognize the difference between an action name that
is a WebWork action and one that isn’t, so it automatically does the right thing.
Submitting a form to Google’s search engine is as simple as <ww:form

action="http://www.google.com/search">.

TIP The URL /secure/updateProfile!default.action may look new to
you. It’s a little-known feature in WebWork that lets you execute a meth-
od other than execute(). The text after the ! indicates the method Web-
Work will call. In this example, WebWork tries to execute both
default() and doDefault(). This is just like copying the updateProfile
action definition in xwork.xml and adding a method attribute equal to
default. As you’ll see again in chapter 15, “Best Practices,” this feature is
useful for adding multiple behaviors in a single action.

The method and enctype attributes are passed directly in to the same attributes in
the form tag. These are your standard HTML attributes, and nothing is different
about them here. Keep in mind that if you’re trying to do file uploads, you must
set enctype to the value multipart/form-data. The method attribute can be either
GET or POST, just like any other HTML form.

 The final attribute in table 11.4 is validate. It’s used to tell WebWork that you
would like the form to do some limited client-side JavaScript validation. Unfortu-
nately, this feature is just getting off the ground and isn’t fully working or fully doc-
umented. By the time this book comes out, we hope to have a very robust client-side
validation implementation in WebWork. In the meantime, if you wish to get client-
side validation working, set this attribute to true and consult the latest WebWork
documentation for more details.

NOTE Even when you’re using the simple theme, we highly recommend using
the form tag rather than printing out your own <form> HTML tag. There
are several reasons, including better linking to your WebWork actions and
template reusability. But the most important reason for using the form tag
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag reference 297
is that it acts as a smart container for the other UI tags. Currently, this pro-
vides for limited client-side validation; but in the future, it can be used for
added security, better validation, and richer client-side behavior.

It’s worth noting that the name attribute is, by default, the name of the action you’re
submitting to. This is useful for easy JavaScript integration. For example, if your
form is <ww:form action="updateProfile">, then it’s safe to assume that the Java-
Script document.updateProfile or document.forms['updateProfile'] will get you
a reference to the form. Similarly, the id attribute is also, by default, the value of the
action. You’re free to override either of these defaults to whatever value you choose.

The textfield tag
You’ve already seen quite a bit of the textfield tag, so nothing should be new
here. Table 11.5 provides all the attributes that are unique to this tag, in addition
to all the common attributes already discussed.

Note that these three attributes are all standard HTML attributes for textfields.

The password tag
The password tag is similar to the textfield tag, with one small exception: The
value isn’t displayed by default unless the show attribute is set to true. Typically,
forms shouldn’t prepopulate password fields for users, so this value is normally
false. However, sometimes you may which to change this behavior, so setting the
show attribute to true ensures that the value is prepopulated.

 The other three attributes are exactly like those of the textfield tag. In terms
of class hierarchies, the password tag (PasswordTag class) extends the textfield
tag (TextfieldTag class). Table 11.6 lists the three attributes the textfield tag
supports as well as the additional show attribute.

Table 11.5 The textfield tag attributes

Attribute Data type Description

maxlength String Maximum length that can be entered in this field.

readonly Boolean When set to true, the user is unable to set a value in the
form element.

size String Visible size of the field.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

298 CHAPTER 11

UI components
The textarea tag
The textarea tag is used for gathering larger amounts of text (including line
breaks) than the textfield tag can. Rather than rendering an <input> tag like the
textfield and password tags do, this tag renders out the HTML tag <textarea>.
Not surprisingly, it also supports all the HTML attributes the <textarea> tag does,
as listed in table 11.7.

The checkbox tag
Unlike the other tags you’ve seen, the checkbox tag doesn’t treat the value of the
field as type String. Rather, checkboxes must have a field value that either evalu-
ates to Boolean or can be converted to a Boolean. Because a checkbox has only two
states, a boolean field works perfectly. Here’s the checkbox tag that was first used
in listing 11.3:

<ww:checkbox label="P.O. Box" name="user.address.poBox"
 fieldValue="true"/>

Recall that the User object contains an Address field, which in turn has a Boolean
field poBox. The tag shown here maps to that Boolean and indicates that the

Table 11.6 The password tag attributes

Attribute Data type Description

show Boolean False by default; when set to true, the value is set and the
password field is prepopulated.

maxlength String Maximum length that can be entered in this field.

readonly Boolean When set to true, the user is unable to set a value in the form
element.

size String Visible size of the field.

Table 11.7 The textarea tag attributes

Attribute Data type Description

cols String Number of columns in the text area.

rows String Number of rows in the text area.

readonly Boolean When set to true, the user is unable to set a value in the form
element.

wrap String Specifies whether the content in the text area should wrap to the
next line or not.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag reference 299
fieldValue should be true. This means that if the box is checked, the value true
is submitted to the action, which in turn is converted to a Boolean. As indicated in
table 11.8, only one attribute is unique to the checkbox tag.

Checkboxes are a little different than other tags. The way the HTML specification
works requires that the value (indicated by the fieldValue attribute) be submit-
ted only if the box is checked. If the box isn’t checked, then no name or value is
submitted. Thus, if the Boolean field in your action or model is false by default,
you should set fieldValue to true. Similarly, if the Boolean field is true by default,
you should set the fieldValue to false. Doing so ensures that regardless of the
state of the checkbox when the form is submitted, the Boolean field will have the
expected state.

11.3.3 Collection-based tags

Now that we’ve gone over the simple UI tags, it’s time to discuss the more complex
ones. Often, you want users to select from a list of options. So far, all the tags
you’ve seen allow users to input free-form text or select from only two choices: on
or off. In order to provide a rich web experience, you need to offer select boxes,
radio buttons, and choices of multiple checkboxes. In this section, we’ll look at
the three tags you can use to do that.

The select tag
Early in this chapter, you saw a small sample usage of the select tag. Now we’ll
detail all the ways it can be used and also explain how it relates to your action or
model fields for both setting and getting data. Table 11.9 shows all the attributes
the select tag supports in addition to the common attributes.

Table 11.8 The checkbox tag attribute

Attribute Data type Description

fieldValue String Value to submit to your action if the box is checked

Table 11.9 The select tag attributes

Attribute Data type Description

list Collection,
Map, Array, or
Iterator

Expression that evaluates to the list of options the user will
select from.

listKey String Expression for the list key; key by default.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

300 CHAPTER 11

UI components
The most important attribute is list, which tells the tag what the selection’s
options are. In the simplest form, the list is presented to the user, and the value
selected is then submitted to the form and mapped to the field specified in the
name attribute. If a value is prepopulated, then the option in the list that has the
same value as the field is selected automatically. For example, look at the follow-
ing code, which was originally shown in listing 11.3:

<ww:select label="State" name="user.address.state"
 list="{'California', 'Oregon'}"/>

In this example, the value of the expression user.address.state will be set to
either California or Oregon. If the value is currently one of those two values, then
the select tag will mark that value as selected, thereby prepopulating the form as
you would expect. The HTML printed out might be as follows:

<option>California</option>
<option selected="selected">Oregon</option>

Sometimes a simple list of Strings isn’t what you want to display to the user, nor is
it what you want to store in your model objects. Instead, it’s ideal to have a key and
a value, where the key is used as the actual value stored in your model (the value
submitted to the action) and the value is displayed to the user. In HTML, this is
done by done by specifying the value attribute for the <option> tag.

 For example, suppose you have a list of objects, each of which has an id
attribute and a name attribute. You may expect this HTML for the option tags:

<option value="1">California</option>
<option value="2">Oregon</option>

listValue String Expression for the list value; value by default.

headerKey String Value to be submitted if the user selects the header option.

headerValue String What the user sees for the header option.

emptyOption Boolean When set to true, an empty option is placed between the
header option and the choices from the list attribute.

multiple Boolean When set to true, the select box allows users to select more
than one value.

size String When included, specifies the size (in terms of number of visi-
ble options at one time) of the select box.

Table 11.9 The select tag attributes (continued)

Attribute Data type Description
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag reference 301
This shows Oregon to the user but submits 2 to the action. This is easy to do with
the select tag by providing the listKey and listValue attributes. Assuming you
now have a list of State objects, and each object has getId() and getName(), then
you use select in the following way: <ww:select name="user.address.stateId"
list="stateList" listKey="id" listValue="name"/>. This tells the select tag to
use the expressions id and name for the option’s value and label, respectively.

 The listKey and listValue features work by iterating over the list and pushing
the object on the top of the stack for each loop. This is the same behavior the
Iterator tag uses, as explained in chapter 9. Then the expressions specified in
the listKey and listValue attributes are executed against the value stack.

 If you’re using a Map as the list to iterate over in the select tag, the object
being iterated over is Map.Entry, just like the Iterator tag does. Because
Map.Entry provides getKey() and getValue() methods, these are typically used as
listKey and listValue values. Using a Map is so common that the select tag
makes the listKey and listValue attributes equal to key and value, respectively,
by default. Here, you see the state select box redone using a Map-based approach:

<ww:select label="State" name="user.address.stateId"
 list="#{1 : 'California', 2 : 'Oregon'}"/>

Often, especially in situations where the select box is a drop-down selection (size
attribute not specified), having a value at the top of the list such as “Select a state”
helps indicate to users what you expect them to do. Rather than try to make your
list of selections include a dummy header option at the start of the list, you can
use the select tag’s simple mechanism to do this. The headerKey and headerValue
attributes can be used to populate a complete <option> tag before the list is iter-
ated over.

 Similarly, sometimes people wish to have an empty
selection choice between the header and the list of
choices. This helps separate the instructions, such as
“Select a state,” from the data to be picked. If the empty-
Option attribute is set to true, the text <option

value=""></option> is printed between the header and
the list of options. Continuing with the state example,
the following code and figure 11.7 show how the
headerKey, headerValue, and emptyOption attributes can
be used to make a select box more user-friendly:

Figure 11.7 A simple form
utilizing the headerKey,
headerValue, and
emptyOption attributes
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

302 CHAPTER 11

UI components
<ww:select label="State" name="user.address.stateId"
 list="#{1 : 'California', 2 : 'Oregon'}"
 headerKey="-1" headerValue="Select a state"
 emptyOption="true"/>

The select tag supports two final attributes: multiple and size. multiple allows
the user to select multiple values; by default, it’s set to false. size tells the browser
to render the select tag using a scrollable select list rather than a drop-down select
list. The value of size is the number of items that should be shown at any time.
Here’s how you can let the user select multiple countries and make the size large
enough to show all the countries without the user having to scroll up or down:

<ww:select label="Countries" name="user.address.countries"
 list="countryList" multiple="true"
 size="%{countryList.size()}"/>

NOTE Multiple selections are trickier than they appear here. Because lists of
checkboxes are always multiple selections, we’ll leave that discussion
alone for now. After we look at the checkboxlist tag, we’ll explain in de-
tail how multiple selections work.

The radio tag
The radio tag works similarly to the select tag but is even simpler. It has only three
unique attributes, all which we’ve already discussed in detail (see table 11.10).
Radio buttons, by definition, are a single-select tag. Therefore, there is no multiple
attribute. Similarly, radio buttons need no headers.

The checkboxlist tag
The checkboxlist tag is almost exactly like the radio tag except that instead of
being a single-select tag, it’s a multiselect tag. That is, users are free to select one
or more checkboxes. The end result is effectively the same as the select tag when
its multiple attribute is set to true. Table 11.11 shows the attributes the checkbox-
list tag supports.

Table 11.10 The radio tag attributes

Attribute Data type Description

list Collection, Map,
Array, or Iterator

Expression that evaluates to the list of options the
user will be selecting from

listKey String Expression for the list key; key by default

listValue String Expression for the list value; value by default
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag reference 303
Multiselect tags
As previously mentioned, multiselect tags such as checkboxlist and select tag
aren’t totally straightforward. We’ll now explain why they’re different and how
they work. In single-select tags, the value (which is assumed based on the name
attribute if not specified) is compared to every key in the list specified.

 Looking back at the earlier State example, the list was defined to be a Map.
The key for the list is the state ID, and the value is the name of the state. Because
the name of the tag is user.address.stateId, you know that the value is also a
state ID. The Collection-based tags compare each key in the list with the value of
the stack and decide whether the option should be selected. In the case where
there is no key, the value itself is used.

 But what happens when your value isn’t just a single state ID, but a collection
of state IDs? Let’s look at the following example of a multiselect tag:

<ww:select label="State" name="user.address.stateIds"
 list="#{1 : 'California', 2 : 'Oregon'}"
 headerKey="-1" headerValue="Select a state"
 emptyOption="true" multiple="true"/>

Now let’s assume that user.address.stateIds returns a List of Integers (or an
array of ints). The select tag tries to compare a List of Integers to an Integer
(the key of the list attribute). Obviously, these aren’t equal. However, the select
tag doesn’t just compare the value with the list key. Rather, it checks to see
whether the value is a Collection, Map, or array. If it’s any of those, it determines
whether the list key is contained in any of those collections. If the value isn’t a
Collection, Map, or array, the select tag finally compares the values directly using
equals(), which is the behavior you want when you’re using a single-select tag. To
better understand how this works, let’s look at the utility method that performs all
the comparisons in the tag. The class is called ContainUtil, and it’s shown in its
entirety in listing 11.9.

Table 11.11 The checkboxlist tag attributes

Attribute Data type Description

list Collection, Map,
Array, or Iterator

Expression that evaluates to the list of options the
user will be selecting from

listKey String Expression for the list key; key by default

listValue String Expression for the list value; value by default
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

304 CHAPTER 11

UI components
package com.opensymphony.webwork.util;

import java.lang.reflect.Array;
import java.util.Collection;
import java.util.Map;

public class ContainUtil {
 public static boolean contains(Object obj1, Object obj2) {
 if ((obj1 == null) || (obj2 == null)) {
 return false;
 }

 if (obj1 instanceof Map) {
 if (((Map) obj1).containsValue(obj2)) {
 return true;
 }
 } else if (obj1 instanceof Collection) {
 if (((Collection) obj1).contains(obj2)) {
 return true;
 }
 } else if (obj1.getClass().isArray()) {
 for (int i = 0; i < Array.getLength(obj1); i++) {
 Object value = null;
 value = Array.get(obj1, i);

 if (value.equals(obj2)) {
 return true;
 }
 }
 } else if (obj1.equals(obj2)) {
 return true;
 }

 return false;
 }
}

The contains() method takes two arguments: obj1 and obj2. In Collection-based
tags, this method is called to compare the value for the tag and the key values in
the list, which determines whether checkboxes, radio buttons, and select options
will be preselected. The first argument, obj1, is the value specified by the tag. In
the earlier example of a multiselect tag, this is a List of Integers; in the listing
prior to that, it’s a single Integer. In both examples, obj2 is an Integer represent-
ing a key from the Map specified in the list attribute.

Listing 11.9 ContainUtil source code
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag reference 305
WARNING! Because of the way ContainUtil works, some people get into trouble
when their data types don’t match up properly. For example, if you have
a list attribute specified as #{'1' : 'California', '2' : 'Oregon'},
and your value is an int or Integer, no values will be selected. That is the
case because the keys in the map are no longer Integers but Characters
(note the single quotes around 1 and 2). You have to be very careful to en-
sure that when the keys are compared, the equals() method does what
you expect. Character.equals(Integer) obviously always returns false.

11.3.4 Advanced tags

In this section, we’ll discuss alternative and advanced tags. They include simple
tags such as hidden tags and labels, as well as more complex collection tags such
as doubleselect and combobox. Finally, we’ll begin to look at the component tag
and how you can easily create custom tags. We discuss customizing your compo-
nents and themes further in chapter 15.

The label tag
Among all the UI tags in this chapter, the label tag is unique, because it doesn’t
render any form elements. Rather, it’s a way to print out values as labels. For exam-
ple, a common use involves displaying a read-only parameter in a form, such as
username. Here’s an example of the label tag:

<ww:label label="Username" name="username"/>

The label tag can be confusing when you first look at this example. The label tag
has a label attribute, but that doesn’t correspond to the value of the label you’re
printing out. Put another way, the label attribute here works exactly like it does in
the other XHTML UI tags: It’s the label on the left-hand side of the table (or above
the form element if you’re using the top label positioning). On the right-hand
side, a second label is rendered, which corresponds to the name attribute. Here’s
how the XHTML label tag renders:

<tr>
<td align="right" valign="top">
 <label for="form_username" class="label">Username:</label>
</td>
<td>
 <label id="form_username">plightbo</label>
</td>
</tr>
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

306 CHAPTER 11

UI components
The hidden tag
The hidden tag is also unique. Unlike every other UI tag in the XHTML theme, it
doesn’t render a table row. The XHTML hidden tag is the exact same thing as the sim-
ple hidden tag. This is expected because you don’t want hidden values causing any
of the UI to change (such as having a blank table row). The hidden tag works almost
exactly like the other simple tags, such as the textfield tag. Although the hidden
tag doesn’t do as much as some of the other tags, it’s provided for consistency.

The doubleselect tag
The doubleselect tag is an extension of the select tag. It’s useful when you have
a large list of items for the user to choose from and you’d like to break the choices
into groups. Instead of a single select tag, the doubleselect renders two select
tags that are tied together. The first select box is a list of the groupings and is spec-
ified by the list attribute. The second select box changes, using JavaScript, based
on the group selected in the first select box. The doubleList attribute determines
the contents of the second select box. Table 11.12 shows the attributes available in
addition to the common attributes for every UI tag.

Table 11.12 The doubleselect tag attributes

Attribute Data type Description

List Collection, Map,
Array, or Iterator

Expression that evaluates to the list of options from
which the user selects in the first select box.

listKey String Expression for the list key; key by default.

listValue String Expression for the list value; value by default.

doubleList Collection, Map,
Array, or Iterator

Expression that evaluates to the list of options from which
the user selects. This expression is evaluated for each
element in the list attribute and is expected to return
a different list due to the contents of the value stack.

doubleListKey String Expression for the list key; key by default.

doubleListValue String Expression for the list value; value by default.

doubleName String Field name that the form element maps to for the sec-
ond select box. Because of the nature of the double-
select tag, this is typically the field you’re more
concerned with.

doubleValue Object* Value of the form element for the second select box.

headerKey String Value that is submitted if the user selects the header
option. Applies only to the first select box.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

UI tag reference 307
As you can see, the doubleselect tag is similar to the select tag, except it has the
additional attributes doubleList, doubleListKey, doubleListValue, doubleName,
and doubleValue. These are all exactly like their nondouble counterparts. The
only difference between doubleList and list is when they’re evaluated. Because
doubleList should return a different list depending on the group selected, dou-
bleList is evaluated once for every item in list. Each item (or item key) in list
is pushed onto the stack, and then doubleList is evaluated.

 The following example shows how states can be grouped into areas, such as
North and South:

<ww:doubleselect label="State" name="region"
 doubleName="stateID"
 list="{'North', 'South'}"
 doubleList="top == 'North' ?
 {'Oregon', 'Washington'} :
 {'Texas', 'Florida'}"/>

The doubleList expression uses the top variable to decide
which list should be returned. This could also be a method
such as getDoubleList(Object itemKey) in your action.
Figure 11.8 shows what this simple example looks like
when rendered in the browser.

 Remember that the doubleselect tag uses JavaScript to
function correctly. In figure 11.8, if the user selects South
from the first select box, the options in the second select box
automatically change to Texas and Florida. If JavaScript is
disabled, this feature doesn’t work properly.

headerValue String What the user sees for the header option. Applies only
to the first select box.

emptyOption Boolean When set to true, an empty option is placed between
the header option and the actual choices from the list
attribute. Applies only to the first select box.

multiple Boolean When set to true, both select boxes let users select
more than one value.

size String When given, specifies the size (in terms of number of
visible options at one time) of the both select boxes.

Table 11.12 The doubleselect tag attributes (continued)

Attribute Data type Description

Figure 11.8 The
doubleselect tag
rendered in a browser
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

308 CHAPTER 11

UI components
Combo box
A combo box is a small extension of the textfield UI tag. Instead of requiring
users to type values by hand, a select box is offered to allow users to choose a pre-
existing entry. However, they’re free to enter their own value or change the exist-
ing choices as well. A perfect example of a combo box is an online voting form.
The select box lists the nominated candidates’ names, but the voter still has the
choice of providing a write-in candidate.

 Table 11.13 outlines the attributes supported by the combobox tag in addition
to the common attributes. Note that it’s almost exactly like the textfield tag, with
the addition of the list attribute. Also note that the list behaviors of this tag
aren’t as complex as those in the other Collection-based tags. That is the case
because there is no need to differentiate between keys and values given the behav-
ior of the combo box and the fact that the only value submitted is the one entered
in the textfield.

Here’s a simple example of the combo box; figure 11.9
shows the example rendered in the browser:

<ww:combobox label="State" name="state"
 list="{'California', 'Oregon'}"/>

 Just like the doubleselect tag, the combobox tag
requires JavaScript to function correctly. If you’re
building forms that must work for browsers that don’t
have JavaScript enabled, neither of these tags is an
option for you.

Table 11.13 The combobox tag attributes

Attribute Data type Description

list Collection, Map,
Array, or Iterator

Expression that evaluates to the list of options from
which the user selects.

maxlength String Maximum length that can be entered in this field.

readonly Boolean When set to true, the user is unable to set a value
in the form element.

size String Visible size of the field.

Figure 11.9 The combobox
tag rendered in a browser
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 309
The component tag
The final tag that WebWork offers out of the box isn’t much of a UI tag at all.
Rather, the component tag offers a way for you to build custom UI tags. For exam-
ple, suppose you want a three-way checkbox to represent explicitly on, explicitly
off, and not specified. You can write one in HTML using JavaScript and some cus-
tom images that represent the three states.

 If you want to reuse this type of checkbox and integrate it with WebWork, all
you need to do is write a custom template (in Velocity, for example) that is similar
to the other templates that make up the simple and XHTML themes. The following
code renders a three-way checkbox:

<ww:component label="Permission" name="permission"
 template="threewaycheckbox"/>

The component tag looks up threewaycheckbox.vm and passes in the same variables
in the $parameters Map that you’ve seen throughout this chapter. The tag looks up
threewaycheckbox.vm in /template/xhtml (assuming you’re using the XHTML
theme) in either the classpath or in your web application. Refer to chapter 10 for
more information about how Velocity templates are retrieved.

 Recall that in section 11.3.1, we discussed common attributes for all tags. The
template attribute is one of those common attributes. This means that if you wish
to extend the textfield tag to include a date picker, you can write your own
datepicker.vm tag and then use the following JSP:

<ww:textfield label="Birthday" name="birthday"
 template="datepicker"/>

The advantage of using the textfield tag rather than the component tag is that all
the parameters available in the default textfield tag are available in datepicker.vm.
The component tag is more useful for when you’re building a UI tag from scratch. In
chapter 15, we’ll give much more detailed examples showing how you can extend
existing UI tags, build your own UI tags, and even create your own themes.

11.4 Summary

This chapter introduced the notion of building reusable HTML components that
tie in with WebWork. We discussed the concept of themes and templates, showed
how you can build up standard forms, and detailed all the UI tags included in
WebWork. We also explored how the templates and the UI tags integrate together
and how parameters are passed through the $parameters map. Now you can
begin to build complex forms using a library of rich tags. In chapter 15, we’ll use
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

310 CHAPTER 11

UI components
this knowledge to explore how you can create your own application-specific
library of rich tags.

 We recommend that you spend some time putting together some sample
forms and even explore writing your own templates or overriding the existing
ones. Learning how to extend the UI framework is the best way to get the most use
out of the framework and make your applications easy to develop and modify.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Part 4

Advanced topics

The last part of the book presents advanced topics. Chapter 12 covers
advanced type conversion and shows why data-type support is an important part of
WebWork. Chapter 13 shows you how to decouple the validation rules from your
core business logic and how you can reuse those validation rules. Chapter 14
examines the incredibly complex topic of internationalization (i18n) and how
WebWork breaks it into pieces that are easy to understand.

Finally, in chapter 15, we offer a series of best practices. Everything from testing
techniques to common challenges in web-based applications is covered here. This
chapter doesn’t show every best practice that WebWork helps with (to do so would
require a book by itself), but it gives you a taste for what is possible.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Type conversion
This chapter covers
■ Examples of different types of type conversion
■ Examples with and without type conversion
■ Type conversion on a global or local basis
■ Advanced type conversion
313

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

314 CHAPTER 12

Type conversion
The Web—or, more specifically, the HTTP protocol—doesn’t deal with the con-
cept of data types. No data types are specified in HTTP, HTML, or even the Servlet
specification. Rather, everything is transferred as a String or array of Strings.
This approach makes the specification simpler, but it usually leaves the work of
converting input Strings to a proper data type up to the developer. In this chap-
ter, we’ll look at how WebWork removes all the pain usually associated with this
task, allowing you to focus on the things that really matter: business logic and
speedy development.

12.1 Why type conversion?

In order for us to underscore why type conversion is necessary, you need to under-
stand the pain associated with writing web application UIs without any type con-
version support. Let’s start by taking a peek at the Servlet specification to see
where this problem begins. Then we’ll look at what both an action and a view
might look like without type conversion.

12.1.1 The Servlet specification

Remember that the HTTP and HTML specifications make no effort to handle data
types. When a form is submitted, such as the one in listing 12.1, the HTTP POST
request sent from the browser has no information about the type of data each input.

<%@ taglib uri="webwork" prefix="ww" %>
<html>
 <head>
 <title>New User Form</title>
 </head>
 <body>
 <form method="POST" action="createUser.action">
 Username: <input name="username"/>

 Password: <input type="password" name="password"/>

 First name: <input name="firstName"/>

 Last name: <input name="lastName"/>

 Age: <input name="age"/>

 Birth date: <input name="birthDate"/>

 Email: <input name="email"/>

 <input type="submit" value="Create User"/>
 </form>
 </body>
</html>

Listing 12.1 A simple HTML form used to create a new user
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Why type conversion? 315
The first four inputs—username, password, firstName, and lastName—will end up
as String data types, so this isn’t much cause for concern. However, the other
inputs—age, birthDate, and email—will eventually be turned into an int (or
Integer), a Date data type, and an Email data type, respectively. So, at some point,
your code must remember to take care of calling Integer.parseInt(), Simple-
DataFormat.parse(), and Email.parse(), as well as figure out what to do if the
value entered can’t be converted properly.

NOTE The Email class is a simple compound object used to represent the differ-
ent parts of an email address. It provides an example how you often
would like to deal with objects in their pure state (such as an Email in-
stance); but often in web applications you deal with them in their unpure
state—specifically, as a String. This class breaks an email address string
into two parts: username and domain. You reconstruct the email address
string with username + '@' + domain.

The only thing you have to work with when building J2EE web applications is the
simplified access to HTTP request parameters via HttpServletRequest’s methods:

■ getParameter(String name)—Returns a single value for a GET or POST
named parameter. This is the most commonly used method when writing
web applications.

■ getParameterValues(String name)—Returns an array of values in the form
of String[] for a GET or POST named parameter. This is used when many val-
ues are mapped to the same parameter name in the request.

■ getParameterNames()—Returns an Enumeration of all the parameter names
in the request.

■ getParameterMap()—Returns a Map of type String -> String[] where the
key is every named parameter and the value is a String array representing
one or more values in the request for that parameter name.

As you’ve already seen, WebWork maps request parameters to your action’s fields
automatically. Let’s see what an action would look like if all its fields were of type
String.

12.1.2 An action without type conversion

In listing 12.2, a version (but not the final version) of CaveatEmptor‘s CreateUser
action is defined with all its fields of type String. Then, in the execute() method,
the action must convert the age, birthDate, and email fields to their proper type.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

316 CHAPTER 12

Type conversion
Finally, you can create a User object and create the user by calling the UserDAO
component that’s provided to the action via Inversion of Control (see chapter 6).

package org.hibernate.auction.web.actions.users;

import com.opensymphony.xwork.ActionSupport;
import org.hibernate.auction.dao.UserDAO;
import org.hibernate.auction.dao.UserDAOAware;
import org.hibernate.auction.model.User;
import org.hibernate.auction.model.Email;

import java.text.DateFormat;
import java.util.Date;

public class CreateUser extends ActionSupport
 implements UserDAOAware {

 String username;
 String password;
 String firstName;
 String lastName;
 String age;
 String birthDate;
 String email;
 User user;
 UserDAO userDAO;

 public String execute() throws Exception {
 int realAge = Integer.parseInt(age);
 DateFormat df = DateFormat.getDateInstance(DateFormat.SHORT);
 Date realBirthDate = df.parse(birthDate);
 Email realEmail = Email.parse(email);
 user = new User(username, password,
 firstName, lastName, realAge,
 realBirthDate, realEmail);

 userDAO.makePersistent(user);
 return SUCCESS;
 }

 // setters and getters
 ...
}

Notice that four of the eight lines in the execute() method are spent converting
Strings to the proper data type. In addition, notice that you must have similar

Listing 12.2 An action that doesn’t take advantage of automatic type conversion
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Why type conversion? 317
getters and setters, such as getFirstName(), in the CreateUser class and also in the
User class (not shown). That’s because you’re choosing to set the values in a flat
manner rather than in a deep manner. Flat means the action always has all the
fields needed to construct the entire request. Deep means the action only has the
objects it works with, such as User.

 Although deep is almost always preferred, it isn’t possible without type conver-
sion. That is the case because the User class has fields of type int, Date, and Email,
which aren’t (yet) automatically converted. Likewise, because the action uses a flat
structure, you also need another line constructing the User object once the types
have all been converted. If you think about the role of the CreateUser at a high
level, it shouldn’t even be responsible for initializing the User object—the only
thing it should be responsible for is creating a user (by calling the UserDAO) and
indicating whether the action successfully completed (return SUCCESS). Thus six
of the eight lines, or 75 percent, are used to prepare to do the work you actually
want to do.

 Can’t you do better?

12.1.3 A view without type conversion

Before we look at the better way of handling type conversion, let’s examine the
other side of conversion. You’ve seen how you need to convert from String to var-
ious data types, but what about converting from other data types to Strings? You
need to do this whenever you wish to display a web page, because HTML is 100
percent text. In listing 12.3, you can see what a JSP might look like if type conver-
sion weren’t available.

<%@ taglib uri="webwork" prefix="ww" %>
<%@ page import="com.opensymphony.xwork.ActionContext,
 java.util.Date,
 java.text.DateFormat"%>
<html>
 <head>
 <title>New User Created</title>
 </head>
 <body>
 A new user was created!
 <p/>

 Username: <ww:property value="user.username"/>

 Password: [Not shown]

 First name: <ww:property value="user.firstName"/>

Listing 12.3 A JSP indicating success without using type conversion
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

318 CHAPTER 12

Type conversion
 Last name: <ww:property value="user.lastName"/>

 Age: <ww:property value="user.age"/>

 Email: <ww:property value="user.email"/>

 <%
 Date birthDate = (Date)
 ActionContext.getContext().getValueStack().
 findValue("user.birthDate");
 DateFormat df =
 DateFormat.getDateInstance(DateFormat.SHORT);
 %>
 Birth Date: <%= df.format(birthDate) %>

 </body>
</html>

The first thing to notice is that you’re able to afford using deep notation in this
JSP, because the User object is now created and can be accessed (as explained in
chapter 8, “Getting data with the expression language”) using complex expres-
sions. The first three fields—username, firstName, and lastName—aren’t a con-
cern, because they’re already in the correct format.

 The next field, age, is more complicated but not much of a problem. This
prints out correctly because the process of converting an int to a String is trivial
and is handled automatically.

 The situation gets more involved when you try to print out the email address.
The expression user.email returns an Email object, which must then be con-
verted to a String. WebWork first attempts to find a type converter to do this, but
if it can’t find one, it uses the object’s toString() method. In this case, let’s
assume that Email’s toString() method has been correctly implemented to do
the right thing.

 The final field, birthDate, is the most complicated. So much more code is
required to print out this field because the toString() method for Date isn’t your
desired format. When you first enter the birth date, you enter it in SHORT notation
(in the United States, this is the form MM/dd/yyyy). However, Date’s toString()
method tries to return the date in LONG notation. This would be confusing for
users of the web application, especially if they needed to re-enter any data that was
marked invalid for another reason. Can you imagine how annoying it would be if
you typed in 02/12/1982 and got back February 12, 1982 00:00:00 PST?

 The code in listing 12.3 gets the raw Date object using WebWork’s internal
APIs. It creates a date formatter object, specifying a SHORT format, and then uses
that object to format the date back to the format you’d like. This is effectively the
opposite of what happens in the CreateUser action in listing 12.2.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Why type conversion? 319
12.1.4 What WebWork’s type conversion gives you

Recall that 75 percent of the code in the execute() method in listing 12.2 is spent
preparing for the actual work taking place. Now it’s time to look at a better way.
Let’s rewrite the CreateUser action but this time not spend any time preparing
the data. The action is show in listing 12.4.

package org.hibernate.auction.web.actions.users;

import com.opensymphony.xwork.ActionSupport;
import org.hibernate.auction.dao.UserDAO;
import org.hibernate.auction.dao.UserDAOAware;
import org.hibernate.auction.model.User;
import org.hibernate.auction.model.Email;

import java.text.DateFormat;
import java.util.Date;

public class CreateUser extends ActionSupport
 implements UserDAOAware {

 User user;
 UserDAO userDAO;

 public String execute() throws Exception {
 userDAO.makePersistent(user);
 return SUCCESS;
 }

 // setters and getters
 ...
}

As you can see, there are now only two lines in the execute() method, both of
which are definitely required. Where did all those other lines go? What about all
the fields you had before? We’ll discuss how this is possible in section 12.3; for now,
recall that accessing fields in a deep manner tends to reduce code duplication and
allows the WebWork framework to do as much work as possible on your behalf.

 Now let’s look at the success page in listing 12.5 and compare it to the one pre-
viously shown in listing 12.3.

Listing 12.4 An action that takes advantage of automatic type conversion
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

320 CHAPTER 12

Type conversion
<%@ taglib uri="webwork" prefix="ww" %>
<html>
 <head>
 <title>New User Created</title>
 </head>
 <body>
 A new user was created!
 <p/>

 Username: <ww:property value="user.username"/>

 Password: [Not shown]

 First name: <ww:property value="user.firstName"/>

 Last name: <ww:property value="user.lastName"/>

 Age: <ww:property value="user.age"/>

 Email: <ww:property value="user.email"/>

 Birth Date: <ww:property value="user.birthDate"/>

 </body>
</html>

Notice that you no longer do anything different for dates than you do for the
other fields. With type conversion in place, you can avoid worrying about the LONG
format that toString() returns. How is this happening? To find out, let’s look at
how to configure and build your own type converter.

12.2 Configuration

Type converters by themselves aren’t very interesting. However, the style of devel-
opment they enable you to pursue, although not revolutionary, isn’t easily dis-
missed. You did, after all, save 75 percent in your previous example. When you’re
using WebWork to its full capacity, including full use of type conversion, you may
find yourself writing painfully simple actions because you no longer need to
spend time on the tedious stuff.

 Not only does this make your overall code simpler, it makes it easier to test.
Now you aren’t working with just data—you’re working with objects directly. Let’s
examine what type converters do and then explore the two possible ways to con-
figure them.

Listing 12.5 A JSP indicating success using type conversion
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Configuration 321
12.2.1 Role of a type converter

In WebWork, type converters can be used to convert between any two types. However,
practically speaking, there are only two classes of types you care about when building
web applications: Strings and non-Strings. The best way to understand what a type
converter looks like as well as what it does is to dive right into one. Listing 12.6 shows
a type converter that converts between the types Email and String.

package org.hibernate.auction.web.typeconverters;

import ognl.DefaultTypeConverter;

import java.util.Map;

import org.hibernate.auction.model.Email;

public class EmailConverter extends DefaultTypeConverter {
 public Object convertValue(Map ctx, Object o, Class toType) {
 if (toType == Email.class) {
 String email = ((String[]) o)[0];
 return Email.parse(email);
 } else if (toType == String.class) {
 Email email = (Email) o;
 return email.toString();
 }

 return null;
 }
}

The EmailConverter is simple, because most of the work is delegated to already-
implemented methods (not shown) such as Email.parse() and Email.toString().
However, let’s take this small class apart to fully understand it.

 First, notice that all type converters must implement the interface ognl.Type-
Converter. A utility class, ognl.DefaultTypeConverter, provides a simpler con-
vertValue() method to override. This example extends DefaultTypeConverter.
Consult the Object Graph Navigation Language (OGNL) docs at http://
www.opensymphony.com/ognl for more information.

 Next, you override the convertValue() method, providing an implementation
that knows how to convert to the types String and Email. The arguments provide
assistance with the work of converting the values:

Listing 12.6 A type converter that takes advantage of the prebuilt functions in Email
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

322 CHAPTER 12

Type conversion
■ context—A Map that represents the ActionContext

■ o—The object that needs converting

■ toType—The type that WebWork is requesting the type converter to convert
o to.

Most of the code is straightforward. However, notice that you convert from Email
to String and from String[] to Email. That doesn’t immediately make sense (this
is the most common mistake made when writing type converters). Let’s explore
why you’re dealing with String[] and not String.

 Recall that HttpServletRequest’s getParameterMap() method returns a map of
String -> String[]. Well, WebWork takes this Map and attempts to apply the val-
ues onto the action. If a particular key is a complex expression, such as
user.email, it then tries to apply the String[] onto the email field in the User
object. At this point, WebWork realizes the types don’t match up, and it enlists
the help of a type converter.

 And how does WebWork know which type converter to call? You must config-
ure it, as shown in the next two sections.

12.2.2 Global type converters

There are two ways to configure a type converter in WebWork: You can either specify
a type converter on a per-class basis or you may specify it on a per-field basis for an
individual class. To specify a type converter globally, you need to create a file called
xwork-conversion.properties and place it in the root of your classpath. This is gen-
erally found in WEB-INF/classes or in the base of your project’s JAR file.

 Listing 12.7 is a simple yet complete example of what this file might look like.

org.hibernate.auction.model.Email =
 org.hibernate.auction.web.typeconverters.EmailConverter

On the left side, you specify the type for which you want WebWork to invoke the type
converter. On the right side, you specify the type converter class. That’s all there is
to it. Now, let’s see how you can configure a type converter for a specific class.

12.2.3 Class-level type converters

The other way to specify a type converter is on a per-class basis. This approach is
especially useful if you want to specify a converter for a common field type (such as

Listing 12.7 A complete xwork-conversion.properties file with global type converters
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Simple type conversion 323
String or Date) and don’t wish to make a global change. You do so by creating a
file in the form of ClassName-conversion.properties and placing it in the same
package as the class. For example, if you want to specify type converters for the
User class, you’ll create a file named User-conversion.properties and place it in the
org/hibernate/auction/model directory—the same place the class is. Listing 12.8
shows what this file looks like.

email = org.hibernate.auction.web.typeconverters.EmailConverter

This file is a little different than the global configuration. The right side remains
the same, but instead of specifying a type, you specify a field. This corresponds to
User’s getEmail() and setEmail() JavaBean-style methods.

 The class-level type converter configuration follows the same rules as normal
class and interface hierarchies. That is, if User were to extend Person, then you
could have a Person-conversion.properties file that would also be read. You can
do the same for any interfaces. This allows you to specify base-level conversion
rules for a base object in a single place, saving duplicate configuration lines.

12.3 Simple type conversion

Now that you’ve seen a type converter and know how to configure it, let’s examine
the rules of how and when type converters are called and look at the built-in type
converters that come with WebWork.

12.3.1 Basic type conversion

As we’ve already discussed, type conversion occurs whenever WebWork attempts
to apply a value to a type that it can’t convert. Obvious conversions, such as String
-> int or vice versa, are handled automatically. But let’s look at the inputs for the
previous two examples: one where you did the type conversion yourself and one
where it was handled for you. Listing 12.9 shows the flat input scheme, which sub-
mits to the action shown in listing 12.2.

<%@ taglib uri="webwork" prefix="ww" %>
<html>
 <head>

Listing 12.8 A complete User-conversion.properties file with field-level type converters

Listing 12.9 An example of a flat input scheme
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

324 CHAPTER 12

Type conversion
 <title>New User Form</title>
 </head>
 <body>
 <form method="POST" action="createUser.action">
 Username: <input name="username"/>

 Password: <input type="password" name="password"/>

 First name: <input name="firstName"/>

 Last name: <input name="lastName"/>

 Age: <input name="age"/>

 Birth date: <input name="birthDate"/>

 Email: <input name="email"/>

 <input type="submit" value="Create User"/>
 </form>
 </body>
</html>

In listing 12.10, the deep input scheme is used to submit to the action in listing 12.4.
Notice that the only difference in this file is that the names of the fields all include
the prefix user.

NOTE Listings 12.9 and 12.10 don’t use the WebWork UI tags, for a specific pur-
pose: to show how the tags have no relationship to type conversion or the
actual HTTP request. As you can see in these examples, the parameter
naming conventions themselves determine the type conversion behavior.
However, we generally recommend you use the UI tags as often as possible.

<%@ taglib uri="webwork" prefix="ww" %>
<html>
 <head>
 <title>New User Form</title>
 </head>
 <body>
 <form method="POST" action="createUser.action">
 Username: <input name="user.username"/>

 Password: <input type="password"
 name="user.password"/>

 First name: <input name="user.firstName"/>

 Last name: <input name="user.lastName"/>

 Age: <input name="user.age"/>

 Birth date: <input name="user.birthDate"/>

 Email: <input name="user.email"/>

 <input type="submit" value="Create User"/>

Listing 12.10 An example of a deep input scheme
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Simple type conversion 325
 </form>
 </body>
</html>

By changing the input names to all have a user prefix, you tell WebWork that these
inputs should be applied to the user field in the action to which you’re submitting.
Making this small change gets rid of all the fields in the CreateUser action.

12.3.2 Built-in type conversion

For the email field, you build a type converter to do the right conversion. But for
the other fields, such as age and birthDate, you don’t need to do anything,
because WebWork supplies a few built-in type converters, as follows:

■ String—This is the simplest form of type conversion. String arrays are con-
verted to Strings by pulling the first element in the array. Although this is
the simplest conversion, it happens for every String being set, because all
values from the Web start as String arrays.

■ Primitives (int, boolean, double, and so on)—Primitives are handled auto-
matically, although locale-specific features aren’t supported. Thus a String
of "123,456" isn’t converted to a proper int. If you wish to support these
kinds of numbers, you must write your own type converter.

■ Date—Dates are handled by WebWork for both input and output using the
SHORT format. In the United States, this is the format MM/dd/yyyy. The locale
used to determine this is the one specified by the browser and/or the Web-
Work configuration. More on internationalization can be found in chapter 14.

■ List—Conversion to a List is done automatically. WebWork takes all the
String array values and creates a List of the same size, placing all those val-
ues in the List. The resulting List contains String objects.

■ Set—Similar to the List conversion, WebWork handles Sets for you. Dupli-
cates, by the nature of Sets, are discarded.

■ Collection—Collections follow the same rules as List.

■ Any array—Because arrays inherently describe their type, WebWork uses the
type converter for the array type (for instance, Date, if you’re converting to
a Date[]). It loops over each value being set, constructs an array of the new
type, and then sets the value.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

326 CHAPTER 12

Type conversion
In section 12.4, we’ll discuss how to do advanced conversion for Collections that
don’t describe the object type they contain. In the meantime, know that unless
otherwise specified, all Lists, Sets, and Collections contain values of type String.

12.3.3 Handling null property access

Before we look at the advanced topics, let’s examine listing 12.10 again. Recall
that you removed 75 percent of the code in the CreateUser action by adding the
user prefix to all the field names. However, if you look back at listing 12.4, you’ll
see that the user field is null initially. How does it get instantiated?

 WebWork does this for you when it detects null property access. That is, when
the expression user.username is being evaluated, WebWork sees that user is null
and realizes that it needs to create a User object. WebWork can do this only if the
object has a zero-arg constructor, as specified by the JavaBean specification. Once
WebWork creates the object, it needs to set the object back into the action. Web-
Work can do this only if the action has a setter method for the user field.

 Without these two features, the user field would continue to be null, and none
of the values from the form would be captured.

12.4 Advanced topics

Now that you’ve seen the simple stuff, let’s explore some of the more advanced
features of type conversion. Although they’re considered advanced for organiza-
tional sake, you’ll often find that these features are the ones that save you from
pain when you’re building anything but the simplest web interfaces.

12.4.1 Handling null Collection access

One of the biggest pains with the Java language is the fact that Collections aren’t
type-specific. Java 1.5 fixed this, but many developers still are forced to deploy
using Java 1.3 and 1.4. The addition of generics to the Java language is welcome,
but most developers won’t have the opportunity to use them for some time. For
now, you’re stuck with casting your objects and hoping you remember the type of
a particular collection’s contents.

 Automatic processing, like the type conversion in WebWork, makes life even
trickier. Should that List contain Strings or Emails? Ideally, you always want your
actions to do as little of this dirty work as possible. Listing 12.11 shows an action
that creates a list of users without doing any of the conversion shenanigans.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced topics 327
package org.hibernate.auction.web.actions.users;

import com.opensymphony.xwork.ActionSupport;
import org.hibernate.auction.dao.UserDAOAware;
import org.hibernate.auction.dao.UserDAO;
import org.hibernate.auction.model.User;

import java.util.List;
import java.util.Iterator;

public class CreateUsers extends ActionSupport
 implements UserDAOAware {

 List users;
 UserDAO userDAO;

 public void validate() {
 // see if the name already exists
 if (users != null) {
 int i = 0;
 for (Iterator iterator = users.iterator();
 iterator.hasNext();) {
 User user = (User) iterator.next();
 User existing =
 userDAO.findByUsername(user.getUsername());
 if (existing != null) {
 addFieldError("users[" + i + "].username",
 getText("user.exists"));
 }
 i++;
 }
 }
 }

 public String execute() throws Exception {
 if (users != null) {
 for (Iterator iterator = users.iterator();
 iterator.hasNext();) {
 User user = (User) iterator.next();
 userDAO.makePersistent(user);
 }
 }

 return SUCCESS;
 }

 public String doDefault() throws Exception {
 return INPUT;
 }

Listing 12.11 An action that creates multiple users
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

328 CHAPTER 12

Type conversion
 public List getUsers() {
 return users;
 }

 public void setUsers(List users) {
 this.users = users;
 }

 public void setUserDAO(UserDAO dao) {
 this.userDAO = dao;
 }
}

Nowhere in this class is anything that indicates that the users field is a List of User
objects. So, you need to tell WebWork that this is the case. You can do so by creat-
ing a class-specific conversion configuration for the action itself. Listing 12.12
shows the contents of CreateUsers-conversion.properties.

Collection_users = org.hibernate.auction.model.User

The prefix Collection_ before the field name tells WebWork that you aren’t spec-
ifying a type converter, but rather you’re telling it that the users field should con-
tain objects of the type User. Regardless of the type of your collection (Map, List,
or Collection), the prefix is always Collection_.

 This information is used only when the collection field is null. Notice in Cre-
ateUser that the list is never initialized. This is important because WebWork can then
provide a special List implementation designed to grow the list with empty User
objects as needed. This special implementation then creates an empty object (using
the zero-arg constructor, of course) and returns it whenever users.get() is called.

 Thus you can name fields in your HTML forms like users[0].firstName and
users[1].email, as you’ll see in a minute when we pull together all the concepts in
this chapter. For Maps, valid field names can be in the form of someMap['someKey'].foo
or someMap.someKey.foo, as indicated in chapter 8.

NOTE As of WebWork 2.1, there is one small piece of functionality you can’t do
when it comes to Collections and type conversion: non-JavaBeans can’t
be automatically created in Lists, Maps, and Collections. This means
you can’t, for example, have a List of Dates automatically be converted

Listing 12.12 CreateUsers-conversion.properties
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced topics 329
for you. You can, however, use Date[] to work around this limitation.
The reason is that WebWork needs to create the object, such as User, and
then it assumes you’ll be modifying various properties, such as birth-
Date. It doesn’t know what to do if you attempt to modify the base object,
meaning that expressions such as dates[0] aren’t valid. To get an array
of dates, name all your fields the same—such as dates—and WebWork
will take care of the rest.

12.4.2 Handling conversion errors

An important aspect of type conversion that we have yet to discuss is the task of
reporting conversion errors. If a user enters the value abc for an int, you need a
way to report the mistake. One way to do this is to use the validation framework,
discussed in chapter 13 (“Validating form data”), to see whether the int is still
zero, but that approach presents two problems:

■ What if zero is an acceptable value?

■ What if you want to display a different error message if the value was incor-
rectly entered than you do when the value converted fine but isn’t an
acceptable value?

Whenever WebWork is unable to convert a value, it places that failure in a special
place in the ActionContext. Adding the conversionError interceptor to the action
stack causes those errors to be reported as field errors. Like all other interceptor
stacks, this can be configured on a per-package or per-action basis. If you’re using
the completeStack, this interceptor is included by default.

 Now, if a conversion fails, an error message will be attributed to that field. By
default, the text will be Invalid field value for field ‘xxx’—not exactly the most user-
friendly message. As you’ll see in chapter 14, you can specify an internationaliza-
tion key named invalid.fieldValue.xxx to provide a better error message.

 In addition to adding a field-level error message, the conversion interceptor
also makes it possible to show the original value a user entered. For example, if
someone typed in 02/1`2/82 for a date field, the value wouldn’t be converted
properly. However, it’s clear that the submitted value is a typo; to provide a good
user experience, you should return the user to the same form with this original
value in the textfield.

 Knowing how the UI tags work, this normally wouldn’t be possible. A field
named user.birthDate would normally invoke getUser().getBirthdate(), which
would return null because the value was never set in the first place. In order to
allow the original value to be seen, WebWork needs to intercept the expression
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

330 CHAPTER 12

Type conversion
user.birthDate and short-circuit the evaluation to return the original value (02/
1`2/82) rather than evaluate the real expression. This is automatically done for
you when you’re using the conversionError interceptor.

 Sometimes you don’t want to report all conversion failures. In chapter 13,
you’ll see how you can use the ConversionErrorFieldValidator to check for con-
version failures only on particular fields.

12.4.3 An example that puts it all together

Now that you’ve seen the CreateUser action as well as the configuration for the
action (including the interceptor that reports conversion errors), the final piece
of the puzzle is the JSP that prompts for inputs: createUsers.jsp. Listing 12.13
shows what this looks like.

<%@ taglib uri="webwork" prefix="ww"%>
<html>
 <head>
 <title>Create three users</title>
 </head>

 <body>
 <ww:form action="createUsers">
 <ww:token/>

 <ww:textfield label="%{getText('username')}"
 name="users[0].username"/>
 <ww:password label="%{getText('password')}"
 name="users[0].password"/>
 <ww:textfield label="%{getText('firstname')}"
 name="users[0].firstname"/>
 <ww:textfield label="%{getText('lastname')}"
 name="users[0].lastname"/>
 <ww:textfield label="%{getText('email')}"
 name="users[0].email"/>

 <tr><td colspan="2"><hr/></td></tr>

 <ww:textfield label="%{getText('username')}"
 name="users[1].username"/>
 <ww:password label="%{getText('password')}"
 name="users[1].password"/>
 <ww:textfield label="%{getText('firstname')}"
 name="users[1].firstname"/>
 <ww:textfield label="%{getText('lastname')}"
 name="users[1].lastname"/>
 <ww:textfield label="%{getText('email')}"

Listing 12.13 A form to create three users at once
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 331
 name="users[1].email"/>

 <tr><td colspan="2"><hr/></td></tr>

 <ww:textfield label="%{getText('username')}"
 name="users[2].username"/>
 <ww:password label="%{getText('password')}"
 name="users[2].password"/>
 <ww:textfield label="%{getText('firstname')}"
 name="users[2].firstname"/>
 <ww:textfield label="%{getText('lastname')}"
 name="users[2].lastname"/>
 <ww:textfield label="%{getText('email')}"
 name="users[2].email"/>

 <tr><td colspan="2"><hr/></td></tr>

 <ww:submit value="Submit"/>
 </ww:form>
 </body>
</html>

This JSP prompts the user to enter exactly three users. Using a bit of DHTML and
some smarter server-side code that iterates through all the users submitted, you
could turn this into a nice UI. Disregarding the potential for a better UI, you
should take away two main lessons:

■ Naming elements in the array-index format of users[x] lets you avoid
reconstructing the list of User objects in the action code in listing 12.11.

■ Using the UI tag library, as discussed in chapter 11, displays conversion
error messages (and other field-level error messages) automatically.

12.5 Summary

In this chapter, you learned how to remove up to 75 percent of the code in your
action classes. You saw that a deep tree structure can be used when combined with
good type conversion. You learned that WebWork allows you to simplify your
actions by removing all the plumbing you might normally put in your actions and
instead letting WebWork’s type-conversion framework do that work for you.

 More important, however, you saw how all the parts of WebWork are coming
together. You can use interceptors and validators to place conversion errors into
field-level errors. UI components can be used to display those field-level errors.
The expression language can be used to name HTML fields with deep expressions.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

332 CHAPTER 12

Type conversion
 This is the power of type conversion—it’s a binding technology. That is, it
doesn’t do much by itself, but when combined with other supporting technolo-
gies, it can radically change how you develop web applications. You can finally
focus on working with your objects instead of wrestling with swapping data in and
out of a particular format.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Validating form data
This chapter covers

■ Manual validation and the
Validateable interface

■ Automatic validation using external
XML files and the Validation Framework

■ Validation-related workflow

■ Advanced validation features
333

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

334 CHAPTER 13

Validating form data
Validating form data is essential to preventing incorrect data from getting into
your applications. The back-end services that your web applications often call
aren’t usually forgiving of invalid data; so, unless you like showing stack traces to
your users, it’s a good idea to catch problems with what they’ve entered as soon as
possible. It’s a hallmark of user-friendly systems to show users where they’ve made
a mistake and what they need to do to correct it. Validating form data and provid-
ing meaningful error messages is one of the keys to providing feedback to the
user. It’s important to note here that we separate the idea of data validation from
type conversion. If the user enters data that is incorrectly formatted and can’t be
converted to the correct type for the property, this problem will be caught and
handled by the type conversion framework discussed in chapter 12.

 Throughout this chapter, you’ll work with the User domain object from the
CaveatEmptor application, using the User instance to directly back the form. This
User class is simple, as you can see in listing 13.1.

public class User implements Serializable, Comparable {
 protected Long id = null;
 private int version;
 private String firstname;
 private String lastname;
 private String username;
 private String password;
 private String email;
 private int ranking = 0;
 private Date created = new Date();
 private Address address;
 private Set items = new HashSet();
 private Set billingDetails = new HashSet();
 private BillingDetails defaultBillingDetails;
 private boolean admin = false;

 //getters and setters omitted...
}

The CreateUser action class is also simple; it provides a User object and a way to
save it, as shown in listing 13.2.

Listing 13.1 The User class: a domain object with properties and associations with
other domain objects
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Validating form data 335
public class CreateUser extends ActionSupport
 implements UserDAOAware {
 User user;
 private UserDAO userDAO;

 public String execute() throws Exception {
 if (hasErrors()) {
 return INPUT;
 }

 userDAO.makePersistent(user);
 return SUCCESS;
 }

 public User getUser() {
 return user;
 }
 ...
}

We’ll look at more of the details of the CreateUser action in a bit; but for now, the
important part is the User object and the getUser() method.

 You’ll use the same form to enter data to be validated for all the examples; you
can see it in listing 13.3.

<ww:form action="createUser">
 <ww:token/>
 <ww:textfield label="%{getText('username')}"
 name="user.username"/>
 <ww:password label="%{getText('password')}" name="user.password"/>
 <ww:textfield label="%{getText('firstname')}"
 name="user.firstname"/>
 <ww:textfield label="%{getText('lastname')}"
 name="user.lastname"/>
 <ww:textfield label="%{getText('email')}" name="user.email"/>
 <ww:submit value="Submit"/>
</ww:form>

Validating form data

Listing 13.2 CreateUser action, which provides a User object via the
getUser() method

Listing 13.3 The form in createUser.jsp, used to enter data for all the examples
in this chapter
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

336 CHAPTER 13

Validating form data
The action provides the User object through a getUser() method, and you bind
the properties of the User object to your form fields. Your validations are applied
to the User object in each case, showing the differences between the different val-
idation strategies.

13.1 Manually validating data

Now that you know what use case you’re implementing (creating a user), let’s
move to the topic of this chapter, validating form data. The most direct method of
validating form data is often to code the validations in your action. With this
approach, there is the issue of limiting reuse, because validations are locked up in
action classes and aren’t easily reused between actions or in other parts of your
application. However, in some cases complex business rules must be validated that
can’t easily be expressed in any other way than code; so, coding validations in your
action has its place.

13.1.1 Validating in the execute() method

It’s simple to put your validations in the execute() method. After all, you’re coding
the execute() method to do something anyway, so why not check the values in the
same method as the code that uses them? Listing 13.4 shows what the execute()
method of the CreateUser class looks like using this strategy.

public String execute() throws Exception {
 User user = getUser();
 String firstname = user.getFirstname();
 if ((firstname == null) || (firstname.trim().equals(""))) {
 addFieldError("user.firstName", "You must enter a first name.");
 }
 String lastname = user.getLastname();
 if ((lastname == null) || (lastname.trim().equals(""))) {
 addFieldError("user.lastname", "You must enter a last name.");
 }
 String username = user.getUsername();
 if ((username == null) || (username.trim().equals(""))) {
 addFieldError("user.username", "You must enter a user name.");
 }
 String email = user.getEmail();
 if ((email == null) || (email.trim().equals(""))) {
 addFieldError("user.email",
 "You must enter an email address.");
 }
 if (hasErrors()) {

Listing 13.4 execute() method of the CreateUser action, with validatation
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Manually validating data 337
 return INPUT;
 }
 userDAO.makePersistent(user);
 return SUCCESS;
}

Here you see that you get the User object; then check firstname, lastname, username,
and email to see if any of them are null or empty; and add a field-level error message
if they are. This process makes those properties required (note that with HTML
forms, if the properties are displayed as textfields, they come in on the request as
empty strings if nothing is put in by the user, so checking for null isn’t enough).
Finally, the code checks to see whether any error messages have been added to the
action (remember from chapter 12 that this could include a type-conversion error
message if the conversionErrors interceptor is applied). If there are any errors, it
returns Action.INPUT, otherwise it saves the User and returns Action.SUCCESS. As
you’ve seen in earlier chapters, these return codes are mapped to results by the
framework. In this case, INPUT returns you to the same page to re-edit your form,
whereas SUCCESS redirects you to the main dashboard page.

13.1.2 Implementing the Validateable interface

Although implementing validations in the execute() method is workable, it adds
a lot of code to execute(). The previous example included some simple valida-
tions for a few fields. Multiply this by dozens of fields and multiple validations per
field for a complex form, and you’ll see that the business function your action
implements can quickly become obscured beneath many lines of code devoted to
validating the form data before doing any real processing.

 Moreover, you might want to have several methods on your action class that
could each be mapped to a separate action alias, as you saw in chapter 3 (“Setting
up WebWork”) when we talked about aliasing action methods. Each of these meth-
ods would deal with the same objects but have different business functions. If you
put your validation code in the methods, your validations would need to be cut-
and-pasted into each method, rather than being reused. If you were faced with this
situation, you would probably pull this functionality out into a separate method
that could be reused across action aliases, which is what you’ll do in a moment.

 Finally, checking for error messages in the action and returning Action.INPUT
as the result to look up from the action configuration if there are errors should seem
familiar. In chapter 5, “Adding functionality with interceptors,” the DefaultWork-
FlowInterceptor did this (mapped as workflow). The DefaultWorkFlowInterceptor
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

338 CHAPTER 13

Validating form data
also checks whether the action implements the com.opensymphony.xwork.Validate-
able interface. As you may remember, this interface declares one method and is
implemented by ActionSupport:

void validate()

To separate your validation code from your business logic, you’ll refactor your
action class to implement the Validateable interface and pull your validation
code out of your execute() method and into the validate() method. Listing 13.5
shows the CreateUser execute() and validate() methods when implementing
the Validateable interface.

public void validate() {
 User user = getUser();
 String firstname = user.getFirstname();
 if ((firstname == null) || (firstname.trim().equals(""))) {
 addFieldError("user.firstName",
 "You must enter a first name.");
 }
 String lastname = user.getLastname();
 if ((lastname == null) || (lastname.trim().equals(""))) {
 addFieldError("user.lastname", "You must enter a last name.");
 }
 String username = user.getUsername();
 if ((username == null) || (username.trim().equals(""))) {
 addFieldError("user.username", "You must enter a user name.");
 }
 String email = user.getEmail();
 if ((email == null) || (email.trim().equals(""))) {
 addFieldError("user.email",
 "You must enter an email address.");
 }
}

public String execute() throws Exception {
 userDAO.makePersistent(user);
 return SUCCESS;
}

Not only is this code smaller and clearer, because you can easily see which code is
involved in validation and which implements your business logic, but it can also
make your actions more testable! When you’re unit testing, it’s important to be able
to get to small units of code to test, because you can individually test your business

Listing 13.5 Validation code in the validate() method from the
Validateable interface
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Manually validating data 339
functionality and your validations. In this case, you have only the saving of the User
for business logic; but in more complex applications, testing the business logic is
critical. We’ll look in depth at the issue of testing WebWork apps in chapter 15.

 In addition, in some use cases you may want to apply validations, whereas in
others you don’t. This is simple now, because you can customize your interceptor
set per action alias and leave out the workflow interceptor if you don’t want to use
the validate() method.1

 In general, it’s preferable to implement the Validateable interface if you’re
going to do field validation in your action class. One exception to this rule is when
your action has multiple action aliases that are mapped to different methods in
your action, and you want a different validation for each method. In this case, it
wouldn’t make sense to implement Validateable, even to group common valida-
tions. The reason is the lifecycle the workflow interceptor puts around your
action, as you see in figure 13.1.

 If any errors occur after executing the validate() method, processing stops,
and the action execute() isn’t called. Thus any custom validations for this exe-
cute() method (or other equivalent method, as mapped in the xwork.xml file)
aren’t run. The user is sent back to the form to fix the form field problems shown
(those generated from the common validations in validate()) and repost the
form. After the user corrects the errors and resubmits, if problems with the field

1 This would also leave out the error checking done in the workflow interceptor that can catch type-
conversion errors. If you need to have this error checking and want to be able to turn validation on and
off, it should take you about 5 minutes to build an interceptor that can just do the error checking. See
chapter 5 for details on creating your own interceptor classes.

validate()
Has

errors?

return

INPUT

true

Continue...

false
Execute

Action

eventually

Figure 13.1 The workflow provided by the DefaultWorkflowInterceptor
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

340 CHAPTER 13

Validating form data
data are caught in the validations in the execute() method, the user is sent back
to the form to fix the input again, which is quite frustrating. In the case of multi-
ple action aliases, it’s a better idea to pull your common validations into a method
and then call that method from each of your execute() equivalent methods, or to
use the Validation Framework, which we’ll discuss next.

13.2 Using the Validation Framework

As you saw in section 13.1, validations can be performed in code in your action
class. As you also saw, this approach can clutter your code and become compli-
cated when you want different validations in different use cases. These concerns
led to the development of the XWork Validation Framework, which is part of
XWork (and therefore included in WebWork). The Validation Framework uses
external metadata in the form of XML files to describe what validations should be
performed on your action.

13.2.1 Building your first *-validation.xml file

Validations to be applied by the Validation Framework are defined in XML files
named ClassName-validation.xml. These files go alongside your action classes in
the same packages, so they’re easier to manage. As an example, let’s look at the
validation XML file for the CreateUser example that would accomplish the same
thing you’ve been doing. Listing 13.6 shows the CreateUser-validation.xml file.

<!DOCTYPE validators PUBLIC
 "-//OpenSymphony Group//XWork Validator 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-validator-1.0.2.dtd">
<validators>
 <field name="user.firstname">
 <field-validator type="requiredstring">
 <message>First name is required!</message>
 </field-validator>
 </field>
 <field name="user.lastname">
 <field-validator type="requiredstring">
 <message>Last name is required!</message>
 </field-validator>
 </field>
 <field name="user.username">
 <field-validator type="requiredstring">
 <message>Username is required!</message>
 </field-validator>

Listing 13.6 CreateUser-validation.xml
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using the Validation Framework 341
 </field>
 <field name="user.password">
 <field-validator type="requiredstring">
 <message>Password is required!</message>
 </field-validator>
 </field>
 <field name="user.email">
 <field-validator type="requiredstring">
 <message>Email name is required!</message>
 </field-validator>
 </field>
</validators>

Looking at the structure of this file, you see that it starts with a DOCTYPE declaration;
this allows the parser to associate this file with the DTD for validating the file structure.
Next, you group all the validations inside one <validators> root element. Then, you
apply one field validator each to the user.firstname, user.lastname, user.username,
user.password, and user.email fields. These field validators are requiredstring val-
idators, which do the null and empty String checks you’ve been doing.

 Each validator also includes a <message> element that provides the error mes-
sage to be added to the action if the validator fails. The text between the <mes-
sage> and </message> is the default message text. If you want to use a localized
message looked up from a resource bundle, you can add a key attribute to the
message element, like this:

<message key="invalid.email">

If the message key isn’t found in the resource bundles, the default text is used.
 Next, let’s look at what validators are available and how you register them.

13.2.2 Registering validators

Validators can be any class that implements the com.opensymphony.xwork.valida-
tor.Validator interface. Validators are called by the framework to validate an object
and are passed the object to access its properties. Validators are mapped from a
name to a class that implements the Validator interface. They must be registered
with the com.opensymphony.xwork.validator.ValidatorFactory to do this map-
ping. This may either be done programmatically, using the registerValida-
tor(String name, Class clazz) static method of the ValidatorFactory, or by putting
a file named validators.xml in the root of the classpath, which is the usual method.
Listing 13.7 shows a validators.xml file that includes all the bundled validators.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

342 CHAPTER 13

Validating form data
<validators>2

 <validator name="required" class="...RequiredFieldValidator"/>
 <validator name="requiredstring"
 class="...RequiredStringValidator"/>
 <validator name="int" class="...IntRangeFieldValidator"/>
 <validator name="date" class="...DateRangeFieldValidator"/>
 <validator name="expression" class="...ExpressionValidator"/>
 <validator name="fieldexpression"
 class="...FieldExpressionValidator"/>
 <validator name="email" class="...EmailValidator"/>
 <validator name="url" class="...URLValidator"/>
 <validator name="visitor" class="...VisitorFieldValidator"/>
 <validator name="conversion"
 class="...ConversionErrorFieldValidator"/>
 <validator name="stringlength"
 class="...StringLengthFieldValidator"/>
</validators>

Table 13.1 shows the bundled validators using the names shown and gives a
description of each. All validators have the properties defaultMessage, mes-
sageKey, and shortCircuit, which are configured using built-in attributes in the
XML file. In addition, all validators except the expression validator support a
fieldName property that is normally set by the field validators being inside a
<field> element. Additional properties are discussed in the table.

 Most of the validators listed in table 13.1 are relatively simple. They do things
like check for null, check for a range of values, or check that a String is in some
defined format for an email or a URL. Two of the validators stick out as more
advanced, however: VisitorFieldValidator and Expression/FieldExpression-
Validator. We look at these in detail in the advanced Validation Framework sec-
tion later in this chapter.

Listing 13.7 validators.xml2

2 All of the bundled validators listed here are in the package com.opensymphony.xwork.validator.valida-
tors. The package name is omitted for readability.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using the Validation Framework 343
Table 13.1 The bundled validators as mapped in a validators.xml file from their common name to the
class implementing the validation

Validator name Function

required Field validator that checks whether the field is null and adds a field error if it is.

requiredstring Field validator that checks whether the String is null or empty. This is necessary
because web request parameters naturally come in as strings, and even if nothing

is typed into a textfield, an empty String will be passed to the property.

stringlength Field validator that checks to be sure the length of a String property’s value is

within a certain range.

int Field validator that checks to be sure the integer (or Integer) field value is in a

given range of numbers.

date Field validator that checks to be sure the Date field value is in a given range of dates.

email Field validator that checks for a valid email address format.

url Field validator that checks for a valid URL format.

Extra parameters

trim boolean property that tells the validator whether to call trim() to
remove extra whitespace before checking if the String value is empt
Defaults to true.

Extra parameters

trim boolean property that tells the validator whether to call trim()
to remove extra whitespace before checking the String's value.

minLength int property that represents the minimum allowable String
length. Defaults to -1, which is ignored.

maxLength int property that represents the maximum allowable
String length. Defaults to -1, which is ignored.

Extra parameters

min iInteger property that represents the minimum allowable
value. Defaults to null, which doesn't check the minimum.

max Integer property that represents the maximum allowable
value. Defaults to null, which doesn't check the maximum.

Extra parameters

min iDate property that represents the minimum allowable
value. Defaults to null, which doesn't check the minimum.

max Date property that represents the maximum allowable value
Defaults to null, which doesn't check the maximum.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

344 CHAPTER 13

Validating form data
conversion Field validator that implements the same functionality as the conversionError
interceptor you saw in chapter 12, but only for the fields to which it’s applied. The
conversion field validator checks whether a type-conversion error occurred when
setting the value on this field and uses the type-conversion framework to create
the correct field error message to be added for this field. This field validator
should only be used if the conversionError interceptor isn’t applied and you
want to handle setting conversion error messages on a per-field basis.

expression /
fieldexpression

Validators that evaluate any OGNL expression that evaluates to a boolean (or
Boolean). For example: user.name != "fred"

These validators allow you to create powerful validations using just XML and
your existing model.The expression validator should be applied when the valida-
tion isn’t specific to one field, because it adds action-level error messages. The
fieldexpression validator is a field validator that adds error messages specific
to that particular field. Except for the location where error messages are stored,

these two validators are the same.

visitor Field validator that allows validation to be run against the value of the field to which
this validator is applied. For example, if a visitor field validator is applied to the
user object of the CreateUser action, it applies the validations mapped for the
User class. The framework uses the validations defined in *-validation.xml files for

the Object types of the property value. We’ll discuss this more in section 13.3.5.

Table 13.1 The bundled validators as mapped in a validators.xml file from their common name to the
class implementing the validation (continued)

Validator name Function

Extra parameters

expression An OGNL expression that evaluates to a boolean or Boolean
value. A value of true means the object or field is valid. A
value of false or a non-boolean/Boolean value means
the object or field is invalid and causes an error message to
be added.

Extra parameters

context Allows you to specify a different context under which to vali-
date this object. By default, the context is the name of the
action alias the visitor field validation came from.

append-
Prefix

Tells the visitor field validator whether to append the name
of this property to the full property name when adding error
messages. For example, if the visitor field validator is
added to the user property, and appendPrefix is set to
true, then field error messages for the firstName property
of the User add field error messages for user.firstName
to the action. By default, this is true. For ModelDriven
actions where the visitor field validator is applied to the
model property, this should be set to false.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using the Validation Framework 345
13.2.3 Applying the validation interceptor

The Validation Framework can be set up to automatically use your ClassActionName-
validation.xml files by adding the validation interceptor. As you saw in chapters 3
and 5, you can apply interceptors to an action by adding <interceptor-ref> ele-
ments to your action configuration in xwork.xml. Here’s the configuration for the
CreateUser action before you apply the validation interceptor:

<action name="createUser"
class="org.hibernate.auction.web.actions.users.CreateUser">

 <interceptor-ref name="defaultStack"/>
 <interceptor-ref name="workflow"/>
 <interceptor-ref name="token-session"/>
 <result name="input">createUser.jsp</result>
 <result name="success" type="chain">login</result>
</action>

After you apply the validation interceptor, this configuration looks like this:

<action name="createUser"
class="org.hibernate.auction.web.actions.users.CreateUser">

 <interceptor-ref name="defaultStack"/>
 <interceptor-ref name="validation"/>
 <interceptor-ref name="workflow"/>
 <interceptor-ref name="token-session"/>
 <result name="input">createUser.jsp</result>
 <result name="success" type="chain">login</result>
</action>

Because you had already added the workflow interceptor to call the validate()
method and check for error messages, the interceptors include the default stack
and the workflow interceptor. Because it’s a common set of interceptors, the
default stack + workflow + validation are also grouped together as a named inter-
ceptor stack (validationWorkflowStack) in the webwork-default.xml file. Your
application also uses the component manager and other services, so you use the
completeStack, which includes all of those in the validationWorkflowStack and
more, as shown in listing 13.8.

<interceptor-stack name="completeStack">
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="servlet-config"/>
 <interceptor-ref name="chain"/>
 <interceptor-ref name="model-driven"/>
 <interceptor-ref name="component"/>
 <interceptor-ref name="fileUpload"/>
 <interceptor-ref name="static-params"/>

Listing 13.8 The definition of completeStack in webwork-default.xml
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

346 CHAPTER 13

Validating form data
 <interceptor-ref name="params"/>
 <interceptor-ref name="conversionError"/>
 <interceptor-ref name="validation"/>
 <interceptor-ref name="workflow"/>
</interceptor-stack>

Because of this, you can easily make this one interceptor stack the main intercep-
tor reference in your action configuration, as you see here:

<action name="createUser"
class="org.hibernate.auction.web.actions.users.CreateUser">

 <interceptor-ref name="completeStack"/>
 <interceptor-ref name="token-session"/>
 <result name="input">createUser.jsp</result>
 <result name="success" type="chain">login</result>
 </action>
</package>

You also add the token-session interceptor to prevent duplicate posts and to take
the user to the correct page after processing without seeing an error. See chapters 5
and 15 for details on the token interceptors.

13.2.4 Pulling it all together

Now you’ve defined your first validation file, CreateUser-validation.xml, which
you built in section 13.2.1. This file sits in the same package as your CreateUser
action class. In section 13.2.2, we looked at how to define the validators you’re
using (probably just copying over the validators.xml file from the WebWork exam-
ple app) so they’re registered and can be used in your validation xml files. In sec-
tion 13.2.3, we explained how to apply the validation interceptor to your action
configuration so that the validation is done for you automatically. Finally, let’s
look at what this means for your action class. Listing 13.9 shows the important
parts of the action code before applying the Validation Framework.

public class CreateUser extends ActionSupport {
 private User user = new User();

 public User getUser() {
 return user;
 }

 public void validate() {
 User user = getUser();

Listing 13.9 CreateUser action before using the Validation Framework
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using the Validation Framework 347
 String firstname = user.getFirstname();
 if ((firstname == null) || (firstname.trim().equals(""))) {
 addFieldError("user.firstName",
 "You must enter a first name.");
 }
 String lastname = user.getLastname();
 if ((lastname == null) || (lastname.trim().equals(""))) {
 addFieldError("user.lastname",
 "You must enter a last name.");
 }
 String username = user.getUsername();
 if ((username == null) || (username.trim().equals(""))) {
 addFieldError("user.username",
 "You must enter a user name.");
 }
 String email = user.getEmail();
 if ((email == null) || (email.trim().equals(""))) {
 addFieldError("user.email",
 "You must enter an email address.");
 }
 }

 public String execute() throws Exception {
 userDAO.makePersistent(user);
 return SUCCESS;
 }
}

Applying the Validation Framework makes this code much easier. Listing 13.10
shows the action class after applying the Validation Framework.

public class CreateUser extends ActionSupport
 implements UserDAOAware {
 User user;
 private UserDAO userDAO;

 public String execute() throws Exception {
 userDAO.makePersistent(user);
 return SUCCESS;
 }

 public String doDefault() throws Exception {
 return INPUT;
 }

Listing 13.10 Simplified action code that results from applying the
validation interceptor
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

348 CHAPTER 13

Validating form data
 public User getUser() {
 return user;
 }

 public void setUser(User user) {
 this.user = user;
 }

 public void setUserDAO(UserDAO dao) {
 this.userDAO = dao;
 }
}

As you can see, after you apply the validation interceptor, the code becomes
smaller and simpler because you don’t need to override validate() to implement
the validations in code. Now, between the validation interceptor validating your
action and the workflow interceptor checking for errors, all your action’s execute()
method has to do is return SUCCESS: The rest of the work is done before you get to
the execute() method. The validations are applied, reading which validations
you’ve applied from your CreateUser-validation.xml file; then the action is checked
for any errors, and it returns INPUT if there are any. By the time the execute()
method is called, you know your data has been validated and is acceptable, so your
action code can contain just the business logic (in this case, saving the User). Other
times, you may have validations that work better in code than declared in a valida-
tion XML file. In such cases, you could leave those validations in the validate()
method and separate the other validations to an XML file.

 Before we move on, let’s look at some example validation xml file snippets to
see how these validations can be applied.

13.2.5 Looking at some validation XML examples

You’ve seen the basics of setting up the Validation Framework, so now let’s look at
some examples that show how you’d use it. Let’s start with a simple example that
shows the use of the stringLength field validator. Here’s the configuration for the
field validator:

<field name="username">
 <field-validator type="stringlength">
 <param name="trim">true</param>
 <param name="minLength">5</param>
 <param name="maxLength">10</param>
 <message>trim-min5-max10</message>
 </field-validator>
</field>
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using the Validation Framework 349
Here you configure a field validator for the username field to check the length of
the String put into that field to make sure it’s between 5 and 10 characters. With
trim set to true, the validator calls trim() on the String to remove any extra
whitespace before checking the String length.

 Next, let’s look at a similar example that uses the date field validator. Here’s a
field validator that prevents birthdates earlier than 1970:

<field name="birth">
 <field-validator type="date">
 <param name="min">01/01/1970</param>
 <message>You must have been born after 1970.</message>
 </field-validator>
</field>

As you can see, the min property is set by putting a String representation of the
date inside the <param> element. The type conversion framework is used to set the
validator configuration parameters onto the validator instances, so this is set as a
java.util.Date converted from the String 01/01/1970. It’s also interesting to
notice that when you only want to check that a value is greater than a certain
value, you can set the min parameter. Likewise, if you’re just interested in setting a
maximum value, you can set the max parameter.

 Finally, let’s look at a more interesting example that shows the use of the int
range validator and how you can use the values from the action and the validator
to parameterize the message. Following are the validators for a field named count:

<field name="count">
 <field-validator type="required">
 <message>You must enter a value for count.</message>
 </field-validator>
 <field-validator type="int">
 <param name="min">0</param>
 <param name="max">5</param>
 <message>count must be between ${min} and ${max},
 current value is ${count}.</message>
 </field-validator>
</field>

As you can see, two field validators are applied to the count property: a required
validator, and an int validator that checks whether the count value is within a
given range. At first look, it might seem that a null value would add two error mes-
sages, but this isn’t the case. The int field validator, like the other field validators
other than required and requiredstring, is designed to ignore null values. The
reason for this is to remain orthogonal to the other validators. As you see in this
example, if you want to ensure that a null value adds an error message for the
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

350 CHAPTER 13

Validating form data
field, then you should add a required validator. Keeping the validators orthogonal
is important and should be maintained in your own custom validators if at all pos-
sible because it simplifies composition and reuse of validators.

 The second important point in this example is the parameterization of the
error message for the int validator. As you saw, the range validators (int and date
field validators) take min and max parameters to set the boundaries of the range.
In this case, the count value has to be an integer between 0 and 5. If the value is
outside this range, the error message is created and put into the field error map
for the count field.

 As the previous code shows, error messages can be parameterized using OGNL
expressions to get values. Expressions wrapped in ${...} are evaluated to get the
text to put into that spot in the error message. The expressions are evaluated against
the value stack with the validator instance pushed onto the stack. Figure 13.2 shows
the evaluation of the ${min} and ${count} parameter placeholders.

 Now that you’ve seen how the basic validation system works, let’s look at the
more advanced validation features WebWork provides.

13.3 Exploring the advanced features
of the Validation Framework

In the previous section, you saw the simplest usage of the Validation Framework.
For larger and more complex applications, you’ll want to use the advanced fea-
tures discussed in this section to reuse validations, build custom validators, or
build up powerful validations using the OGNL expression language without need-
ing to write Java code.

Value Stack

min

max

int validator

count

action

findValue('min')

Value Stack

min

max

int validator

count

action

findValue('count')

Figure 13.2
The expression blocks from the
error message are evaluated
against the value stack with the
validator instance pushed on.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Exploring the advanced features of the Validation Framework 351
13.3.1 Implementing a custom validator

The Validation Framework allows for custom validators to be built and applied in
the same declarative fashion as the prebuilt validators. Implementing a custom
validator is as simple as creating a class that implements the com.opensym-
phony.xwork.validator.Validator interface, which is shown in listing 13.11.

public interface Validator {
 void setDefaultMessage(String message);

 String getDefaultMessage();

 String getMessage(Object object);

 void setMessageKey(String key);

 String getMessageKey();

 /**
 * This method will be called before validate() with a non-null
 * ValidatorContext.
 * @param validatorContext
 */
 void setValidatorContext(ValidatorContext validatorContext);

 ValidatorContext getValidatorContext();

 /**
 * The validation implementation must guarantee that setValidatorContext
 * will be called with a non-null ValidatorContext before validate is
 * called.
 * @param object
 * @throws ValidationException
 */
 void validate(Object object) throws ValidationException;
}

As you can see, the com.opensymphony.xwork.validator.Validator interface has a
few methods for setting up the message to add if the validation fails. You can set
the default message and/or the message key to look up, and getMessage() han-
dles figuring out what the final message should be. The interface also provides a
getter and setter for a ValidatorContext object. ValidatorContext is an interface
that provides methods for getting localized message texts, setting error messages,
and getting the locale.

Listing 13.11 com.opensymphony.xwork.validator.Validator interface
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

352 CHAPTER 13

Validating form data
 The good news is that you don’t have to implement the Validator interface
from scratch. com.opensymphony.xwork.validator.validators.ValidatorSupport
is an abstract class that implements the Validator interface, leaving the validate()
method for subclasses to implement, and adds some helpful methods such as add-
ActionError(), addFieldError(), and getFieldValue(). The FieldValidator inter-
face, which adds a getter and setter for a property named fieldName, likewise has a
FieldValidatorSupport abstract class that implements FieldValidator and
extends ValidatorSupport.

 All of this is, of course, a preface to saying that all you need to do to implement
your own custom validator is to extend one of these abstract classes and code the
validate() method. Let’s look at a FieldValidator that makes sure an entered
String property’s length is within a certain range.3 This can be useful when you’re
going to put the text into a database column and want to make sure you don’t get
JDBC exceptions from having more characters than the size of the field in the table.
Listing 13.12 shows the implementation of the StringLengthFieldValidator.

public class StringLengthFieldValidator
 extends FieldValidatorSupport {
 private boolean doTrim = true;
 private int maxLength = -1;
 private int minLength = -1;

 public void setMaxLength(int maxLength) {
 this.maxLength = maxLength;
 }

 public int getMaxLength() {
 return maxLength;
 }

 public void setMinLength(int minLength) {
 this.minLength = minLength;
 }

 public int getMinLength() {
 return minLength;
 }

 public void setTrim(boolean trim) {
 doTrim = trim;

3 The StringLengthFieldValidator started as an example here for building a custom validator, but it
seemed useful; so, now it’s one of the prepackaged validators.

Listing 13.12 StringLengthFieldValidator, which validates
the length of a String property
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Exploring the advanced features of the Validation Framework 353
 }

 public boolean getTrim() {
 return doTrim;
 }

 public void validate(Object object)
 throws ValidationException {
 String fieldName = getFieldName();
 String val = (String) getFieldValue(fieldName, object);

 if (doTrim) {
 val = val.trim();
 }

 if ((minLength > -1) && (val.length() < minLength)) {
 addFieldError(fieldName, object);
 } else if ((maxLength > -1)
 && (val.length() > maxLength)) {
 addFieldError(fieldName, object);
 }
 }
}

The StringLengthFieldValidator adds the properties maxLength, minLength, and
trim, and uses them to check against the length of the String. The getFieldName(),
getFieldValue(), and addFieldError() methods are implemented in the abstract
base class and make it trivial to write new validators.

 Once you’ve created a new Validator class, all that’s left is to register it with the
Validation Framework, to be able to use it as a named validator in your *-valida-
tion.xml files. All that has to be done is to add this line to the validators.xml file:

<validator name="stringlength"
 class="com.opensymphony.xwork.validator.validators.
bbbbbbbbb➥StringLengthFieldValidator"/>

After doing this, you can add the validator to any field (it should be a String prop-
erty) using the name stringlength.

13.3.2 Validating with different contexts

Removing validations from your action classes is a nice benefit, but the valida-
tions you’ve seen so far could easily be coded in a validate() method. In fact, if
your actions have only one entry point method (like the execute() method of
the action interface), then it’s often best to put your validations directly in your
validate() method, because doing so makes testing easy and fast. However, in
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

354 CHAPTER 13

Validating form data
real-world systems, it often makes sense to put multiple entry point methods on
one action class and map them to different aliases in your xwork.xml file. This
can prevent the explosion of action classes that can happen when you stick
strictly to the “one action = one Command” idea.

 Unfortunately, if you want different validations for different entry points, this
approach can make managing your validations somewhat complex. Although it’s
possible to figure out which method is being called in your validate() method and
have a series of if...else blocks, it’s not pretty. The Validation Framework makes
this much simpler by allowing you to define different validations for different con-
texts. In this case, the context name is the action alias. The filenames take the form
of ActionName-aliasName-validation.xml. For an action class named CreateUser
mapped with an alias named createUserPrepare, which also extends a base action
class named BaseAction, the order of loading of validation definitions would be
like this:

1 BaseAction-validation.xml

2 BaseAction- createUserPrepare-validation.xml

3 CreateUser-validation.xml

4 CreateUser- createUserPrepare-validation.xml

The framework looks first to the default validations for the parent classes
(BaseAction-validation.xml) for validations (this also includes any implemented
interfaces), then to the context-specific validations for the parent classes (BaseAc-
tion-createUserPrepare-validation.xml), then to the default validations for this class
(CreateUser-validation.xml), and finally to the specific validations for this class and
context (CreateUser-createUserPrepare-validation.xml). Because these validations
are all built up and added to a list, it’s important to think about what validations you
put where. Only validations that are common to all contexts should be put in the
class-level validation files. Similarly, only validations that are common to all sub-
classes should be put in parent class validation files.

13.3.3 Short-circuiting validation

It’s sometimes the case that one validation failing means no other validations
should be run. For example, if an email field is required, and it’s null, you don’t
need to check whether it’s a valid email address.4 In order to enable this, a short-
circuit property was added to the Validation Framework in WebWork 2.1. Here’s
an example of an email field using the short-circuit attribute:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Exploring the advanced features of the Validation Framework 355
<field name="user.email">
 <field-validator type="requiredstring" short-circuit="true">
 <message>You must enter a value for email.</message>
 </field-validator>
 <field-validator type="email" short-circuit="true">
 <message>Not a valid e-mail.</message>
 </field-validator>
</field>

If the field is null or empty, the email validator4 isn’t called because the short-
circuit attribute is set to true for the requiredstring validator.

 The short-circuit option checks whether any error messages are added during
the execution of that validator. For field validators, as shown earlier, it checks for
errors added for this field. If any errors are added for this field, validations for this
field are short-circuited, but other validations continue. If the short-circuit
attribute is added for an action validator, it checks for any errors added to the action-
level error message list. If any errors are added, all validations are short-circuited.
This means no more validations are run. As we noted earlier, validations are inher-
ited from parent classes, so it’s important to be careful not to short-circuit valida-
tions that you don’t mean to.

13.3.4 The ExpressionValidator

The ExpressionValidator and FieldExpressionValidator are basically the same;
the only thing that changes is where error messages are added, the first adding
them to the action-level error list, the second adding them to the list mapped to
the field name. They both allow you to apply any OGNL expression that returns a
boolean value as a validator. If the expression evaluates to true, the validation
passes. If it evaluates to false (or if it returns a non-boolean value), the validation
fails and the error message supplied (either with the message key or the default
message) is added. The following example validation definition ensures the sum
of two numeric properties of the action is less than a constant maximum value:

<validator type="expression">
 <param name="expression">
 @example.ValidatedBean@MAX_TOTAL > (number + number2)
 </param>

4 Note here that validators should be written to be completely independent, so a validator that checks the
value of a property against some rule (for instance, checking that a String makes a valid email address)
shouldn’t add an error message if the property is null. The email validator does this. This way, you can
apply this validator to a nonrequired field and not get extra error messages when it’s empty.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

356 CHAPTER 13

Validating form data
 <message key="invalid.total">Invalid total!</message>
</validator>

The @example.ValidatedBean@MAX_TOTAL part of the expression gets the value of a
static constant from the ValidatedBean class, which is then compared with the
sum of the number and number2 properties of the action. If these two properties
add up to more than the static constant MAX_TOTAL, an error message is added.

13.3.5 Reusing validations with the visitor field validator

Validations aren’t specific to action classes. The Validation Framework can be
used without the rest of WebWork to provide a generic object validation frame-
work for domain objects. It’s often the case that you’ll want to define validation
rules for your domain objects or model objects and reuse them across all the
actions or other classes that use those objects, but you need a way to trigger the
Validation Framework to use those validations. In order to do this, the Validation
Framework comes with the VisitorFieldValidator.

Applying the VisitorFieldValidator
The VisitorFieldValidator tells the Validation Framework to look up and use the
validations for the object in the named property of the action. Let’s look at how you
could centralize validations for your User objects and refactor your CreateUser
action to use these validations. Listing 13.13 shows the contents of User-
validation.xml, which defines the validations for the User class. This file sits directly
beside the User class file in the same package.

<!DOCTYPE validators PUBLIC
 "-//OpenSymphony Group//XWork Validator 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-validator-1.0.2.dtd">
<validators>
 <field name="firstname">
 <field-validator type="requiredstring">
 <message>First name is required!</message>
 </field-validator>
 </field>
 <field name="lastname">
 <field-validator type="requiredstring">
 <message>Last name is required!</message>
 </field-validator>
 </field>
 <field name="username">
 <field-validator type="requiredstring">
 <message>Username is required!</message>

Listing 13.13 User-validation.xml
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Exploring the advanced features of the Validation Framework 357
 </field-validator>
 </field>
 <field name="password">
 <field-validator type="requiredstring">
 <message>Password is required!</message>
 </field-validator>
 </field>
 <field name="email">
 <field-validator type="requiredstring">
 <message>Email name is required!</message>
 </field-validator>
 </field>
</validators>

This validation file defines the same field validators you’ve been using, required
String validators on the firstname, lastname, username, and email fields of the
User object. Now let’s look at how you tell the Validation Framework to use it.
Listing 13.14 shows the new CreateUser-validation.xml file, which uses the
VisitorFieldValidator to tell the Validation Framework to use the User-
validation.xml file.

<!DOCTYPE validators PUBLIC
 "-//OpenSymphony Group//XWork Validator 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-validator-1.0.dtd">
<validators>
 <field name="user">
 <field-validator type="visitor">
 <message>User: </message>
 </field-validator>
 </field>
</validators>

The visitor field validator you define here tells the Validation Framework to look
up the validations for the class of the object it gets from calling the getUser()
method. Because it gets back a User object, it looks for a User-validation.xml file
next to the User class in the same package. It then tells the Validation Framework
to execute the validations defined in that file against the User object while adding
any error messages back to your action. This chaining of validations can be
applied to single-value properties, like the user property, but can also be applied
to Collections and Arrays of objects; the Validation Framework looks up valida-
tions for each object it finds based on the class of the object.

Listing 13.14 CreateUser-validation.xml
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

358 CHAPTER 13

Validating form data
 The <message> element shown in listing 13.14 gives a String that is
prepended to the beginning of every message applied by the validators for the
visited object. For instance, if the name is invalid for your User object, the final
message will be User: You must enter a name. This is a combination of the message
from the VisitorFieldValidator in listing 13.14 (User:), and the message added
by the validator in listing 13.13 (You must enter a name.).

Using other validation contexts for visited objects
In the previous example, you created a User-validation.xml file. This file defines
the default validations for the User object; but as you’ve seen, you can have differ-
ent validation sets for different contexts. In fact, in the previous example, the con-
text for validating the action is createUser, the name of the alias of the action as
defined in the <action> element in xwork.xml. This context is passed along to the
visitor validator; so, if you wanted to have context-specific validations, you could
define them in a file named User-createUser-validation.xml. This file would be
used when the visitor field validator was applied from the createUser action
alias, along with the default validations for the User object, as defined in the User-
validation.xml file in listing 13.13. If you had another action that was mapped with
the alias editUser which also applied the VisitorFieldValidator to a User object,
it would try to load a file named User-editUser-validation.xml along with your
User-validation.xml file.

 It’s often the case that you’ll have a small number of validation contexts for a
domain object and wish to map the many places it’s used to those contexts. As an
example, an application might have a set of validations that only apply for online
editing of domain objects, and a different set of validations that apply for batch pro-
cessing. For the User object, this would give your User-validation.xml file as the
default validations, plus User-online-validation.xml and User-batch-validation.xml
defining the online and batch specific validations, respectively.

 The VisitorFieldValidator accommodates this by allowing you to specify the
validation context to use, rather than just using the validation context being used
by the parent object. To do this, you provide a parameter named context using
the <param> element, as follows:

<!DOCTYPE validators PUBLIC
 "-//OpenSymphony Group//XWork Validator 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-validator-1.0.dtd">
<validators>
 <field name="user">
 <field-validator type="visitor">
 <param name="context">online</param>
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 359
 <message>User: </message>
 </field-validator>
 </field>
</validators>

Using this validation file, the Validation Framework looks for the User-valida-
tion.xml file and the User-online-validation.xml file when finding validations for
the User object.

 The validation context set using the <param> element as shown here becomes
the new default validation context. This means that if the User object defines any
VisitorFieldValidators (for instance, to an Address object), then the online val-
idation context will be used unless overridden again as we’ve shown. This allows
you to define the validations for your domain object using a small number of
contexts (such as online and batch), map the action validations to the domain
objects using the VisitorFieldValidator and the <param> element, and have the
validation context flow through all the validation relationships as defined using
VisitorFieldValidators.

13.4 Summary

Validating form data is central to web applications, and WebWork provides many
ways to implement validation. The most direct method for validating values is cod-
ing the validations directly in your execute() method. This approach mixes vali-
dations and business logic, so it’s often better to consolidate your validation code
in the validate() method from the Validateable interface and use an intercep-
tor to make sure it’s called before the execute() method.

 For more advanced validation requirements and validation reuse, WebWork
provides a meta-data driven Validation Framework. This Validation Framework
allows you to define validations in XML files that are automatically loaded by the
framework based on the filename.

 Many different prebuilt validators are bundled with WebWork, including sim-
ple ones like the required field validator and complex ones like the expression val-
idator (which allows you to use any OGNL expression as a validator). The
VisitorFieldValidator is a prebuilt validator that lets you tell the framework to
validate the property value (including arrays and collections) using the validations
defined for the property’s type. This allows you to centralize validations for your
domain objects and have them used by any action that uses the domain type.

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Internationalization
This chapter covers
■ Sources for localized messages and their

search order
■ Default resource bundles
■ The <ww:i18n> and <ww:text> tags
■ How to format i18n messages
■ How to format dates and numbers
■ How to localize validation and error messages
■ I18n tips and tricks, including loading

messages from a database
360

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Exploring a quick internationalization example 361
Developing internationalized web applications is hard, and we can’t hope to cover
all aspects of this challenging topic. The extensive facilities provided by WebWork
can help you tackle the technical aspects of building an internationalized applica-
tion, leaving you to only externalize your text messages, manage the translation
process, internationalize your data, and so on—that is, to do the hard part. Web-
Work’s internationalization facilities can also be used in noninternationalized
applications to format dates and numbers for the screen, and we’ll also look at
this usage.

14.1 Exploring a quick internationalization example

During this chapter, we’ll explore an internationalized version of CaveatEmptor
that shows a tree of categories with localized text for labels and for the category
data itself. The example also lets the user choose a language: English, German,
Spanish, or French. Figure 14.1 shows the initial page you see when you access the
example app (actually, the page you see depends on the default locale of your
browser; but this is the default page, because the default locale is en_US).

 As you can see, you’re shown a tree of category names, a link to create a new
category, and the option to choose another language. All of these values are in the

Figure 14.1 When you first access the example application, you see the item list in your
default language.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

362 CHAPTER 14

Internationalization
correct language and are correctly formatted for the default locale, en_US; but if you
were building a web app just for US usage, it would look the same. Let’s look at what
happens when you choose another language and click the Set Language button.

 Figure 14.2 shows the same page after you’ve selected German and clicked Set
Language. Note that not only are the category names localized to their German
equivalents, but so are the labels and button texts. Also note that the German texts
use non-ASCII characters such as ö.

 Throughout the rest of this chapter, we’ll look at how this example application
works as we discuss the i18n facilities provided by WebWork.

14.2 Sources for messages

In order to provide different texts for different locales, you need a source for the
application to find the correct texts for a given locale. Fortunately, Java provides
these facilities for you in the form of the java.util.ResourceBundle abstract class.
The JDK ships with two implementations of ResourceBundle: java.util.Property-
ResourceBundle and java.util.ListResourceBundle.

 The PropertyResourceBundle is the more commonly used ResourceBundle; it
looks for a set of similarly named properties files in the classpath. For instance, in

Figure 14.2 The same view items page looks like this after you select German for the language.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

javascript:%20tree.openAll();

Sources for messages 363
the example application, you’ll be loading a ResourceBundle named CreateLocal-
izedCategory. This looks for a set of properties files named like this:

■ CreateLocalizedCategory.properties

■ CreateLocalizedCategory_de.properties

■ CreateLocalizedCategory_en.properties

■ CreateLocalizedCategory_es.properties

■ CreateLocalizedCategory_fr.properties

These properties files should contain a set of key=value pairs mapping the keys you
want to use to look up the texts to the correct text for that locale.

 It’s also possible to programmatically build the ResourceBundle, and the List-
ResourceBundle provides an abstract base class to make this easier. When Resource-
Bundle.getBundle() is called, it searches first for a class with the correct name of
the ResourceBundle (including the language and country suffixes—for example,
ItemDescriptions_fr.class). If the class extends java.util.ResourceBundle, it’s
used; otherwise ResourceBundle looks for properties files with the correct names.
All of the WebWork facilities go through the ResourceBundle.getBundle()
method, so either properties files or classes can be used for your ResourceBundles;
however, things like the class hierarchy searching are more difficult when you have
to extend ResourceBundle.

 The example application includes three different ResourceBundles.org.
hibernate.auction.i18n is a default ResourceBundle (see section 14.2.2) with mes-
sage texts for things like formatting dates and numbers (see section 14.3.3). The
org.hibernate.auction.web.actions.localized.CreateLocalizedCategory Resource-

Bundle1 is the ResourceBundle for the CreateLocalizedCategory action and holds
action specific message texts like the title and the field label texts. The org.hibernate.
auction.localization.LocalizedMessages ResourceBundle is implemented as Java
classes and accesses localized texts from the database. Because it’s not associated
with an action, it isn’t automatically loaded; it’s directly loaded in your JSP page.
Next we’ll look at how these different ResourceBundles are loaded.

1 Although ResourceBundle names can use either the com/example/MyResourceBundle or com.exam-
ple.MyResourceBundle naming convention, the JavaDocs for PropertyResourceBundle specify that the
.java class name form is preferred.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

364 CHAPTER 14

Internationalization
14.2.1 Understanding the ResourceBundle search order

When WebWork looks for a message text, it searches for a ResourceBundle based on
a class or object you give it. This allows you to easily define message texts at different
levels and have them be found, with more specific texts taking precedence over
more general ones. Let’s look at the general search order as shown in figure 14.3.

1 WebWork searches for a ResourceBundle based on the class passed in (or
the class of the object passed in), including the interfaces and superclasses
of that class. This process looks for a ResourceBundle with the same name
and package as the class passed in. The search order for class hierarchy
searching is as follows:

a Look for the message in a ResourceBundle for the class.

b If not found, look for the message in a ResourceBundle for each imple-
mented interface.

c If not found, traverse up the class’s hierarchy to the parent class, and
repeat from step 1.

2 If the message text isn’t found in the class hierarchy search and the object
implements ModelDriven,2 WebWork calls getModel() and does a class
hierarchy search for the class of the model object.

3 If the message text still isn’t found, WebWork searches the class hierarchy
for default package texts. For the package of the original class or object,
you look for a ResourceBundle named package in that package. For
instance, if the class is org.hibernate.auction.ExampleClass, you look for
a ResourceBundle named org.hibernate.auction.package. You continue
along this line for each superclass in turn.

4 If WebWork hasn’t found the text yet, it tries to see if the message key
refers to a property of an object on the value stack. If looking for user on
the value stack returns a non-null object, and the text key you’re looking
for is user.label.address, you use the user object’s class to search for the
text key label.address, searching up its class hierarchy, and so on, as in
previous steps.

5 The last resort is to search for the text in the default ResourceBundles that
have been registered as described in the next section.

2 For a refresher on modeldriven actions, see chapter 4, section 4.6.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Sources for messages 365
C
la

s
s
 h

ie
ra

rc
h

y
M

o
d

e
lD

ri
v
e

n
p

a
c
k
a

g
e

.p
ro

p
e

rt
ie

s
A

c
ti
o

n
 p

ro
p

e
rt

y
D

e
fa

u
lt
 t

e
x
ts

ClassName

.properties
..

ModelClass

.properties

package

.properties

Parent

package

.properties

PropertyClass

.properties

Text name

maps

Property?

Default

.properties

Parent

properties

Interface

properties

ModelDriven?

Figure 14.3 WebWork searches a series of locations for localized texts.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

366 CHAPTER 14

Internationalization
As you can see, there are many opportunities to set default texts at different levels
and have them picked up automatically for all classes under their scope. For the
most part, however, you’ll probably use action-level ResourceBundles and default
ResourceBundles, which we’ll look at next.

14.2.2 Adding default resource bundles

You’ll often have a set of messages that you use throughout your application and
that you’ll always want to be available when getting a localized text. WebWork pro-
vides the ability to register default ResourceBundles either through a configura-
tion property or programmatically. The example application includes an i18n
ResourceBundle, which you want to add as a default ResourceBundle. In order to
do this, you add this line to the webwork.properties file:

webwork.custom.i18n.resources=org.hibernate.auction.i18n

At startup, this ResourceBundle is added to the list of default ResourceBundles. Note
the path before the i18n part of the ResourceBundle name: This indicates that the
ResourceBundle can be found in the package org.hibernate.auction. Alternatively,
this ResourceBundle could be added in a startup class, such as a ServletContext-
Listener, by making a call to the com.opensymphony.xwork.util.LocalizedText-
Util class:

LocalizedTextUtil
 .addDefaultResourceBundle("org.hibernate.auction.i18n");

Either way you register default ResourceBundles, they’re available to the i18n facil-
ities of WebWork when it searches for texts in default ResourceBundles. When
WebWork searches the default ResourceBundles, it does so last to first; so, default
ResourceBundles registered later take precedence over earlier ones.

14.2.3 The <ww:i18n> tag

In addition to the default ResourceBundle searching, you can explicitly make a
ResourceBundle available inside a JSP page using the <ww:i18n> tag. The i18n tag
puts an object implementing com.opensymphony.xwork.TextProvider and holding
the ResourceBundle specified onto the value stack. Calls to getText() by tags find
this object and get the message texts from the specified ResourceBundle. Listing 14.1
shows the segment of the example JSP that builds the table of items.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Sources for messages 367
<%--Push the resource bundle for
item descriptions onto the stack--%>
<ww:i18n
 name="org.hibernate.auction.localization.LocalizedMessages">
 <ww:select label="%{getText('text.parent', null, null)}"
 name="category.parentCategory"
 value="category.parentCategory.id"
 list="#categoryPicker.categories"
 listKey="id"
 listValue="#indent({top, ''}) + getText(name)"
 />
</ww:i18n>

In listing 14.1, the i18n tag is used to push a ResourceBundle named org.hiber-
nate.auction.localization.LocalizedMessages onto the value stack, so that the
call to getText(name) in the listvalue of the <ww:select> tag can access those texts.

 One thing to remember when you’re using the <ww:i18n> tag is the scope
where localized texts will be found. In listing 14.1, the 'text.parent' text is pro-
vided in a default ResourceBundle, not the LocalizedMessages ResourceBundle
provided by the <ww:i18n> tag. Because the <ww:i18n> tag is already providing a
ResourceBundle, the search order listed earlier isn’t used to find a ResourceBundle
that has the given text. If a text isn’t found, the default value is returned, which is
the name of the text key unless otherwise specified. Thus if your label attribute
looked like this:

label="%{getText('text.parent')}

you’d end up with a label of text.parent displayed to the user.
 The example code uses a value stack trick to make it keep searching for the

appropriate text. By adding the two extra null parameters, you ensure that the
default value is null. Because the value stack is designed to keep searching down
the stack for a property if it gets null, this causes the value stack to skip the Text-
Provider that the <ww:i18n> tag has pushed onto the value stack and fall back to
the action. The call to getText() on the action triggers the search for a Resource-
Bundle and eventually finds the default resource bundle with the text.parent
entry. You can use this method to find messages from any outside scope while
inside a <ww:i18n> tag.

 Now that you’ve experimented with loading localized texts, let’s look at how to
use them.

Listing 14.1 <ww:i18n> tag, which makes a ResourceBundle available for calls
to getText()
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

368 CHAPTER 14

Internationalization
14.3 Using internationalized messages

Loading ResourceBundles is all well and good, but the point is to use the texts.
WebWork provides facilities for finding the correct localized texts that use the
ResourceBundle searching you looked at in the previous section. In addition to
the places like the <ww:text> tag and calls to getText(), which are explicitly
designed to take a message text key, you can use Object Graph Navigation Lan-
guage (OGNL) expressions to get localized message texts in the attributes of the
WebWork tags.

The <ww:text> tag
The <ww:text> tag is the simplest and most direct way to write a localized text mes-
sage out to the page. It has one required attribute, name, which gives the message
text key. The name attribute can be a hard-coded key, or it can be evaluated if you
wrap the expression using the %{...} syntax. The header for the Create Category
page uses the <ww:text> tag with a hard-coded text key to get a localized page
title, as you see here:

<head>
 <title><ww:text name="text.createCategory"/></title>
</head>

14.3.1 Parameterizing localized texts

You’ll often want to put values into your messages that are only known at runtime.
WebWork provides two ways of putting runtime values into your message texts:

■ Any expressions in the body of your text that are enclosed in brackets begin-
ning with ${ and ending with } like ${expr} are evaluated against the value
stack as OGNL expressions, and the value of that expression is put in the
place of the ${expr} part of the message text.

■ Message texts can also use message formatting as done by the
java.text.MessageFormat class. For instance, arguments can be passed in to
be put into the message to replace numbered placeholders {0} through
{9}. Check out the JavaDocs for MessageFormat for more details on the for-
matting options. You’ll see some of them when we look at formatting dates
and numbers.

When you’re using numbered placeholders in a MessageFormat String for your
message text, you need to pass parameters to be used to fill in these placeholders.
With calls to getText() on your actions, you can optionally pass in a List of
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using internationalized messages 369
objects to be put into the correct spots in the message. When you’re using the
<ww:text> tag, there are two ways to pass values to be put into the placeholders:

■ Use the value0...value3 attributes of the Tag. This way is deprecated, but it
still works well—especially when you have just one or two simple parame-
ters. It’s also more concise and can save some lines of JSP code.

■ Use the <ww:param> tag to add unnamed properties. This method is more
flexible and allows more properties to be added. It also allows for whole
chunks of text, even text dynamically generated with other JSP tags, to be
passed in as parameters to the message. You’ll see this advanced usage dis-
cussed in section 14.4.3.

These two <ww:text> tag uses are functionally equivalent:

<ww:text name="format.date" value0="created"/>

<ww:text name="format.date"><ww:param value="created"/></ww:text>

You can pass up to 10 parameters to be put into the message using the <ww:param>
tags; their order depends on the order of the <ww:param> tags inside the <ww:text>
tag. The value attribute of the <ww:param> tag is evaluated as an OGNL expression
against the value stack, and the return value is put into the <ww:text> tag’s param-
eters. You can also use the <ww:param>…</ww:param> form of the tag to put any text
you like (including dynamically generated text) into the message parameters.

14.3.2 Using getText() in taglib attributes

WebWork tag attributes can all be evaluated against the value stack, so it makes
sense that you can get properties and call methods on your action from the
attributes of the tags using OGNL. When you don’t need to pass any parameters to
the formatted message text, the <ww:text> tag’s functionality can be replicated by
using a <ww:property> tag. These two do the same thing:

<ww:text name="text.createCategory "/>
<ww:property value="getText('text.createCategory')"/>

More useful, however, is to use getText() calls to get localized texts for labels for
UI elements. Here’s an example of a text field with a localized label text:

<ww:textfield label="%{getText('text.name')}" name="category.name"/>

This gets the text.name localized text and puts it into the label for your textfield.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

370 CHAPTER 14

Internationalization
14.3.3 Formatting dates and numbers

Formatting dates and numbers consistently throughout an application can be
tricky, regardless of whether you’re building an internationalized app. Fortu-
nately, java.text.MessageFormat and WebWork’s localized message text support
can help you use a consistent format string everywhere in your site. The example
application shows localized dates and amounts for the items. As you saw earlier, a
date can be written out using the <ww:text> tag like so:

<ww:text name="format.date" value0="created"/>

A monetary value can be written out like this:

<ww:text name="format.money" value0="price"/>

You’re passing in the price and created properties of the item to be formatted
using the appropriate text format String. The format.money and format.date
texts are defined in the i18n.properties file, as shown here:

format.money={0,number,currency}
format.date={0,date,short}

The format.money and format.date texts use java.text.MessageFormat format-
ting. Note that you don’t need different versions of these texts for different
locales, because MessageFormat takes care of that for you. Without having to
change the format string or know anything about the user in the JSP, the dates and
numbers are automatically formatted according to the correct locale. Here you
define the formats in a default ResourceBundle, but they could be defined (or
overridden) in action-specific ResourceBundles.

 These are relatively simple MessageFormat formatting strings, but much more
can be done by MessageFormat. The JavaDocs for MessageFormat are the best
resource for these advanced usages.

14.3.4 Using localized messages in validations

In chapter 13, “Validating form data,” we discussed different validation strategies
for your actions; but you always hard-coded the validation error messages in the
code or XML file. For an internationalized application, you need not only the
main text of the pages to be internationalized, but also any messages you show to
the user, especially messages telling them they’ve entered something incorrectly.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using internationalized messages 371
 Using localized messages in the validation framework is designed to be easy by
allowing you to specify your message text key in your *-validation.xml file. Here’s a
snippet of a validation file for a field named baz:3

<field name="baz">
 <field-validator type="int">
 <param name="min">0</param>
 <message key="baz.range">Could not find baz.range!</message>
 </field-validator>
</field>

The key attribute here is used to specify a message text key to be used in a call to
getText(). If the validation fails to find the localized error message text, it uses
the default text found between the open and close <param> tags. These message
texts can’t expect arguments as in the MessageFormat strings, because there’s no
way to supply them. They can, however, use the ${expr} notation we discussed ear-
lier. In the test resource bundle, the baz.range text is defined like so:

baz.range=${getText(fieldName)} must be greater than ${min}

Here you see the ${expr} notation used to call a method, getText(), to get a local-
ized version of the label for this field name. It also uses the min property from the
field validator object itself, picking up the value that was set into it as a property.
This works because when you’re evaluating the validations, the validator instances
themselves are pushed onto the value stack. Thus you can access properties of the
validator and the action (and any other object on the value stack) transparently
from your validation message text.

14.3.5 Using internationalized texts for type conversion messages

As you saw in chapter 12, type-conversion errors can add a message to your field
error messages. The default message is Invalid value '${value}' for field xxx,
which leaves a lot to be desired, especially for an internationalized application. For-
tunately, before defaulting back to this message, WebWork looks for a text named
invalid.fieldValue.xxx. You can use this to provide a better, and localized, mes-
sage text. All you need to do is to provide a message text for each property in a
ResourceBundle that is accessible from the action (that is, the action’s Resource-
Bundle, one of the parent classes ResourceBundle, or a default ResourceBundle).

3 This example comes from the test suite for XWork, where the validation framework is built and tested.
Test suites can be some of the best documentation for the usage of a library, so don’t be afraid to dig in
and see what they’re testing.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

372 CHAPTER 14

Internationalization
Localized texts for Collections
Many times, you’ll have collections of objects, each of which you’re exposing to the
web page via indexed properties. You’ll have form field names like items[0].name,
items[1].name, and so on. You may not even know how many of these you’ll have,
because the page writes them out as it scrolls through a collection. If you had to pro-
vide type-conversion error messages for every one of these, you’d see things like
invalid.fieldValue.item[0].name=..., invalid.fieldValue.item[1].name=...,
and, because you don’t know how many of these you may have, there’s no guarantee
that you’ll have them all covered. Fortunately, someone pointed this out to us, and
it’s been fixed.4 In order to provide a type-conversion error message for all item
names, you can use a localized text key like this:

invalid.fieldValue.items[*].name=Some type conversion message here

This is primarily of use in type-conversion text lookup, but the [*] notation can
be used anywhere to match all indexes of a text key with a [0] type notation.

Setting a different default conversion error message
You may not want to set type-conversion error texts for all your properties, but
want to have a different default error conversion message. The default error mes-
sage is looked up from the default ResourceBundles registered with the Local-
izedTextUtil class using the text key xwork.default.invalid.fieldvalue. The
previous default is defined in a ResourceBundle that is automatically added to the
default ResourceBundles. It’s looked up with one parameter passed in: the prop-
erty name. The default type conversion error message looks like this:

xwork.default.invalid.fieldvalue=Invalid field value for field "{0}".

If you define this property in your default ResourceBundle, which is registered
with the LocalizedTextUtil (see section 14.2.2), your custom type-conversion
message will be used. You can also use this to make your default type-conversion
error message be localized, because the default ResourceBundle bundled in Web-
Work isn’t. Make localized versions of your default ResourceBundle texts, and the
correct one will be used.

 Now that you’ve seen the basic usage of the internationalization features, let’s
look at how you can solve more complex problems.

4 OK, we admit it. We didn’t think of everything the first time … or the second.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Tips and tricks 373
14.4 Tips and tricks

We’ve looked at the facilities provided by WebWork that allow you to (more) sim-
ply internationalize your application, but that’s not all there is to it. International-
izing applications is as much an art as a science, depending on how different
platforms determine default character encodings, the whims of browser makers in
sending the correct locale headers, and so on. Those are more the subject of a
good QA department, but you’ll build a toolbox of tricks that help control what
you can control when building internationalized applications.

14.4.1 Programmatically setting the locale

In figures 14.1 and 14.2, the example application shows a list of items with cor-
rectly localized messages for the selected locale. Because we went to the trouble of
translating the text to the other languages, let’s see it again, this time in French, in
figure 14.4.

Figure 14.4 The example application looks like this after you choose French as the language.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

374 CHAPTER 14

Internationalization
Normally, the locale is set from the request. The servlet container sets the locale
in the request based on the HTTP headers it receives from the browser, which are
based on the user’s system settings and browser preferences. This normally works
well to get the correct language for the user; but if you’re trying to test a localized
application, or if you want to let your users choose their own language, you need
to find a different method. Knowing, as you do, that the framework uses the
ActionContext ThreadLocal to get the locale (which is set by the ServletDis-
patcher), the issue becomes figuring out which locale the user is trying to set and
putting it into the ActionContext. If this seems like a good task for an interceptor
to you, then you’re right.

 The I18nInterceptor was originally created by Aleksei Gopachenko and
added to the OpenSymphony wiki.5 It will be added to WebWork by the 2.2
release. The basic idea is to look in the request for a particular named parameter
(the parameter name is configurable) and set the specified locale into the session.
Regardless of whether the parameter was found, you look up the locale that’s
been set into the Session and put it into the ActionContext to be used by the
framework. Now all you need is a form to allow the user to choose a language and
submit it back to the same action, where the I18nInterceptor can find the request
parameter and do its work. Listing 14.2 shows the JSP that creates the form at the
bottom of the page to allow the user to choose a locale.

<ww:bean id="locales"
 name="org.hibernate.auction.localization.Locales"/>
<form action="<ww:url includeParams="get" encode="true"/>"
 bbmethod="POST">
<table width="100%" bgcolor="#8888BB" >
 <tr>
bbbb<td>
 <ww:radio name="request_locale"
bbbbbbbbbbbbbblist="#locales.locales"
bbbbbbbbbbbbbblistKey="value"
bbbbbbbbbbbbbblistValue="key"
bbbbbbbbbbbbbbtheme="simple"
bbbbbbbbbbbbbbvalue="(#session['webwork_locale'] == null) ?
 bbbbbbbbbbbbbbbbbblocale : #session['webwork_locale']"/>
 b</td>

5 See http://wiki.opensymphony.com/pages/viewpage.action?pageId=10 for the full source of this inter-
ceptor.

Listing 14.2 JSP that renders the form to allow the user to choose a locale
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

http://wiki.opensymphony.com/pages/viewpage.action?pageId=10

Tips and tricks 375
 <td align="right">
 <input type="Submit"
 value="<ww:text name="text.setLanguage"/>"/>
 </td>
</tr>
</table>
</form>

This JSP uses a bean, org.hibernate.auction.localization.Locales, which pro-
vides a Map of String names (english, german, and so on) to the correct locales
(Locale.US, Locale.GERMANY, and so forth). The interesting part is the <ww:radio>
tag. It creates a set of radio buttons, each named request_locale, with values like
en_US and de_DE. The value attribute uses a bit of OGNL to set the value, which
tells the <ww:radio> tag which of the buttons should be preselected. If the locale
hasn’t been set in the Session, the expression calls getLocale() and uses that as
the selected value; otherwise, it uses the value in the Session. When this form is
submitted, the I18nInterceptor finds the parameter request_locale and creates
the requested locale, and then puts it in the Session with the key webwork_locale.
The interceptor also checks the Session for this key, whether it was just set or not,
and, if it finds a Locale in the session, puts it in the ActionContext to be used by
the rest of the framework. One other point of interest is the <ww:submit> tag,
which uses getText() for the value to put a localized version of Choose Language
on the button.

14.4.2 Implementing ResourceBundles as classes

In section 14.2, we mentioned that ResourceBundles can be implemented as
classes that extend java.util.ResourceBundle instead of using properties files.
When you want to load message texts from the database, this is the only way.
When you’re building ResourceBundles, you’re free to do it however you’d like, as
long as they extend java.util.ResourceBundle at some level. The JDK provides
the java.util.ListResourceBundle to be used as a base class for your own
ResourceBundle classes, but we find that directly implementing the abstract meth-
ods of java.util.ResourceBundle is more straightforward. Listing 14.3 shows the
org.hibernate.auction.localization.LocalizedMessages class.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

376 CHAPTER 14

Internationalization
 public class LocalizedMessages extends ResourceBundle {
 private LocalizedTextDAO getLocalizedTextDao() {
 ActionContext ctx = ActionContext.getContext();
 ComponentManager cm =
 (ComponentManager) ctx
 .get(ComponentInterceptor.COMPONENT_MANAGER);
 if (cm == null) {
 return null;
 } else {
 return (LocalizedTextDAO)
 cm.getComponentInstance(LocalizedTextDAO.class);

 }
 }

 public Enumeration getKeys() {
 Map texts = getTexts();
 if (texts == null) {
 return null;
 }
 return new IteratorEnum(texts.keySet().iterator());
 }

 protected Object handleGetObject(String key) {
 LocalizedTextDAO dao = getLocalizedTextDao();
 if (dao == null) {
 return null;
 }

 LocalizedText localizedText =
 dao.getLocalizedText(getLocaleForTexts(),key);
 if (localizedText == null) {
 return null;
 } else {
 return localizedText.getText();
 }
 }

 protected Map getTexts() {
 LocalizedTextDAO dao = getLocalizedTextDao();
 if (dao == null) {
 return null;
 }

 List textList = dao.getTexts(getLocaleForTexts());
 Map texts = new HashMap();
 for (Iterator iterator = textList.iterator();
 iterator.hasNext();) {

Listing 14.3 LocalizedMessages: a ResourceBundle that gets the texts from a
LocalizedTextDAO component
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Tips and tricks 377
 LocalizedText text = (LocalizedText) iterator.next();
 texts.put(text.getKey(),text.getText());
 }
 return texts;
 }

 protected Locale getLocaleForTexts() {
 return null;
 }
}

In listing 14.3, the LocalizedMessages class initializes itself with an application-level
LocalizedTextDAO component and delegates to that component for retrieving texts.
getKeys() and handleGetObject() are the abstract methods of ResourceBundle that
a subclass must implement. The LocalizedTextDAO that the LocalizedMessages
instance looks up in the component manager reads persistent LocalizedText objects
from the database, which are mapped to a table using Hibernate. Listing 14.4 shows
the getTexts(Locale locale) method from LocalizedTextDAO.

b/**
 * Get a List of the LocalizedTexts for the specified Locale
 * @param locale the specified Locale to find the texts for
 */
public List getTexts(Locale locale) throws InfrastructureException {
 try {
 Query q = persistenceManager.getSession()
 .getNamedQuery("localeTexts");
 q.setString("localeStr",
 (locale == null) ? null : locale.toString());
 return q.list();
 } catch (HibernateException ex) {
 throw new InfrastructureException(ex);
 }
}

The localeTexts named query is defined like this:

<query name="localeTexts"><![CDATA[
 select text from LocalizedText text
 where text.localeStr = :localeStr
]]></query>

Listing 14.4 getTexts(), which uses a named query to get the localized texts for a
given locale
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

378 CHAPTER 14

Internationalization
Because this class represents the default texts for this ResourceBundle, it uses null
for the locale. Let’s look at one of the locale-specific subclasses of LocalizedMessages.
Listing 14.5 shows org.hibernate.auction.localization.LocalizedMessages_en,
which overrides getLocaleForTexts() to return the correct locale.

public class LocalizedMessages_en extends LocalizedMessages {
 protected Locale getLocaleForTexts() {
 return Locale.US;
 }
}

The LocalizedMessages_en subclass of LocalizedMessages only has to return the
correct locale. Similarly, there are subclasses LocalizedMessages_de, Localized-
Messages_es, and LocalizedMessages_fr. The appropriate locale is passed along to
LocalizedTextDAO when the texts are retrieved and allows the LocalizedTextDAO to
find the correct localized texts.

14.4.3 Using the <ww:param> tag to pass
dynamically generated text to message texts

As we mentioned in section 14.3.2 on parameterizing message texts, you can use
the <ww:param> tag not only to pass simple values to your message texts but also to
dynamically generate text blocks. By putting JSP tags inside your <ww:param> tag,
you can build a complex text block that is put into your text message at the
proper location. This JSP content can even call <ww:text> to get other localized
texts inside the body of the <ww:param> tag.

 Let’s take a common example. Many applications need to provide paged data
when there are too many items to show on one page. You could hard-code this
paging to put the numbers in the page, but not all languages use the same num-
bering schemes. If you’re going to the trouble of internationalizing your applica-
tion, it’s best not to forget these little details, so let’s examine how you can use JSP
tags inside a <ww:param> tag to solve this problem. First, let’s see what the example
looks like when it runs. Figure 14.5 shows the paging example; it’s nothing spe-
cial, but what’s interesting is how it’s generated.

 As another prelude to jumping into the JSP, let’s look at the action, Paging-
Action, in listing 14.6 (getters and setters omitted).

Listing 14.5 LocalizedMessages_en subclass of LocalizedMessages
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Tips and tricks 379
public class PagingAction extends ActionSupport {
 private int numPages = 5;
 private Integer currentPage = new Integer(1);
 private List pages = new ArrayList();

 public String execute() throws Exception {
 for (int i = 1; i <= numPages; i++) {
 pages.add(new Integer(i));
 }
 return super.execute();
 }

 public boolean hasNextPage() {
 return currentPage.intValue() < numPages;
 }
}

PagingAction sets up a List of page numbers and keeps track of the number of
pages (settable from the form on the page) and the current page number. Let’s

Listing 14.6 PagingAction

Figure 14.5 The paging example shows the available pages with links to navigate to the other pages.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

380 CHAPTER 14

Internationalization
also look at the properties resource bundle for the PagingAction. Listing 14.7
shows the PagingAction.properties file’s contents.

pages.label= Pages:
pages.total = {0,number,integer} [{1}]
pages.item = {0,number,integer}
pages.next = | Next
numPages.label=Number of Pages
numPages.button=Set Number of Pages

Some of the pieces of the final page are obvious, such as the label texts, but the
rest only makes sense in the context of the JSP that uses it to render the page num-
bers. You’re ready now to look at the JSP for generating the paging (we’ll skip the
JSP to create the form to change the number of pages); see listing 14.8.

<ww:text name="pages.label"/>
<ww:text name="pages.total">
 <ww:param value="currentPage"/>
 <ww:param>
 <ww:iterator value="pages">
 <ww:if test="!currentPage.equals(top)">
 <ww:url id="url" value="paging.action">
 <ww:param name="currentPage" value="top"/>
 <ww:param name="numPages" value="numPages"/>
 </ww:param>
 <a href="<ww:property value="#url"/>">
 </ww:if>
 <ww:text name="pages.item">
 <ww:param value="top"/>
 </ww:text>
 <ww:if test="!currentPage.equals(top)">

 </ww:if>
 </ww:iterator>
 <ww:if test="hasNextPage()">
 <ww:url id="url" value="paging.action">
 <ww:param name="currentPage"
 value="currentPage + 1"/>
 <ww:param name="numPages" value="numPages"/>
 </ww:url>
 <a href="<ww:property value="#url"/>">
 <ww:text name="pages.next"/>

 </ww:if>

Listing 14.7 PagingAction.properties

Listing 14.8 JSP that renders your paging
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Tips and tricks 381
 </ww:param>
</ww:text>

Let’s look through this JSP from the top. The first line gets a localized text for the
key pages.label, which is Pages: in the PagingAction.properties file. Next you get the
localized text for the key pages.total, which is {0,number,integer} [{1}] in the
properties file. This text expects two parameters to be passed to it (the first a num-
ber), and it puts them in the appropriate spots in the final text. The first <ww:param>
is a simple property, passing in the currentPage property of the action. The second
<ww:param> takes up the majority of the code listing and contains JSP tags to generate
the page numbers with links, and so on. The <ww:iterator> tag iterates over each
page number; the tags inside it decide whether it needs a link (if that page number
isn’t the current page), and then a <ww:text> tag formats the current page number.

 Finally, this code checks whether it needs a Next link by calling hasNextPage()
on the action and creates an appropriate link if it’s needed. After the code ren-
ders all this and iterates over all the pages, the resulting text is passed as the sec-
ond parameter to the pages.total text you saw earlier. The text is put inside the
[...] in the text, and you see the page numbers and possibly the Next link in the
final page. This method can be used to pass in complex generated text and put it
in the correct spot in a localized message text.

14.4.4 Setting the encoding: here, there, and everywhere

Now that you’ve gone through all the trouble of internationalizing your applica-
tion, it would be a shame to have the text get mangled on the way to the user
because of using the wrong character encoding somewhere along the line. It’s a
good idea to be redundant with setting the character encoding for the pages.
Here’s the beginning of create.jsp:

<%@ page contentType="text/html; charset=UTF-8"%>
<%@ taglib uri="webwork" prefix="ww"%>
<html>
 <head>
 <title><ww:text name="text.createCategory"/></title>
 <META HTTP-EQUIV="content-type" CONTENT="text/html; charset=UTF-8">
 </head>

The page uses two different methods for setting the character encoding. Some
combinations of servers and browsers may not pick up on one or the other, so set
both. Redundancy here doesn’t hurt, so it’s better to be safe than sorry. This applies
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

382 CHAPTER 14

Internationalization
everywhere you touch the output stream, so make sure all your included JSPs set the
correct character encoding, any filters you apply do the same, and so on.

 You may also need to set your IDE to use a specific character encoding when
saving files. If the JSP file is saved with a different character encoding than it sets,
some servers may pick up on the file’s character encoding and use that instead. In
IntelliJ IDEA, for instance, you can set the character encoding under Settings >
General > File Encoding.

14.4.5 A note on Java PropertyResourceBundles

Unfortunately, Java throws another obstacle in your way. The JavaDocs for the
java.util.Properties class have this to say about character encodings: “When
saving properties to a stream or loading them from a stream, the ISO 8859-1 char-
acter encoding is used. For characters that can’t be directly represented in this
encoding, Unicode escapes are used.” For ResourceBundles implemented using
.properties files, this means characters that aren’t represented in the ISO 8859-1
character encoding must be escaped in the .properties file. For example, the text
for Items for Auction in German appears like this on the page:

Einzelteile für Auktion

In the CreateLocalizedCategory_de.properties file, it’s written like this:

text.itemsAuction=Einzelteile f\u00FCr Auktion

The ü character has been escaped as the \u00FC Unicode escape string. Escaping
these texts by hand can be tedious, so it’s best to find a tool to help you. Unfortu-
nately, there aren’t any completely polished tools in this space; however, the
Resource Editor from Make Technologies (http://www.maketechnologies.com)
works pretty well, although it’s still kind of flaky.

14.4.6 A final note

We’ve looked at how to localize the texts in your web application, but that’s only part
of the picture. You also need to translate images, get localized data from your data-
base, and handle a host of other issues. Remember, it’s not just translation—there
are also issues of page layouts, because not all languages read left to right. To make
a truly internationalized application, you have to think about i18n for everything.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 383
14.5 Summary

Developing internationalized applications can be challenging, but with the help
of the right tools, it can be manageable. WebWork provides a comprehensive tool-
box for building internationalized applications and managing your localized
texts. WebWork provides facilities for looking up ResourceBundles as sources for
localized message texts at many different levels. The search order for Resource-
Bundle resources in WebWork makes it easy to set up default texts for your entire
application, sections of the app, or down to the action and property level.

 WebWork’s internationalization facilities are tied into all the parts of the frame-
work, allowing for localized message texts for validation messages, type-conversion
messages, form field labels, and so on. WebWork’s tag library provides easy access
to your localized texts, and the built-in formatting options using OGNL expressions
and java.text.MessageFormat formatting strings allow for dynamic message texts
and advanced formatting of dates and numbers. The abstractions in WebWork on
top of the Servlet APIs let you implement different strategies for determining the
correct locale and finding ResourceBundles. Taken all together, WebWork’s inter-
nationalization tools should provide everything you need to build an internation-
alized web application (or at least as much as a web framework can provide).

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Best practices
This chapter covers
■ Testing methodologies
■ Extending the UI tag library and taking full

advantage of its features
■ Preventing duplicate form submissions
■ Automatically displaying a “please wait” page
■ Writing generic Create, Read, Update, Delete

(CRUD) actions
384

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Setting up your environment 385
Best practices with a language, development environment, or framework make
the difference between just getting the job done and being really productive. In
this chapter, we discuss best practices not just for using the WebWork framework
but also for general development practices as they apply to a WebWork project.
Environment setup can also have a large impact on productivity, so we’ll look at
setting up an environment that gives the fastest turnaround to your code-deploy-
test cycle.

 One of the driving motivations behind the WebWork framework has always
been testability. Decoupling actions from the Web, programming to interfaces
with replaceable implementations, and the loose coupling provided by the Inver-
sion of Control container can all be attributed to this design influence. As such, it
shouldn’t be surprising that it’s relatively easy to test WebWork actions at many
levels, from unit tests to integration tests to full in-container tests.

 WebWork also offers many opportunities for reuse and modularization, so
we’ll discuss how you can build reusable components in WebWork to capture your
best practices for the entire team to use. Interceptors are an obvious place to start
with extracting common code, so we’ll present some interceptor tricks to solve
complicated issues in a reusable component. The WebWork tags provide an exam-
ple of creating user interface components, so we’ll look at how you can customize
and extend the tags as well as other methods for creating UI components to be
shared across screens.

 Next, we’ll examine techniques and advanced features that can totally alter the
workflow and behavior of your actions, without modifying your actions one bit.
This is accomplished through the loose coupling and power provided by Web-
Work’s interceptors. Finally, we’ll look at one of the most common patterns
requested by WebWork developers: building actions to handle creating, reading,
updating, and deleting entries in a database.

15.1 Setting up your environment

The first step to being able to develop, test, or debug a WebWork application is
setting up the development environment to make you as productive as possible.
This includes setting up an automated build to compile your source code and run
your tests, setting up the IDE to let it automate many of the repetitive tasks for
you, and configuring your web application to minimize the number of times you
have to restart the container to pick up configuration changes. If you’re not
already familiar with and using Ant (http://ant.apache.org/, an automated build
tool) and JUnit (http://www.junit.org/index.htm, a Java unit testing framework),
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

http://ant.apache.org/
http://www.junit.org/index.htm

386 CHAPTER 15

Best practices
we recommend that you download them now and start learning them as you go
through this chapter.

15.1.1 Setting up your IDE

We’ll assume you’ve already got your project set up to the point that you can code
and compile, but setting up an efficient environment for development is another
thing altogether. The steps are IDE specific, but the basics are as follows:

1 Set up a web resource directory that mirrors your WAR file structure. This
directory will hold all your JSPs as well as your WEB-INF directory with the
web.xml file. Different IDEs have different requirements and different capa-
bilities, so you may not need to mimic your WAR file structure exactly. You
want IDE support for JSP editing with error highlighting and code comple-
tion; having your web resource directory mirror the WAR file structure helps
some IDEs understand your JSPs.

2 Make sure your IDE can find the tag library descriptors of any taglibs your
web application uses (webwork.tld, for instance). This allows your IDE to
do the error highlighting and code completion in JSP editing.

3 Associate the source codes for the open source libraries you use in your
IDE. Don’t be afraid to trace into the code of the libraries; that’s a good
way to learn how they work and the only way to find any bugs (although
we hope this is infrequent). It’s also helpful when you’re plugging into a
library at its extension points (such as WebWork interceptors) because
you can see other implementations of the extension point and how
they’re called.

4 Set up a web application module or application profile that the IDE can
automatically deploy or debug. Ideally, doing so will allow for editing the
JSPs and automatically pick up changes to the JSPs without requiring an
application reload.

Assuming your IDE provides support, this can use the tool your IDE provides.
Make sure you look at what you have to do to get it to pick up JSP edits (for exam-
ple, a build to synchronize the edits or build and deploy the WAR file).

 Alternatively, you can set up a Servlet container’s main method to be executed
directly like any other application and pass it the configuration information it
needs to automatically pick up your web application. For example, to set up
Resin 2.1 from Caucho (www.caucho.com) as a standalone application pointing
to a project-specific configuration file, you would set parameters as follows:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

http://www.caucho.com

Setting up your environment 387
■ Main class—com.caucho.server.http.HttpServer

■ VM parameters—-Dresin.home=. -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=12345

■ Program parameters—-conf resin.xml

■ Working directory—Root directory of your project

■ Classpath—Classpath of your project plus the Resin JARs

The resin.xml file specified in the parameters sets up the classpath and specifies
the web application root as shown in listing 15.1, allowing you to edit the JSPs and
let Resin automatically pick up the changes.

<caucho.com>

 <system-property org.apache.commons.logging.Log=
 "org.apache.commons.logging.impl.SimpleLog"/>
 <system-property
 org.apache.commons.logging.simplelog.defaultlog="warn"/>

 <log id="/log" href="stderr:" timestamp="[%Y-%m-%d %H:%M:%S.%s]"/>

 <http-server error-log="build/resin-error.log">
 <doc-dir>src/webapp</doc-dir>
 <http port="8080"/>
 <host id="">
 <web-app id="/">
 <work-dir>../../build/work</work-dir>
 <temp-dir>../../build/tmp</temp-dir>
 <cache-mapping url-pattern="/*" expires="2"/>
 <class-update-interval>
 100000000
 </class-update-interval>
 <jsp jsp-update-interval="1s"/>

 <classpath id="../../build/java"/>
 <classpath id="../../lib/core" library-dir="true"/>
 </web-app>
 </host>
 </http-server>
</caucho.com>

Listing 15.1 resin.xml
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

388 CHAPTER 15

Best practices
15.1.2 Reloading resources

After setting up your project to allow you to edit JSPs and have the changes auto-
matically picked up by your Servlet container, you’re most of the way to having an
efficient environment. But what if you need to change your configuration or edit
your resource bundles to change your localized texts? You can set a couple of flags
to let the framework know you’d like to reload configuration files when they change:

■ webwork.configuration.xml.reload—This property name is somewhat mis-
leading, because it does more than just make the XML configuration file
reload. If this property is set to true in webwork.properties, then your
xwork.xml configuration files, *-validation.xml validation configuration
files, and *-conversion.properties type conversion configuration files will all
be reloaded when they change.

■ LocalizedTextUtil.setReloadBundles(boolean reloadBundles)—If you call
LocalizedTextUtil.setReloadBundles(true) on com.opensymphony.xwork.-
util.LocalizedTextUtil, then your ResourceBundles will be cleared from the
ResourceBundle cache before each load. This allows you to edit your Resource-
Bundle property files and have those changes picked up without restarting. Note
that this reload flag doesn’t work with all ResourceBundle implementations, but it
should work with property file ResourceBundles. Listing 15.2 shows a Servlet-
ContextListener that automatically sets this flag when your web application starts.

public class DebugServletContextListener
 implements ServletContextListener {
 public void contextInitialized(ServletContextEvent event) {
 LocalizedTextUtil.setReloadBundles(true);
 }

 public void contextDestroyed(ServletContextEvent event) {}
}

These settings have some overhead, so it’s good to set them up in your develop-
ment environment but have them stripped out for your production builds.

Listing 15.2 ServletContextListener that sets a flag to automatically
reload ResourceBundles
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Unit-testing your actions 389
15.2 Unit-testing your actions

Unit testing involves testing the smallest working unit of code, usually a class or
method, to validate its behavior. Unit tests should be very fast to execute, so that
there is little barrier to running them often. A good suite of unit tests is an impor-
tant part of your regression test suite (but not all of it) to make sure changes don’t
break anything else. Unit tests with good code coverage (the amount of your code
they test) can provide a nice safety net to catch you when doing refactorings; they
also give you more freedom to experiment, because you can have some assurance
that you haven’t broken things if all your tests pass.

 Unfortunately, unit-testing web applications has traditionally been one of the
trickiest and most fragile parts of building them. Web frameworks that are heavily
tied to the Servlet container and Http* classes must run inside either a Servlet
container or some servlet-mimicking scaffolding. Running unit tests in a Servlet
container is much, much slower than running them directly in your IDE and/or
Ant script, which means you’ll run them less often. Running inside a scaffolding
framework is more complex, and there’s also some question of whether it ade-
quately represents the environment where the code will be deployed.

 One of the core principles of WebWork is to be easily testable. WebWork
actions aren’t tied to the Servlet container, nor do they depend on Http* classes.
Simple actions are as easy to test as plain Java objects; you create an instance, set
property values, execute the action, and verify that the values held by the action
are as expected. However, unless your actions are extremely simple (on the order
of taking two numbers and computing their sum), they probably have external
dependencies. Unit tests are all about testing one bit of code, so you need other
strategies for decoupling your action from its dependencies for unit testing.

15.2.1 Using mock objects

The point of unit testing your classes is to test them in isolation from their depen-
dencies, but your code expects to be able to call methods on its dependencies; thus
you need a way to provide your classes with simpler versions of the objects on which
they’re dependent. When you provide the implementation of the dependency, you
have more control over the behavior of that dependency, and your tests don’t
change as the real implementation changes (as long as the interface and class con-
tract don’t also change). This is what the mock objects idea is designed to give you.
There are a few implementations of these ideas, including MockObjects (http://
www.mockobjects.com) and EasyMock (http://www.easymock.org), but you’ll use
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

http://www.mockobjects.com
http://www.mockobjects.com
http://www.easymock.org

390 CHAPTER 15

Best practices
the MockObjects library in the examples as we look at tests from the CaveatEmptor
codebase. Mock objects come in two flavors:

■ Static mocks are classes that implement the interfaces or extend abstract classes
used by your classes to provide simple implementations. Mock implementa-
tions are provided for interfaces such as javax.servlet.http.HttpServlet-
Request/HttpServletResponse and JMS interfaces such as javax.jms.Queue in
the MockObjects package. These can be easy to use when the types you’re
using are already implemented by the MockObjects framework, but many
times not all the methods of the type being mocked are implemented; then
you’ll have to extend the framework class to add the functionality you need.

■ Dynamic mocks are created by the framework using dynamic proxies based
on the interface you’re trying to use. This allows you to easily create mock
instances of your own interfaces without having to create classes. Both
MockObjects and EasyMock provide this functionality.

The main functionality that mock objects libraries give you beyond implementing
or proxying your interfaces is to set up expected calls, including setting con-
straints on expected method parameters and setting up return values. Both Mock-
Objects and EasyMock provide this and allow you to validate your mock instance,
checking that the expected method calls on the mock instance were made.

 Listing 15.3 shows code from the setUp() and tearDown() methods of a JUnit
TestCase that uses a dynamic mock.

protected void setUp() throws Exception {
 super.setUp();
 user = new TestUser();
 user.setId(userId);
 userDaoMock = new Mock(UserDAO.class);
 userDaoMock.matchAndReturn("getUserById",
 C.args(C.eq(userId), C.IS_FALSE), user);
 userDAO = (UserDAO) userDaoMock.proxy();
 session = new HashMap();
 session.put(AuthenticationFilter.USER, user);
}

protected void tearDown() throws Exception {
 super.tearDown();
 userDaoMock.verify();
}

Listing 15.3 JUnit TestCase setUp() and tearDown() methods
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Unit-testing your actions 391
The matchAndReturn() method tells the userDAO that for calls to getUserById(Long
id, boolean lock) where the ID is your predefined Long id value and lock is
false, it should return your User object. The proxy() method returns a Dynam-
icProxy that implements the interface the mock was passed in its constructor.
This proxy can be cast to the interface and any methods from the interface can be
called on it, but an exception will be thrown if the mock hasn’t been told the
method will be called using one of the expect* or match* methods. The expect*
methods are more strict than the match* methods because you must match the
number of calls to the expect* methods with the number of times your code calls
the method. In practice, you often end up testing your implementation more
than is necessary with the expect* methods; so in the examples, you’ll see more
match* methods used.

15.2.2 The advantage of IoC for testing

As you’ve seen, you want to control the dependencies that are passed into your
actions before you execute the actions in your unit tests. As you saw in chapter 6,
“Inversion of Control,” controlling and managing the dependencies of your
actions and having them passed in rather than looking them up is what Inversion
of Control is all about. Because actions that are developed for IoC have methods
for passing in dependencies (the enabler *Aware interfaces implemented by your
action), it’s easy to build mocks of the dependencies and set them on the action as
you see in the previous example, where you create a mock version of the UserDAO
interface and pass it in to be used by the action. In the previous example, take spe-
cial note of how userDAO, a private field, is set in setUp() and is now ready to be
applied to an action during the actual test.

 Compare this with the complex setup and teardown code that would be
needed to test actions that look up their dependencies from a static registry or a
JNDI context, and you can see why IoC and test-driven design often go hand in
hand. To test a JNDI application, for instance, you would have to set up a
jndi.properties file that tells JNDI which javax.naming.InitialContext class to
use; you’d also have to set up a javax.naming.InitialContext class to mock a real
JNDI context and then create mocks of your dependencies and bind them in the
mock context. It’s much easier to create the mock of your dependency and call a
setter on your action.

15.2.3 Handling statics and ThreadLocals

WebWork has a couple of features that can make testing a little trickier. The first is
the configuration, which is held in a static configuration instance, so having more
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

392 CHAPTER 15

Best practices
than one test run in a JVM can lead to issues with one test seeing the configuration
of another. The second is the ActionContext, which holds the state of an action
execution in a ThreadLocal, which likewise can make for difficult-to-diagnose
issues if not handled carefully. Normal JUnit execution has an interesting way of
avoiding these types of problems: Each test method is executed in its own JVM
instance after the setUp() method and before the tearDown() method. Although
this is the safest method for executing tests, it’s also the slowest. Running unit tests
in a JUnit TestSuite or running them in an IDE usually opens one JVM to run the
tests (still one at a time), so unit tests that all run successfully in your Ant build
using the <junit> ant task set to fork a new JVM per test may suddenly start break-
ing when run in your IDE.

 Listing 15.4 shows the setUp() and tearDown() methods of a JUnit TestCase
subclass that takes the Configuration and ActionContext issues into account.

protected void setUp() throws Exception {
 ConfigurationManager.destroyConfiguration();
 ConfigurationManager.addConfigurationProvider(
 new MockConfigurationProvider());
 ConfigurationManager.getConfiguration().reload();

 OgnlValueStack stack = new OgnlValueStack();
 ActionContext.setContext(new ActionContext(stack.getContext()));
}

protected void tearDown() throws Exception {
 ConfigurationManager.clearConfigurationProviders();
 ConfigurationManager.destroyConfiguration();
 ActionContext.setContext(null);
}

The setUp() method creates a new MockConfigurationProvider and adds it after
destroying any previous configuration; then it tells the ConfigurationManager to
rebuild from this one provider. This process empties all previous configuration
held by the static Configuration instance and reloads it from the one
ConfigurationProvider you’ve provided. It also creates a new ActionContext and
sets it into the ActionContext ThreadLocal.

 Note that if you don’t clean up this issue, this ActionContext and Configura-
tion will be left over for the next test if it’s run in the same Thread. This is where

Listing 15.4 setUp() and tearDown() combination that cleans up static and
ThreadLocal state
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Putting the pieces together: integration testing 393
the tearDown() method from JUnit comes in. It’s always called after your test runs,
so it’s used to clean up the Configuration and set the ThreadLocal to null (which
causes it to be reinitialized the next time it’s asked for). If all your unit tests clean
up not only any resources they open (such as file or database connections) but
also static or ThreadLocal resources, you should be able to run your unit tests
much faster in your IDE or using TestSuites.

15.3 Putting the pieces together: integration testing

So far, we’ve looked at unit-testing WebWork actions; that is, you’ve done your
best to isolate your actions from any dependencies or configuration setup.
Although unit testing is definitely important, as you might imagine, a whole range
of potential problems can’t be caught by unit tests. Is your xwork.xml set up cor-
rectly? Will your configured set of interceptors correctly set up properties on your
action and set the parameters of your action from the request? This is where inte-
gration tests come in: to allow you to test a larger portion of the system. Again,
this isn’t the whole system, because we won’t look at testing inside the container to
validate the HTML produced by your pages (system or functional testing, which is
outside the scope of this book); but it gives you a better test of how the pieces of
your app come together.

 The downside of integration tests is that they take longer to run. How much
longer depends on what your integration tests are doing, but a comprehensive
integration test suite can easily stretch to over 30 minutes. So, it’s better to have
them run as part of an automated build system.

15.3.1 Testing your configuration

One area where integration testing can help is when your unit tests are passing but
the code in your web app isn’t working as expected. Often the problem turns out
to be a disconnect between the expectation of how things are configured that is
coded into your unit test and the reality of your web app configuration. For exam-
ple, if the component interceptor is left out of your interceptor stack for the Update-
User action being tested in listing 15.3, then the expectation that a UserDAO instance
is set onto your action before prepare() or execute() is called is incorrect.
Although your unit test will pass, you’ll get a mysterious NullPointerException
when you hit the page in the web app. In this case, you should test the interaction
of the framework, the configuration, and your code.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

394 CHAPTER 15

Best practices
 Listing 15.5 shows the important methods from the UpdateUser action. In the
prepare() method, the action gets the User object from the session that is put
there by the AuthenticationInterceptor during login.

public void prepare() throws Exception {
 Long id = ((User) session.get(
 AuthenticationInterceptor.USER)).getId();
 user = userDAO.getUserById(id, false);
}

public String execute() throws Exception {
 userDAO.makePersistent(user);
 return SUCCESS;
}

This is important because the configuration in the xwork.xml file for the Update-
User action has the prepare interceptor applied before the parameter interceptor.
So, the User object loads before you try to set the parameters from the request onto
it and save it. Let’s look at an integration test that guarantees this process is working
as expected.

 Listing 15.6 shows the test method for the integration test. It shows an example
of a couple of advanced integration testing techniques: setting up the Action-
Proxy the way the ServletDispatcher would, and registering mock components to
be supplied to your action.

public void testInterceptorStackLoadsBeforeSettingProperties()
 throws Exception {
 Map extraContext = new HashMap();
 DefaultComponentManager dcm = new DefaultComponentManager();
 dcm.addEnabler(UserDAO.class,UserDAOAware.class);
 dcm.registerInstance(UserDAO.class,userDAO);
 extraContext.put(ComponentInterceptor.COMPONENT_MANAGER,dcm);
 extraContext.put(ActionContext.SESSION,session);
 Map params = new HashMap();
 // these are all required
 params.put("user.firstname", "Jason");
 params.put("user.lastname", "Carreira");
 params.put("user.username", "jcarreira");
 params.put("user.password", "password");
 params.put("user.email", "jcarreira@gmail.com");

Listing 15.5 UpdateUser action, which loads the User object in the
prepare() method

Listing 15.6 Integration test that sets up an ActionProxy
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Putting the pieces together: integration testing 395
 extraContext.put(ActionContext.PARAMETERS,params);
 // let's make sure this happens
 userDaoMock.expect("makePersistent", C.args(C.isA(User.class)));
 ActionProxy proxy = ActionProxyFactory.getFactory()
 .createActionProxy("/secure",
 "updateProfile",
 extraContext);
 assertNotNull(proxy);
 proxy.setExecuteResult(false); // don't need to try
 // to dispatch to a JSP
 assertEquals(Action.SUCCESS,proxy.execute());
 assertSame(user,((UpdateUser)proxy.getAction()).getUser());
 assertEquals("Jason", user.getFirstname());
 assertEquals("Carreira", user.getLastname());
 assertEquals("jcarreira", user.getUsername());
 assertEquals("password", user.getPassword());
 assertEquals("jcarreira@gmail.com", user.getEmail());
}

The first part of the test method sets up the extraContext map to hold the objects
the ServletDispatcher normally sets up for the ActionProxy before creating it. The
extraContext holds things like the request parameters, a map wrapping the
HttpSession, a map wrapping the application, the component manager, and so on.
First you set up the component manager with the mock UserDAO you looked at in list-
ing 15.3. This component manager now sets your mock UserDAO onto your action
when the component interceptor executes. Next you put the session map you used
in listing 15.3 (which holds the User object) into the extraContext. Finally, you set
up the parameters that would be the request parameters if you were executing
through the ServletDispatcher and put that map into the extraContext.

 Now that the extraContext map is set up, you’re ready to create the ActionProxy.
You can do so by calling ActionProxyFactory.getFactory().createActionProxy. It
automatically accesses your configuration, loading your xwork.xml file so you’re test-
ing your real configuration. You call setExecuteResult(false) so it won’t try to do
an HTTP dispatch to a JSP page after executing the action. You check the result code
returned by the ActionProxy when you execute it, to make sure it executed success-
fully, and then start verifying the results.

 First you check that the User object in the action is the same one you put into
the session map. Next you check that the request parameters you set up at the top
were set onto your User object. Doing so verifies that the interceptors called the
prepare() method first, loading the User from the session, before the parameter
interceptor executed to set the request parameters onto the User.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

396 CHAPTER 15

Best practices
 As you can see, this test is straightforward when you break it down into the
steps it’s going through. It’s simplified by isolating only the pieces you want to test
together and mocking the others. By mocking the component manager and the
UserDAO in this test, you’re able to keep this test from having to access the data-
base, which is usually a good idea if possible. Integration tests could be set up to
test the configuration of every action in your application and all the layers of your
application together; but writing integration tests can be a lot more work than
writing unit tests, and the configuration of many of your actions will be the same.
It generally makes sense to only create integration tests for complex configuration
points and areas where you find problems.

15.3.2 Seeing the configuration with the config browser

Rather than have to write a new integration test every time you have a question
about your configuration, it can be helpful to get a view of your configuration at
runtime as the framework sees it. WebWork comes with a utility to do this called
the config browser. To install the config browser, do the following:

1 Get the webwork-config-browser.jar file, which is part of the WebWork distri-
bution, and put it into the WEB-INF/lib directory of your web application.

2 Edit xwork.xml to include the configuration file for the config browser,
like this:

<include file="config-browser.xml"/>

3 Edit your velocity.properties file to add the macros used by the config
browser templates:

Velocity Macro libraries.
The webwork.vm comes standard with webwork.
The tigris-macros.vm comes with the config browser.
velocimacro.library = webwork.vm, tigris-macros.vm

Once you’ve done these steps and restarted your web application, you can access
the config browser using a URL like this: http://localhost:8080/myApp/config-
browser/actionNames.action. The server name and port should point to your
Servlet container, and myApp is replaced by the context of your web application in
the Servlet container. When you hit this URL, it should open a page that looks like
figure 15.1.

 The config browser’s main page shows the namespaces available in your web
application and the action aliases available in the default namespace. Clicking
one of the other namespaces takes you to the same page with the action names
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Putting the pieces together: integration testing 397
available in that namespace. Clicking one of the action names takes you to a page
like that shown in figure 15.2.

 The action information page gives general information about the action alias
(name, class, and so on) and also provides a tabbed interface to see the details of
the results, interceptors, properties, and validators applied to this action
configuration. The Interceptors tab and the Validators tab are particularly helpful

Figure 15.1 The main page for the config browser shows the namespaces
of your web application and the action names in the default namespace.

Figure 15.2 The action information page gives details about the action
alias and tabs for getting details of the results, interceptors, properties,
and validators.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

398 CHAPTER 15

Best practices
in tracking down issues. Each of them shows the interceptors or validators in a
table in the order they will be applied.

15.4 Testing validations

An important consideration for any new framework feature you decide to use
should be, “How am I going to test this?” Testing is key, and one of the strengths
of WebWork is the way action classes are decoupled from the web environment
where they run, because this allows for reuse and—above all—testability. It’s
important, therefore, to think about how you’ll test your validations and how your
validations will (or won’t) affect the testing of your action’s functionality.

15.4.1 Testing programmatic validations

Testing validations written directly into your execute() method is simple. You can’t
help but test them as you’re testing the functionality of the action itself. This can
also be a problem, because you can’t individually test your validations and your
action’s business logic. Thus it’s preferable to put your validations in the validate()
method instead, if possible. By putting your validations in the validate() method,
you can manually test your action’s business logic and validations separately.

 Listing 15.7 shows what a test looks like that tests the HelloWorld action when
your validation is coded directly into the execute() method.

public class HelloWorldActionTest extends TestCase {
 public void testFieldErrorAddedWhenNoUserName() throws Exception {
 HelloWorldAction action = new HelloWorldAction();
 assertEquals(Action.INPUT, action.execute());
 assertTrue(action.hasFieldErrors());
 Map fieldErrors = action.getFieldErrors();
 assertTrue(fieldErrors.containsKey("user.name"));
 …
 }
}

15.4.2 Testing validation.xml files

Testing validations declared in validation XML files is a little more work than
directly calling your action classes, but not much. You don’t have to execute your
actions to test the validations; you can use the same method the validation inter-
ceptor uses:

Listing 15.7 Testing an action with validations defined in the execute() method
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Testing validations 399
ActionValidatorManager.validate(object, context);

This method is the entry point to the validation framework and looks up the vali-
dators applied for the class of the object passed in. The context parameter is the val-
idation context to validate for and is used as part of the filenames as you saw in chap-
ter 13 (“Validating form data”). When the validation interceptor calls this method,
the context parameter is the name of the action alias as mapped in xwork.xml.

 Let’s look at how you test the validations applied to an action, in this case the
CreateUser action. Listing 15.8 shows the CreateUser-validation.xml file that
defines validations for CreateUser.

<!DOCTYPE validators PUBLIC
 "-//OpenSymphony Group//XWork Validator 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-validator-1.0.2.dtd">
<validators>
 <field name="user">
 <field-validator type="visitor">
 <message/>
 </field-validator>
 </field>
</validators>

The CreateUser-validation.xml file defines one validator: a visitor field validator
that calls the validators for the User object. It calls the validations for the User
object, so let’s look at those. Listing 15.9 shows the User-validation.xml file.

<!DOCTYPE validators PUBLIC
 "-//OpenSymphony Group//XWork Validator 1.0//EN"
 "http://www.opensymphony.com/xwork/xwork-validator-1.0.2.dtd">
<validators>
 <field name="firstname">
 <field-validator type="requiredstring">
 <message>First name is required!</message>
 </field-validator>
 </field>
 <field name="lastname">
 <field-validator type="requiredstring">
 <message>Last name is required!</message>
 </field-validator>
 </field>
 <field name="username">
 <field-validator type="requiredstring">

Listing 15.8 CreateUser-validation.xml

Listing 15.9 User-validation.xml
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

400 CHAPTER 15

Best practices
 <message>Username is required!</message>
 </field-validator>
 </field>
 <field name="password">
 <field-validator type="requiredstring">
 <message>Password is required!</message>
 </field-validator>
 </field>
 <field name="email">
 <field-validator type="requiredstring">
 <message>Email name is required!</message>
 </field-validator>
 </field>
</validators>

The User-validation.xml file defines requiredstring validators for several fields of
the User class, so let’s set up some tests to make sure these are working as you
expect. First let’s look at the setUp() method that’s called before each test in the
test class:

public void setUp() throws Exception {
 super.setUp();
 user = new User();
 user.setFirstname("Jason");
 user.setLastname("Carreira");
 user.setUsername("jcarreira");
 user.setPassword("");
 user.setEmail(null);
}

As you can see, this setUp() method creates a User object and sets some values
into its properties. The password field is set to an empty string and the email field
is set to null, so those are the fields you’d expect the requiredstring validators to
add error messages for. Listing 15.10 shows the testUserValidationsFromCre-
ateUser() test method, which uses the validation framework to execute the valida-
tions of the CreateUser action.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Testing validations 401
public void testUserValidationsFromCreateUser()
 throws ValidationException {
 CreateUser createUser = new CreateUser();
 createUser.setUser(user);

 ActionValidatorManager.validate(createUser,"");

 Map fieldErrors = createUser.getFieldErrors();
 assertNotNull(fieldErrors);
 assertEquals(2, fieldErrors.size());
 assertTrue(fieldErrors.containsKey("user.password"));
 assertTrue(fieldErrors.containsKey("user.email"));
}

This test method is straightforward. It creates a CreateUser instance and puts the
User object created in setUp() into it. Next it calls ActionValidatorManager.vali-
date() to apply the validations to the CreateUser instance, which also calls the
User instance validations because of the visitor field validator in the CreateUser-
validation.xml file. Finally, it checks that the two expected field errors have been
added to the action.

 What if you want to test the validations on a domain model class like User? The
extra trick you need here is to give the validation framework somewhere to put
the error messages so you can retrieve them. To do this, you need another signa-
ture for the ActionValidatorManager.validate() method:

ActionValidatorManager.validate(object, context, validatorContext)

This extra parameter is an instance of the ValidatorContext interface, which
extends TextProvider and ValidationAware to provide localized texts and store
messages. Listing 15.11 shows the testUserValidationsDirectly() test method
that uses this method to validate the User instance built in the setUp() method.

public void testUserValidationsDirectly()
 throws ValidationException {
 ValidationAware validationAware = new ValidationAwareSupport();
 ValidatorContext validationContext =
 new DelegatingValidatorContext(validationAware);

 ActionValidatorManager.validate(user,"",validationContext);

 Map fieldErrors = validationAware.getFieldErrors();

Listing 15.10 testUserValidationsFromCreateUser() method

Listing 15.11 testUserValidationsDirectly() method
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

402 CHAPTER 15

Best practices
 assertNotNull(fieldErrors);
 assertEquals(2, fieldErrors.size());
 assertTrue(fieldErrors.containsKey("password"));
 assertTrue(fieldErrors.containsKey("email"));
}

The unit test uses a DelegatingValidatorContext to pass to the validate()
method. The DelegatingValidatorContext takes an object in its constructor that
it tries to delegate calls to. If the object passed in implements ValidationAware,
then calls to set messages will be passed along to this object. If the object imple-
ments TextProvider, then calls to get localized texts will be delegated to the
object. In this case, you’re just interested in being able to get the error messages
that are generated by the validators, so you create a ValidationAwareSupport that
implements ValidationAware and pass it to the new DelegatingValidatorContext.
Now you can just validate the User object and then check the error messages that
are put into the ValidationAwareSupport instance. (Note here that because
you’re not going through the visitor field validator, the field names are password
and email instead of user.password and user.email.) Using this method of test-
ing, you can now test validations on any class in your application.

15.5 Advanced UI tag usage

When we introduced the UI tags in chapter 11, we said that the real power comes
from the ability to override templates, create new UI tags, and design entirely new
themes. These types of customizations are what WebWork is all about: provide
great default features, but allow for even better functionality through customiza-
tions and extension points.

 In this section, we’ll first look at the common requirement of a pop-up calen-
dar integrated into your web application’s forms. You’ll implement this require-
ment in three different ways, highlighting the various extension points that
WebWork’s UI tags offer.

 In addition to the calendar requirement, we’ll also address the number one
question that developers ask when using the UI tags: “Do I really have to structure
my forms using a two-column design?” The answer is “No.” Using WebWork’s sup-
port for themes, we’ll show you how to create your own unique look and feel for
your applications, using any form layout you wish.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced UI tag usage 403
15.5.1 Overriding existing templates

Looking at the calendar requirement again,
let’s start by defining how the calendar
should look. Figure 15.3 contains the sample
form from chapter 11, but with the addition
of the Birthdate field. Notice that it looks
very much like a textfield, with a small icon
to the right of it. When clicked, the icon
pops up the calendar, as shown in the figure,
which lets the user easily select a date.

 Because the textfield with the mini-
calendar icon (which pops up a working cal-
endar) looks almost exactly like a textfield,
the first implementation you’ll implement
is one in which you override the templates
with the existing default theme, xhtml.
Remember from chapters 10 and 11 that
Velocity templates are loaded from both the classpath and the web application
directly. The template used for the textfield tag is located in the webwork JAR at
/template/xhtml/text.vm.

 Recall that the original text.vm contents are as follows:

#parse("/template/xhtml/controlheader.vm")
#parse("/template/simple/text.vm")
#parse("/template/xhtml/controlfooter.vm")

You override this file by creating a file with the same name and path in the web
application:

#parse("/template/xhtml/controlheader.vm")
#if ($parameters.calendar)
 #set ($parameters.size = 10)
#end
#parse("/template/simple/text.vm")
#if ($parameters.calendar)
 <script language="JavaScript">
 var cal_${parameters.name} =
 new calendar2(
 document.forms['$parameters.form.name']
 .elements['$parameters.name']);
 cal_${parameters.name}.year_scroll = true;
 cal_${parameters.name}.time_comp = false;

Figure 15.3 The calendar pop-up
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

404 CHAPTER 15

Best practices
 </script>

#end
#parse("/template/xhtml/controlfooter.vm")

You replace the default text.vm implementation with a new one that modifies the
template to show a calendar pop-up. You do this by checking for the existence of a
calendar parameter. If the parameter is supplied, you force the size of the text-
field to 10 (this is done before rendering the core tag from the simple theme)
and then print out necessary JavaScript and HTML to show the calendar icon.

 Now, rendering a calendar from a JSP is as simple as this:

<%@ taglib prefix="ww" uri="webwork"%>
<html>
 <head>
 <title><ww:text name="title"/></title>
 <script language="JavaScript"
 src="/shared/javascript/calendar2.js"></script>
 </head>

 <body>
 <ww:form action="updateProfile" method="post">
 ...
 <ww:textfield label="Birthdate" name="birthdate">
 <ww:param name="calendar" value="true"/>
 </ww:textfield>
 ...
 </ww:form>
 </body>
</html>

This is an example of overriding a template and accepting new parameters that
aren’t part of the JSP tag library. This type of encapsulation and extendibility is
very powerful and allows you to begin to build robust and reusable UI compo-
nents—even ones not used in forms.

 Let’s look at an alternative implementation that demonstrates the possibilities
when customizing these templates. Recall that the xhtml theme’s textfield imple-
mentation includes controlheader.vm and controlfooter.vm. Suppose you only need
one calendar in the entire application, so modifying text.vm seems like overkill. What
about providing a generic way to place content after the main form element is ren-
dered? Instead of creating a modified text.vm file, you can modify controlfooter.vm:

$!{parameters.after}</td>
</tr>
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced UI tag usage 405
Recall that the default controlfooter.vm is as follows:

</td>
</tr>

With this change, a JSP that shows the calendar would now be this:

<%@ taglib prefix="ww" uri="webwork"%>
<html>
 <head>
 <title><ww:text name="title"/></title>
 <script language="JavaScript"
 src="/shared/javascript/calendar2.js"></script>
 </head>

 <body>
 <ww:form action="updateProfile" method="post">
 <ww:textfield label="Birthdate" name="birthdate" size="10">
 <ww:param name="after">
bb<script language="JavaScript">
 var cal_birthdate =
 new calendar2(document.forms['updateProfile']
 .elements['birthdate']);
 cal_birthdate.year_scroll = true;
 cal_birthdate.time_comp = false;
 </script>

 </ww:param>
 </ww:textfield>
 </ww:form>
 </body>
</html>

In this example, you use a normal textfield, setting the size to 10, with the addition
of some general content after the form element is rendered. Because the change
was made to controlfooter.vm, you can use this trick for any UI tag in the xhtml
theme, not just textfield. You can even use this trick to render two templates, one
using the xhtml theme and one using the simple theme, in a single row:

<ww:textfield label="Zip code" name="zip">
 <ww:param name="after">
 - <ww:textfield theme="simple" name="extendedZip"/>
 </ww:param>
</ww:textfield>

Adding new parameters, whether in a single template or in a common file used by
an entire theme, is a perfect way to customize WebWork’s template library. However,
although what you’ve seen thus far is great when you need to reuse a component
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

406 CHAPTER 15

Best practices
once or a few times, it isn’t ideal when you wish to create a component that can easily
be reused many times over. Let’s see how WebWork facilitates this level of reusability.

15.5.2 Writing custom templates

Recall from chapter 11 the component tag. Its purpose is to allow easy creation of
entirely new components. There are two ways to do this. The first, and simpler,
way is to create a new Velocity file, such as calendar.vm, and reference it in the JSP
as follows:

<ww:component template="calendar"
 label="Birthdate"
 name="birthdate"/>

Assuming that calendar.vm looks like the following, the expected component is
rendered without the need to pass in any sort of custom parameter as you had to
do in the previous examples:

#parse("/template/xhtml/controlheader.vm")
#set ($parameters.size = 10)
#parse("/template/simple/text.vm")
<script language="JavaScript">
var cal_${parameters.name} =
 new calendar2(document.forms['$parameters.form.name']
 .elements['$parameters.name']);
cal_${parameters.name}.year_scroll = true;
cal_${parameters.name}.time_comp = false;
</script>

#parse("/template/xhtml/controlfooter.vm")

As you can see, this is similar to text.vm overrides sans the $parameters.calendar
check. This works great for most situations. You can even pass in additional
parameters to your new components by using the ww:param tag. However, some-
times you’ll wish the parameters were more easily known, especially if you’re using
an IDE that can do code-completion in JSPs. Consider the following JSP snippet:

<ce:calendar label="Birthdate" name="birthdate"/>

A new tag library has been created, allowing you to narrow down which parame-
ters you’re interested in. (Consult the WebWork tag library definition (TLD) file
for the definition of the component tag for a list of the default parameters it sup-
ports.) A sample tag might look like the following:
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Advanced UI tag usage 407
package org.hibernate.auction.web.tags;

import com.opensymphony.webwork.views.jsp.ui.ComponentTag;
import com.opensymphony.xwork.util.OgnlValueStack;

public class CalendarTag extends ComponentTag {
 String foo;

 protected String getDefaultTemplate() {
 return "calendar";
 }

 public String getFoo() {
 return foo;
 }

 public void setFoo(String foo) {
 this.foo = foo;
 }

 protected void evaluateExtraParams(OgnlValueStack stack) {
 addParameter("foo", findValue(foo));
 }
}

In this example, a new foo attribute is made available (provided the TLD also indi-
cates this). The expression of the value of foo is evaluated against the value stack
and added to the $parameters map, making it available in calendar.vm as $param-
eters.foo. Once you get the hang of extending ComponentTag, then you can start
to crank out tons of reusable UI components.

15.5.3 Writing custom themes

The last, and most commonly misunderstood, aspect of the UI tags we’ll discuss is
theme extension and creation. Almost every time a developer looks at WebWork’s
default UI tags (using the xhtml theme), the tags are dismissed as being too
restrictive. This section shows that the complete opposite is the case.

 Suppose your UI design calls for all forms to be rendered in a three-column
technique: the first column the label, the second column the form element, and
the third column an optional description or example input value. Novice Web-
Work developers either give up on the UI tags entirely, or find themselves writing
JSPs like so:

<ww:form action="foo">
 <tr>
 <td>
 <table border="0">
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

408 CHAPTER 15

Best practices
 <ww:textfield label="Username" name="username"/>
 </table>
 </td>
 <td>
 <i>Enter the screen name you wish to be identified by...</i>
 </td>
 </tr>
 ...
</ww:form>

This technically may work, but clearly what was helpful has now become a hin-
drance: The UI tags aren’t working for you but actually against you. Instead, we
recommend something like this:

<ww:form action="foo">
 <ww:textfield label="Username" name="username">
 <ww:param name="desc">
 <i>Enter the screen name you wish to be identified by...</i>
 </ww:param>
 </ww:textfield>
</ww:form>

Then you can override controlfooter.vm as follows:

</td>
 <td>$!parameters.desc</td>
</tr>

But what if you sometimes want two-column forms and other times want three-
column forms? This is where themes come into play. Rather than modifying and
overriding the xhtml theme every time, it’s recommended that you branch off the
xhtml theme entirely and create your own theme. Let’s call this three-column
theme 3c.

 To create the new theme, copy all the files in /template/xhtml in the Web-
Work JAR file (you may need to unjar or unzip it), and place them in the directory
/template/3c in your web application. You now have an exact copy of the xhtml
theme named "3c". Modify controlheader.vm and controlfooter.vm as you see fit.
When you wish to display a three-column form, you can do this:

<ww:form theme="3c" action="foo">
 <ww:textfield theme="3c" label="Username" name="username">
 <ww:param name="desc">
 <i>Enter the screen name you wish to be identified by...</i>
 </ww:param>
 </ww:textfield>
</ww:form>

This works, but having to specify the theme for every UI component is tedious.
You have two options. First, you can change the default theme globally to 3c by
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using form tokens to prevent duplicate form submissions 409
setting the webwork.ui.theme property in webwork.properties. However, doing so
requires that all your xhtml components specify the xhtml theme. Fortunately,
there is a second option.

 All of WebWork’s UI components use the following order to determine the
theme:

1 Use whatever theme is specified for the tag.

2 Look in the page, request, session, and application-scoped attributes for
a value associated with the attribute key theme.

3 Fall back to the default theme specified in webwork.properties (xhtml by
default).

You’ve seen the first and last ways to specify the theme, but you haven’t seen the
second. Because all four contexts are searched (page, request, session, and
application), the possibilities for configuration become very interesting. Using
the previous example, you can eliminate the need to set the theme in multiple UI
tags by doing this:

<ww:set scope="page" name="theme" value="3c"/>
<ww:form action="foo">
 <ww:textfield label="Username" name="username">
 <ww:param name="desc">
 <i>Enter the screen name you wish to be identified by...</i>
 </ww:param>
 </ww:textfield>
</ww:form>

It’s also important to note that the theme is looked up in the session. This gives
you an easy way to skin your application for different users. The possibilities are
endless, and we encourage you to not shy away from creating your own themes.

 Now that we’ve discussed just about every way to customize the look of your
HTML forms, let’s look at a unique way to adapt the behavior of your forms and
make them more robust when faced with eager and click-happy users.

15.6 Using form tokens to prevent
duplicate form submissions

As a web application developer, the stateless nature of web applications can cause
a number of problems for your application. The issue is that requests are con-
trolled by the client, and you can get requests in a different order than you expect
or even get the same request multiple times. This can happen if the user clicks the
Submit button on a web form more than once, because the browser sends each
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

410 CHAPTER 15

Best practices
click as a duplicate form post request, or even if the user just clicks the Reload
button in their browser on a page built after a form post. This can be especially
dangerous because posting a form is usually a signal to the server to do something,
and many server actions—for example, transferring money between two
accounts—shouldn’t be done more than once.

 One of WebWork’s advanced features is prebuilt support for preventing dupli-
cate form posts through the use of unique form tokens. This support comes in the
form of a <ww:token> JSP tag on the view side and applying an interceptor to
check for the proper form token before allowing the action to execute on the
controller side. As you see in figure 15.4, these two pieces work together by saving
state in the session and checking for the proper token name/token value in the
session before allowing the action to execute. Note that form tokens are only part
of the answer. To minimize the chances of users accidentally resubmitting a form,
you should use redirect results after processing a form post.

15.6.1 Using the <ww:token> tag

The <ww:token> tag creates a new form token, saving the token in the session
using the token name as the key. The token values generated are cryptographi-
cally strong UUIDs, so there is no worry about duplicate token values or users

WebWorkJSP

<ww:form>

<ww:token/>

...

</ww:form>

HTTP Session

Save Token

ActionT
o
k
e

n
In

te
rc

e
p
to

r

Post

Check Token

If token

is valid

Figure 15.4 The token tag and token interceptor work together to check for valid tokens
before executing the action.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Using form tokens to prevent duplicate form submissions 411
guessing a different token value. This is the case because the token is in the form
of 32 random characters (including A–Z and numbers): 32^36 possible values,
which would take thousands of lifetimes to guess. Listing 15.12 shows a simple
example of using the token tag.

<ww:form action="saveCategory">
 <ww:token name="category.token"/>
 <ww:if test="category.id != null">
 <ww:hidden name="categoryId" value="%{category.id}"/>
 </ww:if>
 <ww:select label="%{getText('text.parent')}"
 name="category.parentCategory"
 value="category.parentCategory.id"
 list="#categoryPicker.categories"
 listKey="id"
 listValue="#indent({top, ''}) + name" />
 <ww:textfield label="%{getText('text.name')}"
 name="category.name"/>
 <ww:submit value="Save"/>
</ww:form>

You see here that the token tag is given a name attribute. If this name attribute is left
out, a default token name is used. Each token name, whether it’s the default
token name or a supplied token name, has a maximum of one valid token value at
any time. This means you can use different token names to protect different parts
of your web application. The token tag creates two hidden input fields in the
form, one for the token name and one for the token value. These form fields are
read by the token interceptor when the form is posted back to the server. The hid-
den fields for the example <ww:token> tag shown earlier look like this:

<input type="hidden"
 name="webwork.token.name"
bbbbbvalue="category.token"/>
<input type="hidden" name="category.token"

bbbvalue="F0DVU9PRT393S28Z3EO5K5JNNLCA6NQJ"/>

The first hidden field specifies the name of the actual form token—in this case,
category.token, because that’s what you specified. The second maps this token
name to a cryptographically strong token value.

Listing 15.12 The token tag, which builds a form token
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

412 CHAPTER 15

Best practices
15.6.2 Applying the TokenInterceptor

The com.opensymphony.webwork.interceptor.TokenInterceptor can be applied
to an action to ensure that a valid token was included in the parameters coming
from the web request. Doing so makes sure that:

■ The token tag was in the form to generate a token value and save it in the
session

■ The current token value was the last one saved for this token name

■ The token has not already been used to verify a previous request

The TokenInterceptor uses utility classes to find the token from the request. The
basic flow is as follows:

1 Find the token name by looking for the standard token name parameter in
the request. If this parameter exists in the request, it gives the name of the
token to look for.

2 If the token name was found, find the token value by looking for a
request parameter with that name.

3 If the token value was found in the request parameters, get the token
value for this token name in the session.

4 If the token value from the session equals the token from the request,
then remove this session attribute (to prevent the token from being used
again) and call handleValidToken(invocation); if not, call handle-

InvalidToken(invocation).

This last step is important because, as you’ll see in a moment, another token inter-
ceptor subclasses TokenInterceptor to override these methods. In the Token-
Interceptor, handleInvalidToken() adds an error message to the action (if it
implements ValidationAware) and returns INVALID_TOKEN_CODE, a constant return
code defined in the TokenInterceptor as invalid.token. This return code is
returned to look up a result without executing the action, so you can be sure your
action only executes for valid token values. In the action configuration, a result
can be mapped for invalid.token to allow a special page to be displayed for
duplicate posts. TokenInterceptor’s handleValidToken() method calls invoca-
tion.invoke() to call the rest of the interceptors and the action in order. This
interceptor effectively acts as a gateway, blocking duplicate posts or requests com-
ing in without a valid token.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Displaying wait pages automatically 413
15.6.3 Transparently re-rendering pages
with the TokenSessionStoreInterceptor

The com.opensymphony.webwork.interceptor.TokenSessionStoreInterceptor ex-
tends the TokenInterceptor to override the handleInvalidToken() and handle-
ValidToken() methods. In the TokenSessionStoreInterceptor, handleValid-

Token() saves an object containing the ActionInvocation and the token value in a
Map in the session. If duplicate posts come in, reusing the same token, this object
is retrieved from the session, and the result page is re-rendered using the saved
state without executing the action again. This lets you prevent duplicate posts
from executing the action more than once while also giving the user a nicer expe-
rience: They see the same page again, rather than an error page.

 Although the token and token-session interceptors can help prevent dupli-
cates posts being submitted and processed, there is another common problem
with web applications and users who click too frequently: Long-running pages are
often resubmitted multiple times. The token-session interceptor can transpar-
ently address this issue, but sometimes having a simple Please Wait page while the
action executes gives the user a better sense of confidence with your application.
The execAndWait interceptor does that for you.

15.7 Displaying wait pages automatically

The execAndWait interceptor allows you to make the action run in a separate
thread while returning a page to the user in the meantime. Let’s look at an exam-
ple of a web application that shows a working page when you go to buy airline
tickets online. Figure 15.5 shows a screen from Northwest Airlines’ website.

Figure 15.5
nwa.com shows a wait page
while doing some long-running
processing.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

414 CHAPTER 15

Best practices
While the nwa.com site is doing some long-running processing, it shows users a
page to let them know that something is happening. Without this page, it might
seem the site is hung, and the user might keep refreshing, posting the flight
search again and again. Figure 15.6 shows the wait page from CaveatEmptor that
is displayed during a search.

 How do you separate the processing to do the work of the action from return-
ing a page for the user? First, let’s take another look at the normal processing in
WebWork. Figure 15.7 shows the flow of a request coming from the user.
As you can see, all the work is done in the action before the page comes back to
the user. However long it takes to execute the action and render the page is the
time the user waits for a response. Figure 15.8 shows an overview of separating the
work from the final view shown to the user using the execAndWait interceptor.

Figure 15.6
CaveatEmptor uses a wait page
while doing a search.

ServletDispatcher

Action

View.jsp

Figure 15.7 In normal action processing, all the work is done in the action before the page is
rendered for the user.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Displaying wait pages automatically 415
Figure 15.8 shows that with the execAndWait interceptor, the first request starts a
thread to run the action, returning a wait.jsp view to the user to let them know the
application is working. This wait.jsp page also serves another purpose: It includes
a meta-refresh to tell the browser to make the request again in some number of
seconds. As long as the processing of the action is going on, the wait.jsp view is
returned and sets the timer to refresh again. Eventually, the action finishes; the
next time the page refreshes, it returns the result from the action and renders the
view.jsp to show the user the work done by the action.

 Listing 15.13 shows the configuration for the search action from CaveatEmptor.

DispatcherServlet

Action

Wait.jsp

DispatcherServlet

View.jsp

Figure 15.8 Using the execAndWait interceptor, the request to start the processing and the
request to show the final page to the user are separated.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

416 CHAPTER 15

Best practices
<action name="search"
 class="org.hibernate.auction.web.actions.Search">
 <interceptor-ref name="default"/>
 <interceptor-ref name="execAndWait"/>
 <result name="wait">search-wait.jsp</result>
 <result name="success"
 type="redirect">moreResults.action</result>
</action>

The execAndWait interceptor is added after the default interceptor stack. It’s
important that execAndWait be the last interceptor, because it stops the execution
and no further interceptors will be called. In the thread created by the execAndWait
interceptor, only the action is executed, so any interceptors after the execAndWait
will never be run.

 The other piece you need to set up is the page that is returned to the user
while they wait for the action to complete. Listing 15.14 shows the search-wait.jsp
returned by the search action.

<%@ taglib prefix="ww" uri="webwork"%>
<html>
 <head>
 <title>Simple jsp page</title>
 <meta http-equiv="refresh"
 content="5;url=<ww:url includeParams="all"/>"/>
 </head>
 <body>
 Please wait, or click
 <a href="<ww:url includeParams="all"/>">here
 </body>
</html>

The search-wait.jsp page includes a meta refresh command in the page header
that tells the browser to refresh the page after 5 seconds. The <ww:url> tag builds
a URL with all the parameters from the request included (both GET parameters in
the URL and POST parameters coming from a form post). It also tells users what is
happening and gives them the same link to click to refresh manually. The wait page
should always send users back to the same URL so the execAndWait interceptor can
correctly identify the original request to check if the thread has completed.

Listing 15.13 Configuration for the search action, which includes the
execAndWait interceptor

Listing 15.14 search-wait.jsp
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

A Single action for CRUD operations 417
 Now that you’ve seen how to change the behavior of your web interface by add-
ing interceptors such as token-session or execAndWait, let’s take one last look at a
best practice for developing actions responsible for creating, reading, updating,
and deleting entities from your application: CRUD actions.

15.8 A Single action for CRUD operations

As a final look at using WebWork, let’s examine one of the most common use
cases for a web framework. The most basic functionality implemented in web
applications is CRUD operations for records from the database. CRUD stands for
Create, Read, Update, and Delete, and it’s the basic administrative functionality
required for applications that work with persistent data. The most straightforward
CRUD implementation would have separate action classes for each operation, eas-
ily three or four classes with configuration for each. When you start down this
path, you quickly find a lot of commonality between these classes and opportuni-
ties to refactor them down to fewer classes. How far to take this refactoring and
whether to use the pattern as shown here is a stylistic choice, but it provides an
opportunity to discuss some advanced usage patterns. Listing 15.15 shows the
EditCategory action that provides the CRUD operations for Category entities.

public class EditCategory extends AbstractCategoryAwareAction
 implements Preparable {
 private Long categoryId;
 private Category category;

 public void prepare() throws Exception {
 if (categoryId != null) {
 category =
 categoryDAO.getCategoryById(categoryId,false);
 }
 }

 public String saveCategory() {
 if (category == null) {
 return INPUT;
 }
 categoryDAO.makePersistent(category);
 return SUCCESS;
 }
}

Listing 15.15 EditCategory action, which is mapped to all operations for
CRUD of categories
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

418 CHAPTER 15

Best practices
Before we go into the code, let’s look at the configuration for the aliases of this action
in xwork.xml. Listing 15.16 shows the action configurations for the four aliases.

<action name="newCategory"
 class="org.hibernate.auction.web.actions.categories.-
EditCategory">
 <result name="success">createCategory.jsp</result>
</action>

<action name="viewCategory"
 class="org.hibernate.auction.web.actions.categories.-
EditCategory">
 <interceptor-ref name="editStack"/>
 <result name="success">viewCategory.jsp</result>
</action>

<action name="editCategory"
 class="org.hibernate.auction.web.actions.categories.-
EditCategory">
 <interceptor-ref name="editStack"/>
 <result name="success">createCategory.jsp</result>
</action>

<action name="saveCategory"
 class="org.hibernate.auction.web.actions.categories.-
EditCategory" method="saveCategory">
 <interceptor-ref name="crudStack"/>
 <result name="input">createCategory.jsp</result>
 <result name="success"
 type="redirect" >dashboard.action</result>
</action>

The first thing to notice is that the saveCategory alias is the only one that declares
a different method, saveCategory(). All the others default to the execute()
method that is the default implementation in ActionSupport, returning
Action.SUCCESS without doing anything else. For the others, the only code is in
the prepare() method. Let’s look at each of these aliases in turn.

15.8.1 Creating new categories with newCategory

The newCategory alias is the simplest. Since no categoryId parameter is passed to
it, the prepare() method doesn’t do anything. In fact, the only thing that happens
is the return of SUCCESS from execute(). When the page goes to render, the property

Listing 15.16 Four aliases for the EditCategory action, representing
CRUD operations
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

A Single action for CRUD operations 419
reads for subproperties of Category (such as category.parentCategory) get null for
the category, and WebWork creates a new Category object.1 This new Category object
is set back onto the action so that its properties may be called. Let’s look at the JSP
page that renders the form before we move on; listing 15.17 shows the form from
createCategory.jsp.

<ww:form action="saveCategory">
 <ww:token/>
 <ww:if test="category.id != null">
 <ww:hidden name="categoryId" value="%{category.id}"/>
 </ww:if>
 <ww:select label="%{getText('text.parent')}"
 name="category.parentCategory"
 value="category.parentCategory.id"
 list="#categoryPicker.categories"
 listKey="id"
 listValue="#indent({top, ''}) + name" />
 <ww:textfield label="%{getText('text.name')}"
 name="category.name"/>
 <ww:submit value="Save"/>
</ww:form>

This form has just two visible fields: a drop-down list of all categories from which
to choose the parent category, and a text field in which to enter the category
name. The form fields default to the values from the Category held by the action.
When the select tag evaluates the category.parentCategory expression, if the
category is null, it creates a new Category as discussed earlier. If you’re editing a
previous Category, the select list is preselected with that category’s parent.

 The form also includes a <ww:token> tag, which, as you saw in section 15.6, pre-
vents duplicate form submissions when combined with a token interceptor. Next
is a check to see if you’re creating a new Category or editing a preexisting Cate-
gory by looking at the category ID to decide whether it should include a hidden
form field with the ID.

15.8.2 Reading and updating with viewCategory and editCategory

Loading a Category to view isn’t really a CRUD operation, but functionally it’s the
equivalent of loading it for editing: take the Category ID and load it from the

1 See chapter 12 for a discussion of null value handling.

Listing 15.17 createCategory.jsp
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

420 CHAPTER 15

Best practices
database, then render the appropriate page. In the case of the viewCategory action,
this is viewCategory.jsp; for the editCategory action, it’s createCategory.jsp. The
important thing to notice in the configuration shown in listing 15.16 is that both of
these action configurations use the editStack interceptor-ref. Listing 15.18 shows
the definition of the editStack interceptor stack.

<interceptor-stack name="editStack">
 <interceptor-ref name="auth"/>
 <interceptor-ref name="component"/>
 <interceptor-ref name="servlet-config"/>
 <interceptor-ref name="static-params"/>
 <interceptor-ref name="params"/>
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="model-driven"/>
 <interceptor-ref name="conversionError"/>
 <interceptor-ref name="workflow"/>
</interceptor-stack>

The important change between this interceptor stack and the default interceptor
stack used by newCategory is the order of the parameter interceptor and the pre-
pare interceptor. In editStack, the parameter interceptor is set before the pre-
pare interceptor. The categoryId property is set by the parameter interceptor and
then used in the prepare() method to load the Category from the database. Once
the correct Category has been loaded, the action’s execute() method is called
(remember that it doesn’t do anything besides return SUCCESS) and the page is
rendered, using the values from the loaded Category.

15.8.3 Saving categories with saveCategory

Both the newCategory and editCategory actions go to the createCategory.jsp
page, which POSTs its form to saveCategory.action. This action either saves a new
Category instance or updates an existing Category instance in the database. To
start to understand how it works, let’s look at its interceptor stack. Listing 15.19
shows the definition for the crudStack.

<interceptor-stack name="crudStack">
 <interceptor-ref name="auth"/>
 <interceptor-ref name="token"/>
 <interceptor-ref name="component"/>

Listing 15.18 The editStack interceptor

Listing 15.19 crudStack, which defines an interceptor stack
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

A Single action for CRUD operations 421
 <interceptor-ref name="servlet-config"/>
 <interceptor-ref name="static-params"/>
 <interceptor-ref name="params"/>
 <interceptor-ref name="prepare"/>
 <interceptor-ref name="model-driven"/>
 <!-- We have params here twice because we use
 the first set of params to retrieve our
 model, then set the params on that -->
 <interceptor-ref name="params"/>
 <interceptor-ref name="conversionError"/>
 <interceptor-ref name="validation"/>
 <interceptor-ref name="workflow"/>
</interceptor-stack>

As you can see, the crudStack is using the same parameter -> prepare technique
you saw earlier in the editStack to load a Category from the database. However,
as the comment points out, you have the parameter interceptor applied again.
The order of steps is as follows:

1 The token interceptor validates that a valid token is passed with the form
submission.

2 The parameter interceptor sets the categoryId property on the action if
it’s passed.

3 The prepare interceptor calls prepare() on the action, causing it to load
the specified Category from the database if the categoryId parameter was
passed (for editing an existing Category).

4 The parameter interceptor is called again, this time setting the properties
of the Category instance from the form fields.

5 The action’s saveCategory() method is called, saving the Category
instance to the database.

It’s important to understand that, like any other example where values are set
directly from the form parameters, this one has a potential security hole. You must
either trust that the HTTP requests won’t be modified by a malicious user, or you
must add a security layer between the setting of the fields and the storage of them.

 One way to handle this type of security is to use the Proxy pattern—that is,
wrap a proxy object around every business object that lets the proxy decide
whether the current user is allowed to set (or get) particular fields.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

422 CHAPTER 15

Best practices
15.8.4 Setting the parentCategory

Looking back at the createCategory.jsp shown in listing 15.17, two form fields
set properties on the loaded Category instance: a textfield named category.name
and a select list named category.parentCategory. They set the name of the cate-
gory and its parent category, obviously; but note that the value of the select box is
set to the parent category’s ID (category.parentCategory.id), whereas the field-
name is just category.parentCategory. You’re setting the actual parentCategory
property, which is of type Category, by depending on WebWork’s type conversion.
The parent category’s ID is trying to be set as the parentCategory property, so
WebWork figures out that it needs to use a type converter. Listing 15.20 shows the
convertValue() method of the CategoryConverter class.

public Object convertValue(Map map, Object target, Member member,
bbbbbbbbbbbbbbbbbbbbbbbbbbbString propertyName, Object value,
bbbbbbbbbbbbbbbbbbbbbbbbbbbClass toClass) {
 if (toClass.getName().equals(Category.class.getName())) {
 if (value instanceof Category) {
 return value;
 }
 CategoryDAO dao =
 (CategoryDAO) getComponent(CategoryDAOAware.class);
 Long id = getLongId(value);
 if (id != null) {
 return dao.getCategoryById(id,false);
 }
 } else if (toClass.getName().equals(String.class.getName())) {
 if (value instanceof String) {
 return value;
 }
 if (value instanceof Category) {
 return ((Category)value).getId().toString();
 }
 }
 return null;
}

Because you use the DAO and assume that conversions are from the String repre-
sentation of the ID and back, your converter is pretty simple. In fact, with a little
refactoring, it’s easy to create one converter that can convert any of your persis-
tent classes. As this example shows, it can simplify your CRUD actions and any
other actions that are dealing with entity relationships considerably and allow you

Listing 15.20 The CategoryConverter class
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 423
to more naturally describe the semantics intended (such as setting the category’s
parent category rather than setting the ID).

15.9 Summary

We covered a wide range of topics in this chapter, and although some of them
may not seem related (such as IDE settings and UI components), they all have one
thing in common: Their advanced and unique features are made possible by the
underlying philosophy of WebWork. WebWork makes the framework work for you,
not the other way around; WebWork makes it easy to test your code; and WebWork
makes it possible to extend without being too complex.

 WebWork is about making you productive. In this chapter, you learned about
ways to increase that productivity, whether through better deployment of your
app server using Resin, or by knowing how to extend the UI tag library. We’ve
reached the end of the book, and not only have you learned the basic features
WebWork offers, such as internationalization, validation, type conversion, and UI
templates, but you’ve also seen how to extend all those features to begin building
many tools and components you can add to your toolbox.

 It’s time to begin creating your own set of tools: useful type converters, UI
themes, IoC components, or custom validators. The most important thing you
should remember when using WebWork is that it was developed specifically to
make you productive. Never be complacent about unproductive development.
Always look for ways to extend and utilize your frameworks and libraries, Web-
Work included, to their maximum potential. And when you reach that maximum,
push some more—you’ll likely make the next release that much better.

 We hope you enjoy WebWork as much as we do, and we hope to see you soon
in the WebWork community.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Appendix:
WebWork architecture
424

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Implementing the Command pattern 425
As you first learned way back in chapter 1, “An overview of WebWork,” WebWork
is made up of two parts. The foundation of WebWork is XWork, a generic Com-
mand pattern framework. WebWork adds an MVC web application framework
implemented as a wrapper on top of XWork. The core concepts of the framework,
including actions, interceptors, and results, are defined by XWork. WebWork
extends the basic implementations of these concepts to support web application
development. This appendix discusses the core design of XWork and WebWork.

 We laid out the separation between XWork and WebWork in chapter 1, so in
this appendix we’ll discuss the framework architecture without too much focus on
which parts are XWork and which are WebWork.

A.1 Implementing the Command pattern

At its core, WebWork is a Command pattern implementation. The Command pat-
tern takes units of code that would be methods in normal functional or OO pro-
gramming, and makes them into classes called commands or actions, which all
implement a common interface. As you can see in figure A.1, action instances can
then be created and passed to be executed by code that doesn’t have to know which
command class it’s executing, as long as it implements the command interface.

 If you use a command execution framework, the framework can encapsulate the
execution of the action. Because you’re calling actions through a framework, you
can configure the framework to add services around the call, like saving the com-
mand objects to replay them backward for undo, or saving them to a log, or sending
them off to be executed somewhere else. The client code, which executes the

Client code Command

+execute()

ConcreteCommand

+execute()

execute

Figure A.1
The simplest possible Command
pattern implementation
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

426 APPENDIX

Appendix: WebWork architecture
action through the framework, doesn’t need to know what other services may be
called, or even which action class is being executed, as you can see in figure A.2.

 Because you don’t directly call the classes, but rather make the calls through
the framework, you can change the behavior of your commands by configuring
the framework without having to change your command classes. How the frame-
work is configured and what services are available is implementation specific; but
as we discuss in chapter 3, “Setting up WebWork,” WebWork actions are config-
ured in an XML file named xwork.xml.

A.1.1 Basic Command pattern features

WebWork provides the standard features of a Command pattern framework, as
well as advanced features not found in any other command framework. The stan-
dard features of a Command pattern implementation include the following:

■ Configuring an action class to be executed based on an alias name, decoupling
the caller from the implementing command object. This is done through the
xwork.xml configuration file, which we look at in detail in chapter 3.

■ Allowing configuration-time parameters to be set onto the action instance
before execution. These parameters can be set in the xwork.xml file. See chap-
ters 3 and 5 (“Adding functionality with interceptors”) for more information.

■ Setting request-specific parameters onto the action instance before execu-
tion. This is handled by an interceptor, as discussed in chapter 5.

■ Providing a mapping between command return codes and a result to be exe-
cuted. This mapping is done in the xwork.xml file, also discussed in chapter 3.

Client code

Command

+execute()

+execute(commandAlias)

execute Framework
execute

ConcreteCommand

+execute()

create

Service

Figure A.2 Calling commands through a Command pattern framework allows the client code to be
decoupled from the command implementation and lets the framework add other services transparently.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Actions 427
■ Chaining multiple commands together via configuration to provide support
for composition of macros from many actions. This is handled by the com-
bination of a result mapped in xwork.xml and an interceptor. Action chain-
ing is covered in detail in chapter 7, “Using results.”

A.1.2 Advanced Command pattern features

WebWork also provides many advanced features, some of which aren’t found in
any other command framework:

■ Per-class and per-property type conversion support when you’re setting
properties onto the action instance. This flexible type conversion allows you
to use domain objects with more complicated property types, rather than all
String FormBeans as in Struts or other frameworks. Type conversion is cov-
ered in detail in chapter 12.

■ Localized text message support with a message inheritance model based on
action class hierarchies. Internationalization support is covered in chapter 14.

■ Error message support at the class instance and field level. This allows you
to save error messages for display to the user at either the action level or at
the per-field level. Managing error messages is covered in chapter 4, “Imple-
menting WebWork actions.”

■ Configurable interceptors to provide before and after processing around
the execution of the action instance. Interceptors are configured via the
xwork.xml file and are discussed in detail in chapter 5.

■ An XML metadata-driven validation framework to validate action and
domain object values. This lets you define your validations external to your
code and provide different validations for different usage scenarios. Valida-
tion is covered in chapter 13.

A.2 Actions

The core unit of functionality in WebWork is the action. Actions are the com-
mand objects in WebWork’s implementation of the Command pattern discussed
in section A.1. Actions implement the com.opensymphony.xwork.Action interface,
which defines only one method:

public String execute() throws Exception

This method is the default entry point (the method the framework calls when exe-
cuting the action) for execution in your action classes. You can configure your
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

428 APPENDIX

Appendix: WebWork architecture
action alias to call a method other than execute(), and even have multiple differ-
ent action aliases pointing to different methods in the same action class with dif-
ferent interceptors, results, and so on.

 The com.opensymphony.xwork.ActionSupport class implements Action and sev-
eral optional interfaces and can be used as a base class for your own action classes
to extend to inherit implementations of these interfaces. In chapter 4, we look in
detail at implementing your own actions and the default implementations pro-
vided by ActionSupport.

A.3 Interceptors

Interceptors in WebWork allow you to encapsulate code to be executed around
the execution of an action. These are extra services the Command pattern frame-
work can provide, transparently,1 to the execution of your actions. They’re
defined outside the action class, yet have access to the action and the action exe-
cution environment at runtime, letting you componentize cross-cutting code and
provide separation of concerns. Cross-cutting code can be anything from timing
and logging your action execution to setting up resources such as database con-
nections and transactions and cleaning them up after execution. Many WebWork
features, including core functionality like setting properties on the action
instance, are implemented as interceptors. This is code many of your actions will
need, but you don’t want to be forced to see it in every action, either through cut-
and-paste or complex class inheritance hierarchies. Instead, the modular
approach to executing an action allows you to customize the action execution to
do just the pieces you need.

 If you think this sounds like Aspect-Oriented Programming (AOP), you’re right.
It shares many concepts with the idea of method interception from AOP; but it
doesn’t require any preprocessing or byte-code modification, because the callers
and called actions are decoupled and the interception is internal to the framework.
We take a detailed look at interceptors in chapter 5, and we’ll examine a sequence
diagram of the interactions that occur in executing an action later in this appendix
when we discuss what happens inside the ActionProxy and ActionInvocation.

1 The level of transparency depends on what the interceptor is doing. Some interceptors, like timer and
logger, don’t change the behavior of the action at all. Other interceptors, like parameter and prepare,
may be key to the operation of the action, and not including them would break things.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Value stack 429
A.4 Results

The com.opensymphony.xwork.Result interface represents a generic outcome of
an action execution. This is basically anything you want to happen after the action
is executed. The Result interface defines only one method:

public void execute(ActionInvocation invocation) throws Exception

Results can be used to produce any kind of output needed from the action execu-
tion, such as displaying a web page, generating a report, or sending an email.
WebWork provides results for doing servlet dispatch (used to dispatch to a JSP for
rendering), servlet redirects, Velocity, FreeMarker, JasperReports (which allows
you to generate PDF, CSV, XML, and so on), XSLT rendering, and the Action-
ChainResult, which can be used to chain processing from the current action to
another action.

 Results are mapped to a result code in your action configuration in xwork.xml.
We discuss this in detail in chapter 3; but for now, all you need to know is that you
can tell WebWork to execute a different result based on the return code of your
action’s execute() method. Each different return code can have its own result to
be executed. Results are discussed in detail in chapter 7.

A.5 Value stack

The value stack is central to the dynamic context-driven nature of XWork and
WebWork. It’s a stack of objects against which expressions can be evaluated to find
property values dynamically, by searching for the first object (from the top of the
stack down) that has a property of that name. WebWork builds up the value stack
during execution by pushing the action onto the stack.

 Many WebWork JSP tags and Velocity macros access the value stack and may
push or pop objects to/from it. The value stack is built on and around Object
Graph Navigation Language (OGNL) and acts as an extension of OGNL’s single-
object root concept to support the multiple-object stack. We’ll discuss OGNL and
the interaction between OGNL and the value stack more in the next section.

A.5.1 OGNL

OGNL (see http://www.opensymphony.com/ognl) lets you evaluate expressions
to navigate properties on JavaBeans for either getting or setting property values.
OGNL also provides advanced expression features such as static or instance
method execution, projection across a collection, and lambda expression
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

http://www.ognl.org

430 APPENDIX

Appendix: WebWork architecture
definition for expression reuse. OGNL also provides a rich type-conversion model
that has been extended in XWork and WebWork. Type conversion is covered in
detail in chapter 12.

 The basics of the OGNL language are simple and should cover 90 percent of
common usages. Basic bean properties are accessed using the property name. For
example, the expression count is evaluated by trying to find a getter for a property
named count, like getCount(). Similarly, the expression address.street calls
getAddress().getStreet() if you’re getting a property, or getAddress().set-
Street() if you’re setting a property. Other features of OGNL are similarly
straightforward; for instance, the expression hashCode() calls the hash code
method on the current object in the OGNL context.

 We discuss OGNL syntax in detail in chapter 8, including the WebWork exten-
sions to OGNL. But for now the expressions used in the examples should be self-
explanatory, and we’ll comment them where they’re not.

A.6 ActionProxy / ActionInvocation

The ActionProxy serves as client code’s
handle to execute an action. Because
you’re executing the action through the
framework, you use this proxy rather than
the action instance itself so that it may
encapsulate the extra functionality of the
interceptors, results, and so on. Figure A.3
shows the relationship between the
ActionProxy, the ActionInvocation, the
action instance, the interceptors, the
results, and the ActionContext (which
we’ll cover in the next section).

 The ActionProxy holds an ActionIn-
vocation, which represents the current
state of the execution of the action. The
ActionInvocation holds the action
instance, the interceptors to be applied
(in order), the map of results (mapped
from return code to result instance), and
an ActionContext (more on this in the
next section).

ActionProxy

execute()
getAction()
getActionName()
getConfig()
getExecuteResult()
getInvocation()
getNamespace()
setExecuteResult()

ActionInvocation

AddPreResultListener()
getAction()
getInvocationContext()
getProxy()
getResult()
getResultCode()
getStack()
invoke()
isExecuted()

destroy()
init()
intercept()

getContext()
setContext()
get()
put()execute()execute()

Result Action

ActionContext

Interceptor

Figure A.3 Class diagram of the classes
involved in executing an ActionProxy
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

ActionProxy / ActionInvocation 431
 The ActionProxy is created by a dispatcher—such as the ServletDispatcher in
WebWork—using the static ActionProxyFactory instance, in this way:

ActionProxy proxy = ActionProxyFactory.getFactory()
 .createActionProxy(namespace, actionName, context);

After creating the ActionProxy with the context (which includes the request
parameters, the application map, the session map, the locale, and the ServletRe-
quest and ServletResponse), the ServletDispatcher executes the ActionProxy by
calling the execute() method. Figure A.4 shows the sequence of calls in the exe-
cute() method of the DefaultActionProxy (the default implementation of the
ActionProxy interface).

 The ActionProxy sets up the execution context for the ActionInvocation
(you’ll see more about this in a moment when we discuss the ActionContext) and
then calls invoke() on the ActionInvocation. The ActionInvocation invoke()
method finds the next interceptor that hasn’t been executed and calls inter-
cept() on it. The interceptor can do any preprocessing using the ActionInvoca-
tion before calling invoke() again on the ActionInvocation. This reentrant
behavior can make ActionInvocation somewhat confusing. The ActionInvoca-
tion maintains its state to know which interceptors have been executed; and, if
there are more interceptors, it calls intercept() on the next one. If there are no
more interceptors to be called, the action instance is executed. The return code
from the action is used to look up the result to use, and it’s executed. Finally, the
invoke() method returns, returning control to the last interceptor in the stack.
This interceptor can do any post-processing necessary and then return from the
invoke() method, allowing the previous interceptor to do its post-processing, and
so on, until all the interceptors have returned. Finally, the ActionProxy cleans up
some state and returns.

 One consequence of passing the ActionInvocation into the interceptors and
depending on it to continue processing the other interceptors and finally the
action is that interceptors can choose to not continue processing (thus shortcut-
ting action execution) and just return a result code. This allows, as an example, a
SecurityInterceptor to prevent action execution if the user doesn’t have permis-
sions to the action.

 The ActionProxyFactory/ActionProxy/ActionInvocation architecture also
allows for different strategies for executing actions. For example, using this archi-
tecture, you could build a Java Message Service (JMS) dispatcher to allow asynchro-
nous action processing and a client dispatcher that allows rich clients to call to a
server, to have actions executed on the server side with the required parameters and
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

432 APPENDIX

Appendix: WebWork architecture
then return to the client to be rendered for the user. This is already being done for
the project MessageWork, which was recently added to http://dev.java.net.

A.7 ActionContext

The ActionContext is a ThreadLocal Map with helpers for getting and setting pre-
defined values such as the application and session maps, the ActionInvocation,
request parameters, the locale, and so on. An ActionContext is associated with a
particular ActionInvocation/ActionProxy pair and is associated with the Thread
during the execution of that ActionInvocation.

8: return

7: return

6: return

5: execute(invocation)

4: execute

3. invoke()

2: intercept(invocation)

1: invoke()

After the
Action.Invocation.invoke()
method returns the action and
the result has been executed,
the interceptor can do any
cleanup or other post-
processing needed.

After the interceptors have been
executed, the ActionInvocation
executes the action and finally
executes the result, which is
mapped to the return code from
the action execution.

The ActionInvocation calls
intercept() on each interceptor.

The interceptor can do any
processing before the action is
executed.

The interceptor calls back into
the ActionInvocation.invoke()
method. The invocation keeps
track of which interceptors
have already been executed.

Figure A.4 Sequence diagram of the internals of DefaultActionProxy.execute()
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

ActionContext 433
 In the previous section, we said that the ActionProxy sets up some state before
invoking the ActionInvocation and cleans up some state afterward. This setup
associates the ActionContext with the current Thread so that it’s available during
the ActionInvocation execution. Let’s look at what the ActionProxy is doing
before and after invoking the ActionInvocation; see figure A.5.

1: getContext()

2: return

3: getInvocationContext()

4: return

5: setContext(aContext)

6: invoke()

7: setContext(aContext)

When the ActionProxy is executed, it
gets the ActionContext from the
ThreadLocal and saves it.

The ActionProxy gets the ActionContext
for the ActionInvocation and sets it onto
the ThreadLocal.

After the ActionInvocation returns, the
ActionProxy sets the old ActionContext
back onto the ThreadLocal.

Figure A.5 Sequence diagram of the ActionContext setup and teardown done by
DefaultActionProxy before and after invoking the ActionInvocation
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

434 APPENDIX

Appendix: WebWork architecture
Figure A.5 shows the sequence of calls made by the DefaultActionProxy before
and after the ActionInvocation’s invoke() method is called. The ActionContext is
created during the ActionInvocation and ActionProxy construction and stored
until the ActionProxy is executed, when it’s associated with the Thread. During
interceptor, action, and result execution, your code can use the ActionCon-
text.getContext() method to get the ActionContext from the ThreadLocal and
thus get the current execution context.

 The ActionContext contains valuable information about the environment dur-
ing execution. These context values are set up by the ServletDispatcher before
creating the ActionProxy and are passed in the extraContext Map to the createAc-
tionProxy() method on the ActionProxyFactory. The properties found in the
ActionContext are as follows:

■ ActionInvocation—getActionInvocation() gives access to the current
ActionInvocation, which is associated with this ActionContext.

■ Application—getApplication() gives you a java.util.Map implementa-
tion that wraps the application scope using the ServletContext. You can
read and write to the application scope using this map.

■ ConversionErrors—getConversionErrors() returns a Map of field name to
field value pairs for all fields that had type-conversion errors. We discuss this
in detail in chapter 12.

■ Locale—getLocale() gets the locale of the current request. This locale is
used for finding localized text messages, as you see in detail in chapter 14.

■ Name—getName() gets the name of the current action. This is from the part
of the request that identifies the action to execute and corresponds to the
action name mapped in the xwork.xml file.

■ Parameters—getParameters() returns the Map of parameters from the
request. This Map is from String parameter names to String[] values—
because the parameters from an HttpServletRequest can have multiple val-
ues for each parameter name, the Map gives you String arrays.

■ Session—getSession() returns a java.util.Map implementation that
wraps the HttpSession attributes. You can get and set values to/from the
session using this Map.

■ ValueStack—getValueStack() returns the value stack of the current request.

Along with these predefined values, you can use the put() and get() methods to set
your own values into the ActionContext to be available later, without having to pass
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

ActionContext 435
the values explicitly. You could do so, for instance, to associate a database connec-
tion to be used during processing of the interceptors and the action with the cur-
rent ActionContext ThreadLocal. In that way, your code can retrieve the database
connection anywhere it’s needed without having to pass it in every method call.
Your code can also skip the thread-safety that would be needed for a static storage
solution, because the ActionContext is associated with only one Thread.

A.7.1 ThreadLocal storage

The ActionContext is implemented as a ThreadLocal so that it’s always available
without having to be passed along in every method call. ThreadLocals
(java.lang.ThreadLocal) were added in Java 1.2. They provide Thread-specific
storage, where each Thread has its own instance of the Object. Accessors for get-
ting the ThreadLocal value can be static methods, allowing the ThreadLocal value
to be retrieved anywhere; it need not be passed as a method parameter.

 Listing A.1 shows the ThreadLocal-specific code in ActionContext.

static ThreadLocal actionContext = new ActionContextThreadLocal();

public static void setContext(ActionContext aContext) {
 actionContext.set(aContext);
}

/**
 * Returns the ActionContext specific to the current thread.
 *
 * @return ActionContext for the current thread
 */
public static ActionContext getContext() {
 ActionContext context = (ActionContext) actionContext.get();

 if (context == null) {
 OGNLValueStack vs = new OGNLValueStack();
 context = new ActionContext(vs.getContext());
 setContext(context);
 }

 return context;
}

private static class ActionContextThreadLocal extends ThreadLocal {
 protected Object initialValue() {
 OGNLValueStack vs = new OGNLValueStack();

Listing A.1 ActionContext’s ThreadLocal-specific code
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

436 APPENDIX

Appendix: WebWork architecture
 return new ActionContext(vs.getContext());
 }
}

Looking at the getContext() and setContext() methods, you see that they use the
ThreadLocal set() and get() methods. The ThreadLocal set() method associates
an Object with the ThreadLocal for later retrieval. The ThreadLocal get() method
retrieves the Object currently associated with the ThreadLocal for this Thread.

 The only other implementation detail is the ActionContextThreadLocal inner
class. It’s a specialized subclass of ThreadLocal that overrides the initialValue()
method from ThreadLocal to set up a default value for the ThreadLocal, so that
the first call to get() on the ThreadLocal doesn’t return null.

 One note about using ThreadLocals: They’re notoriously tricky in unit testing.
Take proper care to set up and tear down ThreadLocals before and after unit tests,
to ensure that the tests don’t interfere with one another. If you look at the unit
tests in XWork and WebWork, you can see the effort involved to make sure the
unit tests don’t leave any side effects that can cause unforeseen interactions.

A.8 The servlet dispatcher

The ServletDispatcher is the main entry point of requests in WebWork. It’s a serv-
let that is normally mapped to an extension (typically *.action, although *.jspa is
another common extension used by the WebWork community). It uses the request
path to determine which action to execute, as discussed in section 3.2.2 on
namespaces. The ServletDispatcher serves as the adapter between the HTTP
request/response world of servlets and WebWork and the generic Command pat-
tern action/result world of XWork.

 The ServletDispatcher creates the context for executing an action by setting
up java.util.Map implementations that wrap the application-, session-, and
parameter-scoped attributes. It then uses the ActionProxyFactory to create an
ActionProxy, returning an error to the user if no action is mapped to the
requested name. Finally, the ServletDispatcher executes the ActionProxy, which,
as you saw earlier, includes executing any associated interceptors, the action itself,
and whichever result is mapped to the result code returned from the action. This
result could, for instance, render a web page or create a PDF document. The
ServletDispatcher also handles wrapping the request for multipart file-upload
requests (discussed in chapter 4) and handling error codes, and is generally the
glue that ties WebWork together.
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Summary 437
A.9 Summary

At its heart, WebWork is a Command pattern implementation (XWork) wrapped
with an MVC web application framework (WebWork). The framework handles
command execution, allowing the calling code to be decoupled from the con-
crete action classes and allowing the framework to add services around the action
execution. These services are provided in the form of interceptors in WebWork,
and they handle much of the framework’s core functionality.

 In order to add these services, the framework encapsulates the execution of an
action in an ActionProxy/ActionInvocation pair. The ActionProxy/ActionInvoca-
tion wraps the action, includes the interceptors and the result, and manages when
each is called during execution. Interceptors are called in order and can do what-
ever they need to before and after executing the rest of the ActionInvocation
(including the other interceptors). During the action execution, the action, inter-
ceptors, and result can access a ThreadLocal storage space called the Action-
Context, which is managed by the ActionProxy and is available only during the
ActionProxy.execute() method.

 ActionProxy instances are created by the ServletDispatcher using the static
ActionProxyFactory instance. The ServletDispatcher maps HTTP requests com-
ing into an action namespace and action alias, which are used to create the cor-
rect ActionProxy by the ActionProxyFactory. The ServletDispatcher then
executes the ActionProxy, which handles executing the interceptors, action, and
result (such as a web page or a PDF).
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

index
Symbols

219, 221, 236
application 219
attr 219
parameters 219
request 219
session 219
uses 223
Velocity directives 262

$! 261
%{...} 234

A

absolute path 41
$action 266
action

alias 42, 354
aliasing without

configuration 44
architecture 427–428
chaining 120
configuring 40–46
CRUD See CRUD
customizing 44–46
long running 125
ModelDriven 95
ModelDriven,

implementing 96
parameters 44–46
responsibility 39
unit testing 389
validating 124

validating multiple action
aliases 339

without type conversion
315–317

action alias 42, 354
validating multiple 339

action aliasing. See action, alias
action chain

configuring 193–194
action chaining 120, 185, 192,

197, 427
how it works 194–197

action errors 124
Action interface 78–79, 427
action mapping, setup 40
action tag 240–242

attributes 240
Action, interface 78
Action.INPUT 337
Action.SUCCESS 337
ActionChainResult 429
ActionContext 142, 153, 213

actively requesting 142–143
architecture 432–436
passively requesting 143–144
Registry pattern 142
relation to OGNL

context 218–219
relationship to

ActionInvocation 433
relationship to

ActionProxy 432
using with testing 392

ActionContextThreadLocal 436
actionErrors 85

ActionInvocation 130
architecture 430–432
relationship to

ActionContext 432
relationship to

ActionProxy 430
ActionInvocation property 434
ActionProxy 436

architecture 430–432
relationship to

ActionContext 432
relationship to

ActionInvocation 430
using for integration

testing 394
ActionProxyFactory 431, 436

internal workings 431
ActionSupport 80

architecture 428
field errors with UI tags 282
helloWorld 34–36
interaction with UI tags 36
interfaces 80
locale support 86
ModelDriven 95
uses for error reporting 283
Validateable 124
validation 338

ActionValidatorManager 399
add 216
addActionError() 352
addFieldError() 34, 352

See also validation
alias. See action, alias
439

Licensed to Shirong Chen <chenshirong2000@hotmail.com>

440 INDEX
altSyntax 234, 291
See also UI tag library

Ant 385
AOP. See Aspect-Oriented

Programming (AOP)
application attributes 219
application layout 70
application scope 151, 236

configuration 151
HibernateSessionFactory 169

ApplicationAware 115, 121–122,
147

ApplicationLifecycleListener
152

around interceptor 117–118
AroundInterceptor 117,

129–130
when not to use 130

array index notation 225
Aspect-Oriented Programming

(AOP) 95, 428
assignment 217
attribute map 153
attributes 219
authentication 130
authentication interceptor 130
autoboxing 221
automatic instantiation 92
Avalon 146, 171
Aware interface 147–148,

153–154
CaveatEmptor example 169
example 157
testing with 391
using 157

B

bean tag 231, 238
attributes 239
creating a JavaBean 238

beforeResult 133
BigDecimal 216
BigInteger 216
Boolean 216

C

calendar
creating with UI tags 403
custom tag 407

calendar.vm 406
cat, skinning 173
Caucho 386
CaveatEmptor

authentication
interceptor 130–131

Aware interface 169
CreateUser 315, 330, 334

CreateUsers 327
CreateUser-

validation.xml 340
EditCategory 78

editCategory 419–420
EditCategory CRUD

action 417
EmailConverter 321
i18n functionality 361
Inversion of Control 162–170
LocalizedTextDAO 377
mock objects 390
newCategory 418–419
pagination 248
PagingAction 378
parentCategory 422
saveCategory 420–421
search wait page 414
update profile 272
UpdateUser, integration

testing 393
usage of action tag 240
User 334
UserAware interface 133
viewCategory 419–420

chain interceptor 115, 196
stack 127

chain result 192–197
common properties 196
expression evaluation 196
how it works 194–197
parameters 193
required interceptor 194
value stack behavior 196

chaining interceptor 120
chaining, Command

pattern 427
chainStack 127
Char 216
character encoding.

See encoding
checkbox 276, 280

checkbox tag 298–299
attribute 299

checkboxlist tag 302
attributes 303

circular dependency 160
loose 160
tight 160

classpath
configuration 71

code smell 197
Collection

automatic type
conversion 325

i18n type conversion text 372
null access 326–329
UI tags 299–305

collection 220–224
projection across 429

Collection_ syntax 328
combobox tag 308

attributes 308
Command pattern 42, 78,

425–427
advanced features 427
basic features 426–427

commons-logging.jar 20
compile-time, template

language 256–257
completeStack 127, 345
component

CaveatEmptor
configuration 168–169

creating 154–158
interface

implementation 155
interfaces 154
tag 309, 406

component interceptor 115,
120, 154

stack 126
component interface

creating 154–156
ComponentManager

applying to an action 153
applying to any object

158–159
getting access to 158
introduction 153

components.xml 154
example 157–158
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

INDEX 441
componentStack 126
ComponentTag 407

extending 407
config browser 396–398
configuration

Command pattern 426
file upload 110
IoC 151–154
reloading 69, 388
resetting for unit tests 392
setting configuration

parameters 120
testing 393–396

ConfigurationManager 392
container 144
ContainUtil 303
content type, getting for

uploaded files 123
context 213

included 184
JSP 184
normal 184, 186

control tag 242–246
controlfooter.vm 285

contents 288
overriding 404, 408

controlheader.vm 285, 404
contents 286

conversion validator 344
conversion.properties 388
ConversionError

property 434
conversionError 337

interceptor 115, 126, 329, 344
converting data

from String 317
to String 317

counter 239
CreateLocalizedCategory 363
CreateUser

i18n 89
validation 81, 89

cross-cutting 428
CRUD 42, 417–423

create 418–419
definition 417
read 419–420
update 419–421
using with type

conversion 422

CSS 272
UI tag class 292
UI tag elements 282

custom template
creating 406–407

D

data access
deep 317, 324
flat 317

data binding 90–95
data tag 235, 242
date format 239–240, 315, 318,

325, 370
date validator 350
DateFormatter. See date format
DebugResult 182
decoupling 141–142
decrement 216
deep data access 317, 324
default

results 181
scope 236
view 44
workflow 123–124

default configuration.
See webwork-default.xml

DEFAULT_PARAM 183
DefaultActionProxy 431
DefaultComponentManager

153
defaultMessage 342
defaultStack 126
DefaultTypeConverter 321
DefaultWorkflowInterceptor 82,

123–124, 337
DelegatingValidatorContext

402
dependency 148–149

circular 160
complex example 159–162
lower-scope 161
scope 161–162

Dependency Injection pattern.
See Inversion of Control

dependency management.
See Inversion of Control

depth-first search 159
DFS. See depth-first search

directive 262
dispatch result, avoiding during

testing 395
dispatcher result 181, 183

configuring 183
context 184–187
difference from redirect 190
error cases 187–188
illustration 183
type 47

dispatching
compared to action

chaining 193
to a page 182–188

Disposable 164, 168
dispose() 150
dispose. See lifecycle
disposing 149, 171
divide 216
domain object 90

advantages 93
considerations 93
direct access 91
issues 93
security 94

doMethod 43
Double 216
doubleList 306
doubleListKey 306
doubleListValue 306
doubleName 306
doubleselect tag 306–307

attributes 306
doubleValue 306
duplicate

forms. See token
posts 410
submits 116

dynamic proxy 95

E

EasyMock 389
EJB 171

IoC examples 144
EL. See expression language
else directive 265
else tag 245–246
elseif directive 265
elseif tag 245

attribute 245
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

442 INDEX
email validator 343
emptyOption 300–301, 307
enabler interface 157
encapsulation 404
encode attribute 249
encoding 381–382

IDE 382
environment, setting up

385–388
equality 216
error mapping 182
error message 427

helloWorld 31
errors, displaying with UI

tags 280–282
escaping HTML 235
Excel, generating with

JasperReports 203
exception

declaring 79
interceptor 133

exception handling 79
ExceptionInterceptor 133
execAndWait 125, 414

Making interceptor 116,
413–416

ordering 416
stack 127

execAndWait interceptor 413
execute() 42–43, 145, 178, 348,

398, 427
result 429
validating 336–337

executeAndWaitStack 127
expect* 391
expression language

advanced features 224–228
advantages 210
compared to JSP 211
features 213–219
OGNL compared to

Velocity 260
reasons for using 210–211
using with WebWork.

See Object Graph
Navigation Language

expression validator 344,
355–356

example 355
ExpressionValidator.

See expression validator
extendibility 404

F

Factory pattern 141–142, 172
example 141

field errors 85, 124
accessing with OGNL 35

field validator 352
fieldexpression validator 344,

355
fieldName 342
FieldValidatorSupport 352
fieldValue 299
file upload 111

automating 109
configuration 110
content-type 110
example 109
interceptor 109, 123
limiting size 69
max size 110
parser 69, 110
save directory 69
stack 126
temproary directory 110

filename, getting for uploaded
files 123

fileUpload 109
FileUploadInterceptor 109
interceptor 115

fileUploadStack 126
filter 152

GZIP 136
flat data access 317, 323
flow, helloWorld 33
for attribute

automatic element
linking 293

linking elements to labels 288
foreach 261–264

compared to JSP iterator
tag 263

emulating iterator tag 263
form tag 280, 295–297

attributes 295
reasons for using 296

form token 409–413
form, preventing duplicate

submissions 409–413
form.vm 295
format.date 370
format.money 370

formatting
dates 370
numbers 370

FormBean 93, 95
form-close.vm 295
forward, compared to

include 187
Fowler, Martin 143
FreeMarker 202–203, 283

configuration 202
directives 202
download 202
example 202–203
JSP tag support 269
libraries 72
parameters 202
result 429
switching from Velocity 203

freemarker result
configuration 202
parameters 202

G

generics 326
GET 217, 226
get() 158, 434
getActionInvocation() 434
getApplication() 434
getAttribute() 153
getContext() 434, 436
getConversionErrors() 434
getFieldErrors() 35

relationship to UI tags 282
getInstance() 140
getKeys() 377
getLocale() 375, 434
getLocaleForTexts() 378
getMessage() 351
getModel 125
getModel() 125, 135, 364
getName() 434
getParameters() 434
getSession() 434
getSessionFactory() 165
getter 214
getText() 89, 366, 368, 375

using for i18n 369
getValueStack() 434
global result 47
Google 90
Groovlet 213
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

INDEX 443
Groovy 213
GZIP filter 136

H

handleGetObject() 377
handleInvalidToken() 412
handleValidToken() 412
hasNextPage() 381
headerKey 300–301, 306
headerValue 300–301, 307
Hibernate Query Language

(HQL) 210
Hibernate, session management

with IoC 162
HibernateSessionFactory

163–166, 168
lifecycle 165

HibernateSessionFactoryAware
168

hidden tag 306
HQL. See Hibernate Query

Language (HQL)
HTML

data types 314
JasperReports 204

HTTP
data types 314

http 249
https 249
HttpServletRequest 142–143,

315, 390
HttpServletResponse 390
HttpSession 153
HttpSessionAttributeListener

144
HttpSessionListener 144

I

i18n 86
alternative language

support 89
default encoding 69
default locale 69, 86
default resources 70

i18n tag 250–251, 366–367
attribute 251

i18n.properties 370
I18nInterceptor 374

id attribute 293
IDE, setting up 386–388
if directive 265
if tag 245–246

attribute 245
helloWorld 32

in 217
include

compared to forward 187
merge behavior 58

include tag 246–247
attribute 246
compared to jsp

include 247
includeContext attribute 249
includeParams attribute 249
increment 216
inequality 217
init() 150
Initializable 164, 168
initialization, lazy 159
initialize. See lifecycle
initializeObject() 158
initializing 149, 171
initialValue() 436
input field 276
input mapping 182
input widget, WebWork

support 33
int validator 216, 343, 349–350

example 349
integration test 393–398
interceptor 194

after() 118
architecture 428
around interceptor 117–118
bad design 128
base interceptor class

117–118
before() 118
building 128–136
call sequence diagram 113
calling 113
chaining 120
Command pattern 427
comparison to servlet

filters 135
component interceptor 120
configuration params 120
default stacks 126–128

default workflow 123–124,
135

defaults 114–125
exception interceptor 133
execAndWait 125
file upload 123
interceptor interactions

134–135
logging interceptor 118
maintaining state before and

after action execution 130
model driven 125, 134
modularizing code by

creating 128
order 93, 134
ordering 119
parameter 134
parameter interceptor

119–120
prepackaged 126–128
prepare 124, 135
references 114
responsibility 40
servlet config 121–122
setting request-specific

parameters 426
short-circuiting further

execution 113
stack 40
stacks, webwork.xml 64
stateless nature 128
static-params 120
timer interceptor 117
token 125
token session 125
utility interceptors 115,

117–119
validation 124
webwork-default.xml 63
workflow interceptors 116,

123–125
interceptor interactions

134–135
interceptor stack 126–128

chainStack 127
completeStack 127
componentStack 126
defaultStack 126
execAndWaitStack 127
fileUploadStack 126
modelDrivenStack 127
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

444 INDEX
interceptor stack (continued)
prebuilt interceptor stack

order 134–135
validationWorkflowStack 126

interceptor, example custom
interceptor 130–133

interceptor, property setting
interceptors 115, 119–123

interface, aware 147–148
intermediary object 90
internationalization 240, 250

Command pattern 427
dates and numbers 370
default texts 366
dynamic resource

bundles 375–378
dynamically generated

text 378–381
example 361–362
message formatting 368
messages 86–90, 368–372
messages in other

languages 89
parameterizing texts 368–369
search order 364–366
setting the locale 373–375
tips and tricks 373
using with type

conversion 371–372
using with validators 370–371
validation messages 341
working with type

conversion 325
internationalized message

368–372
invalid field number, using with

Collections 372
invalid field value 371

default text 372
Inversion of Control 126

active vs. passive 142–144
advantages of testing 391
alternatives to WebWork

170–173
common mistakes 154
compared to statics 139
configuration 120, 151–154
essentials 146–151
framework 151–162
J2EE 144
lifecycle 149–150

Non-IoC alternatives 172–173
pattern 138–146
scope 150–151
scope and lifecycle

diagram 150
testing 138, 145–146
types 170
WebWork history 146–148
wiring 146

IoC. See Inversion of Control
iterator tag

attributes 242
compared to Velocity

foreach 263
counting loops.

See IteratorStatus
IteratorStatus 243, 246

J

J2EE, IoC 144
jasper result

configuration 204
parameters 204

JasperReports 203–207
compared to HTML

report 204
compiling reports 206
configuration 204
download 204
example 204–207
libraries 72
parameters 207
report formats 204
result 429

Java 1.5 326
Java Collections API.

See collection
JavaBean 90–91

accessing properties with
OGNL 214–215

creating with the bean
tag 238

null property access 326
querying with OGNL 210

JavaScript
client-side validation 296
scripting with the UI tags 290,

293
javax.jms.Queue 390
Jive Software 258

JNDI, application testing 391
jsession 249
JSP 283

context 184
placing temporary

variables in 236
token tag 125
using with Velocity 198–199

JSP Standard Tag Library
(JSTL) 212–213

<jsp:include> 246
jsp:include 186

L

label 292
linking to form elements 288
position 292
tag 305

lambda expression 228, 429
language-specific text 250
lazy initialization 159
libraries

optional 72
required 71

lifecycle 144, 149–151
dispose 164
example 156
initialize 164
See also Inversion of Control

List
automatic type

conversion 325
list 220–221

construction 220
null access 328

listener 152
listKey 299, 306
ListResourceBundle 362
listValue 300, 306
locale

browser 361
setting

programmatically 373–375
Locale property 434
LocaleProvider 80, 86
localized message text 86–90
LocalizedMessages 363, 377

used with i18n tag 367
LocalizedText 377
LocalizedTextDAO 377–378
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

INDEX 445
LocalizedTextUtil 366, 372
LocalizedTextUtil.setReload-

Bundles() 388
location 189
logging

interceptor 118
logger interceptor 115

Velocity 258
look and feel. See UI tag library
loop, over collections.

See iterator tag
lower-scope dependency 161

M

Make Technologies 382
Map

construction 222
iterating with foreach and

iterator tag 262
map 221–222
null access 328
shorthand notation 222
using with UI tags 301

mapping, keys to objects 142
match* 391
$math 267
math, functions in Velocity 267
message

formatting 368
internationalized 368–372

internationalization 89
source 362–367
translation 89

MessageFormat 368, 370
dates and numbers 370

messageKey 342
MessageWork 432
method execution

dynamic 429
static 429

mock component
registering 394

mock object 389–391
dynamic 390
factory 142
request 143
singleton 140
static 390

MockObjects 389

model interceptor 116
ModelDriven 95, 116, 125

implementing 96
resource bundle 364

model-driven interceptor 96,
125, 127, 134

modelDrivenStack 127
modules, building with

include 58
modulus 216
moreResults() 43
multipart, applied to form

tag 296
multiply 216
multiselect tags 303–305

N

Name property 434
namespace

action tag 240
applied to form tag 295

normal context 184, 186
not in 217
null access

Collection 326–329
property 227, 326

number format 370

O

Object Graph Navigation
Language (OGNL) 20,
93, 210

advanced features 212
calling methods 217
compared to other ELs

212–213
context 213, 218–219
downloading 212
expression lists 218
filtering 222–223
key concepts 213
literals 215–217
operators 215–217
outputting expression

value 235
projection 222–223
reasons for using 211

relationship to value
stack 429–430

setting values 218
static methods and fields 218
type conversion 321

offset notation 220
OGNL. See Object Graph Naviga-

tion Language (OGNL)
ognl.jar 20
OgnlContext 218
onblur 294
onchange 294
onclick 294
ondblclick 294
onfocus 294
onkeydown 294
onkeypress 294
onkeyup 294
onmousedown 294
onmousemove 294
onmouseout 294
onmouseover 294
onmouseup 294
onselect 294
OpenSymphony, SiteMesh 136
openTemplate 295
OSCore 20
oscore.jar 20

P

package, resource bundle 364
page controller, with the

action tag 241
page scope 236
PageContext 184
pagination 378
<param> 359
param tag 252

attributes 252
dynamically generating i18n

texts 378–381
supplying values 252
used with text tag 369
with the action tag 241
with the bean tag 239
with the include tag 247
with the text tag 251
with the URL tag 248

parameter interceptor 94,
119–120
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

446 INDEX
parameter map 315
String arrays 322

ParameterAware 115, 121–122
parameterization 239

localized texts 368–369
parameterized actions.

See action, parameters
$parameters 284

nameValue 293
parameters

Command pattern 426
setting 119–123

Parameters property 434
ParametersAware 147
params interceptor 115,

119–120, 126
applying twice 421
security 217

parse 184, 190
password tag 297

attributes 298
pause 150
PDF, generating with

JasperReports 203
PersistenceManager 165, 168
PersistenceManagerImpl 168
PetStore 146
Pico 171–172
POST 217, 226
Preparable 116, 124, 135
prepare interceptor 116, 126

using between params
interceptors 421

prepare() 124
PrepareInterceptor 124
PreResultListener 133–134
programmatic validation

testing 398
properties

accessing with OGNL 215
chaining 215

property tag 232, 235
attributes 235
helloWorld 32

PropertyResourceBundle 362,
382

push tag 237–238
attributes 237
sharing JSP content 238

put() 434

R

race condition, IoC 162
radio button 276, 279
radio group, dynamic map

construction 221
radio tag 283, 302

attributes 302
redirect

example 79
result type 46

redirect result 188–191
configuring 189–190
difference from

dispatcher 190–191
dynamic locations 190
handling reload requests 410
passing request

parameters 191
performance 190
reloading pages 190
to another action 191

refactoring, template
language 256

Registry pattern 142
regression test suite 389
relative path 41
reload requests, handling 410
reloading pages

making easier with
redirects 190

report, generating 203–207
$req 266, 284
request

attributes 219
getting 121–122
parameters 219

request scope 151, 236
configuration 152
PersistenceManager 169

RequestDispatcher 187
expense 198

required validator 343, 349
example 349

requiredstring 340
validator 343, 349

$res 266
reset 150
Resin 386
resin.xml 387
Resource Editor 382

resource management 138,
142–144

active 172
ResourceBundle 86, 90,

362–363
adding default 366
defaults 366
implementing as a class

375–378
search order 364–366

ResourceBundle.getBundle()
363

ResourceLoader 269
resources, hard-coded 146–147
response, getting 121–122
result

architecture 429
configuring 46, 180–182
location parsing 184
responsibility 39
variable interpolation 184
verbose configuration 183

result code 78–79
validation 33

Result interface 178–180, 429
result mapping

Command pattern 426
global 47
setup 40–41

result type 46
common 182–197
default 47
sample implementation 180

<result-types> 181
rollback() 155
root object 213–214, 224
Ruby 213
runtime

template language 256–257

S

scope 149–151
dependencies 161–162
variable scoping, Velocity 264
See Inversion of Control

scripting-events.vm 290
scriptlet 197
security 130, 217

action aliasing 44
select box 276, 279
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

INDEX 447
select tag 283, 299–302
attributes 299
dynamic map

construction 221
multiple selections.

See multiselect tags
Service Locator pattern 172

example 173
servlet

config interceptor 121–122
IoC examples 144

servlet filter, comparison to
interceptor 113

Servlet specification 314–315
ServletActionContext 143
ServletConfigInterceptor 121
ServletContext 153
ServletContextListener 144
ServletDispatcher 431

architecture 436
how locale is set 374
relationship to

ActionProxy 431
URL mapping 69

ServletRequest 153, 158
ServletRequestAware 115,

121–122, 143–144, 147
example 121

ServletResponseAware 115,
121–122

session
attributes 219
getting 121–122
Session 165–166

Session property 434
session scope 151, 236

configuration 152
SessionAware 115, 121–122, 147
SessionFactory 165
SessionLifecycleListener 152
Set

automatic type
conversion 325

set directive 265
set tag 236–237

attributes 236
scopes 236

setAttribute() 153
setContext() 436
setServletRequest() 144
setter 214

setUp() 400
shortCircuit 342
short-circuit 354
simple theme 288–290
Singleton pattern 139–141

example 139
SiteMesh 136, 272
skeleton

JAR files 20
preparing 20

source code, IDE 386
spaghetti 149
Spring 171
$stack 266, 284
stack. See interceptor
start 150
static fields. See Object Graph

Navigation Language
(OGNL)

static methods. See Object Graph
Navigation Language
(OGNL) 218

static, testing with 391
StaticParametersInterceptor

120
stop 150
String 216
string, single and double

quotes 215
stringLength validator

example 348
stringlength validator 343
StringLengthFieldValidator

352–353
Struts 278
submission, preventing

duplicates 409–413
subtract 216
success mapping 181

T

tabindex 292
tag attribute 291
tag library definition (TLD) 231
tag library descriptor, IDE 386
tag library, UI. See UI tag library
tag syntax 233–235

new syntax 234–235
new syntax, enabling 234
new syntax, evaluation 235

new syntax, parsing 234
old syntax 233–234

tag, overview 232–235
taglib attributes, using

getText() 369
taglib, directive 232
template 283–285

overriding 404
templating language

Velocity 256
testability, validation 338
Test-Driven Development 146
testing

integration 135
interceptors 135
IoC 145–146
with IoC 145–146
without IoC 145

text message, writing
localized 368

text tag 250–251, 368
attributes 250
example 368
saving to the context 250

text.vm 403
textarea tag 298

attributes 298
textfield tag 297

attributes 297
helloWorld 36
overriding 403
template contents 289

TextProvider 80, 86, 366,
401–402

theme 285
custom 407–409
simple 288–290
XHTML 286–288
xhtml/simple

relationship 290
See also UI tag library

#this 224, 228
thread, background task 127
ThreadLocal 374, 435–436

get() 436
set() 436
testing with 391

three-column forms 407
tight coupling 139
timer interceptor 115, 117
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

448 INDEX
token 125
tag 410–411, 419
token interceptor 125

token interceptor 116, 412
re-rendering duplicate

requests. See also
tokenSession interceptor

token-session interceptor 116,
346, 413

top 225, 235
toString() 318
type conversion 93, 226–227,

314–320
advanced 326–331
basics 323–325
benefits 319–320
built-in converters 325–326
class-level converters 322–323
Command pattern 427
common mistakes 322
configuration 320–323
default error message 372
errors 329–330
global converters 322
i18n messages 371–372
looking up objects by key 422
null Collections 326–329
null property access 326
simple 323–326
validator parameters 349
why OGNL? 212
xwork.xml 46

type converter, role 321–322
TypeConverter 321

U

UI tag library 36
advanced usage 402–409
bad techniques 407
common attributes 292
compared to JSP 273–276,

278–280
creating new tags 406
custom templates 406–407
custom themes 407–409
errors 280–282
good techniques 408
i18n labels 369

integration with
WebWork 283

layout 280
multiselect tags 305-307
overriding templates 403–406
placing content after

elements 404
specifying themes 408
Struts-like tags 276–278
styles 282–283
template directory 69
template lookup 284
theme. See theme
themes 69
using param tag

creatively 405
Velocity integration 284–285

UI tag library
integration with

WebWork 283
UI tag reference 291–309
UI tags

advanced tags 305–309
common attributes 291–294
reasons to use 272–283
simple tags 294–299

unit test 389
handling statics and

ThreadLocals 391
mock objects. See mock object
why to use IoC 391

unit testing 135, 338
upload files

automating 109
configuration 110

URL tag 247–250
attributes 247
HTTP port 70
HTTPS port 70
ports 249
saving in the context 248
using with wait pages 416

url validator 343
utility interceptors 117–119
UUID, using with token tag 410

V

validate() 123–124, 338, 348,
352–353, 398

Validateable 80–82, 116,
123–124, 337–340

validation
advanced usage 350–359
basics 80–86
chaining 357
Command pattern 427
contextual validation

353–354
conversion errors 329–330
creating a custom

validator 351–353
helloWorld 31
i18n messages 370–371
interceptor. See validator

interceptor
manual 336–340
multiple action aliases 339
parameterized messages 350
programmatic 398
short-circuiting 354–355
stack 126
testing 398–402
testing XML files 398–402
validator properties 342
validator XML examples

348–350
XML file 340–341

validation context 353–354, 358
validation framework

advanced features 350–359
registering validators 353
Validation Framework 340,

346–350
validation interceptor 124

validation interceptor 116, 345
validation.xml 388
ValidationAware 80, 82–86, 116,

123, 402
relationship to token

interceptor 412
use by DefaultWorkflow-

Interceptor 124
using with testing 401

ValidationAwareSupport 402
validationWorkflowStack 126,

345
validator

orthogonal 350
registering 341–342
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

INDEX 449
validator (continued)
Validator 341, 351

registering 353
validator interceptor 345–346
ValidatorContext 351

using with testing 401
ValidatorFactory 341
validators.xml 341
ValidatorSupport 352
value attribute 248
value stack 213, 224–226, 233

accessing statics 218
action chaining 195
architecture 429–430
evaluating expression in 236
evaluating in i18n texts 368
getting data from 235
i18n trick 367
placing objects in 235
placing variables in 235
pushing on to in Velocity 263
pushing references onto 237
top of the stack. See top
using with custom tags 407
using with push tag 238

ValueStack property 434
variable replacement 184
Velocity 197, 213, 283

advanced techniques 265–268
assigning variables 265
basic features 259–265
configuration 70, 257–259
control statements 261–265
customizing context 267–268
default objects in the

stack 266
directives 201
download 197
example 199–201
hiding invalid properties 261
if/else 264–265
introduction 255–259
JSP tag support 268–269
looping 261–264
method calls 261
property access 259–261
resource loading 269
result 429
switching to FreeMarker 203
UI tag library

integration 284–285

using with JSP 198–199
variables 201

velocity result 197–201
advantages 197
configuration 199
parameters 199
performance 198

velocity.properties 69, 258
Velocity configuration 258

VelocityContext 265–267, 284
compared to OGNL 260

$velocityCount 262
velocity-dep.jar 20
VelocityWebWorkUtil 266
view

default 44
without type conversion

317–318
visitor validator 344, 356–359

context param 358
contextual support 358–359

VisitorFieldValidator 358
See also visitor validator

vs prefix 218

W

wait page 125, 413–416
web application

configuration files 71
layout 70
optional libraries 72
required libraries 71
setting up 70–72

web resource directory 386
web.xml 21

IoC configuration 151–153
URL mapping 69

WebWork
configuration 39
downloading 20
environment 385–388

$webwork 259, 266, 287
WebWork 2.2 70
webwork.configuration.xml.-

reload 388
webwork.properties 70, 388

additional config files 69
custom Velocity contexts 268
default resource bundles 366

JSP tags in Velocity 268
specify theme 409
Velocity configuration 257

webwork.vm 258
webwork.xml, default

interceptor stacks 64
webwork_locale 375
webwork-2.1.7.jar 20
webwork-default.xml 59, 181,

189, 193, 202, 345
contents 59
default stacks 126
interceptors 114

interceptor 63
WebWorkUtil 266
WebWorkVelocityContext

266–267
workflow 123–125, 337

interceptor 116, 345
interceptor order 135
not validating actions 339
stack 126

workflow. See DefaultWorkflow-
Interceptor

ww:action 186
<ww:param> 369
ww:param 406
<ww:property> 369
<ww:radio> 375
<ww:submit> 375
<ww:text> 369
<ww:token> 410
wwclass 269
wwfile 269

X

xhtml
XHTML theme 286–288
xhtml theme

extending 408
XML file, testing

validating 398–402
XML, JasperReports 204
XSLT, rendering 429
XWork 425
xwork.jar 20
xwork.xml 21, 202, 339, 345,

354, 358, 388, 426
action parameters 120
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

450 INDEX
xwork.xml (continued)
configuring action class

execution 426
DTD 41

modifying 153–154
result code 429
result mapping 426
results 180

setting configuration-time
parameters 426

Velocity configuration 257
xwork-

conversion.properties 322
Licensed to Shirong Chen <chenshirong2000@hotmail.com>

	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book?
	Code conventions and downloads
	Author Online
	About the authors
	a look at the future
	about the title
	about the cover illustration
	An overview of WebWork
	1.1 Why MVC is important
	1.1.1 Classic MVC becomes outdated
	1.1.2 Classic MVC gets an update: the Front Controller
	1.1.3 MVC evolves: the Page Controller

	1.2 Understanding frameworks and containers
	1.2.1 What is a framework?
	1.2.2 What a container can do

	1.3 WebWork: past, present, and future
	1.3.1 The history of WebWork
	1.3.2 Understanding the XWork core
	1.3.3 Future directions

	1.4 The CaveatEmptor application
	1.4.1 How CaveatEmptor is organized

	1.5 Summary

	HelloWorld, the WebWork way
	2.1 Downloading WebWork
	2.2 Preparing the skeleton
	2.2.1 Creating the web.xml deployment file
	2.2.2 Creating the xwork.xml configuration file
	2.2.3 Creating the webwork.properties configuration file
	2.2.4 Tips for developing WebWork apps

	2.3 Your first action
	2.3.1 Saying hello, the WebWork way
	2.3.2 Displaying output to the web browser
	2.3.3 Configuring your new action

	2.4 Dealing with inputs
	2.5 Advanced control flow
	2.6 Letting WebWork do the work
	2.6.1 Taking advantage of ActionSupport
	2.6.2 Intermediate modifications to the JSP
	2.6.3 Exploring the UI tag library

	2.7 Summary

	Setting up WebWork
	3.1 Configuring actions, results, and interceptors
	3.1.1 Overview of terminology
	3.1.2 Actions
	3.1.3 Results
	3.1.4 Interceptors

	3.2 Advanced configuration
	3.2.1 The xwork.xml DTD
	3.2.2 Namespaces and packages
	3.2.3 Componentization using the include tag

	3.3 Other configuration files
	3.3.1 Web-app configuration: web.xml
	3.3.2 Feature configuration: webwork.properties

	3.4 Setting up your web app
	3.4.1 General layout
	3.4.2 Required libraries
	3.4.3 Optional libraries

	3.5 Summary

	Implementing WebWork actions
	4.1 The Action interface
	4.1.1 Result codes
	4.1.2 Handling exceptions

	4.2 Using the ActionSupport base class
	4.3 Understanding basic validation
	4.3.1 Validating an action: Validateable
	4.3.2 Displaying error messages: ValidationAware

	4.4 Using localized message texts
	4.4.1 Retrieving the user’s locale: LocaleProvider
	4.4.2 Displaying the localized text: TextProvider
	4.4.3 Providing messages for other languages

	4.5 Advanced inputs
	4.5.1 Intermediary objects
	4.5.2 Using domain objects directly

	4.6 Working with ModelDriven actions
	4.6.1 Implementing ModelDriven actions
	4.6.2 Considerations when using ModelDriven

	4.7 Accessing data through the ActionContext
	4.7.1 CaveatEmptor: accessing the session
	4.7.2 Example: accessing the request and response

	4.8 Handling file uploads
	4.8.1 Accessing uploaded files through the request wrapper
	4.8.2 Automating file uploads
	4.8.3 Configuration settings

	4.9 Summary

	Adding functionality with interceptors
	5.1 How interceptors are called
	5.2 Using the prepackaged interceptors
	5.2.1 Utility interceptors
	5.2.2 Setting parameters
	5.2.3 Defining workflow

	5.3 Using prepackaged interceptor stacks
	5.4 Building your own interceptors
	5.4.1 Using the AroundInterceptor as a base
	5.4.2 Looking at an example custom interceptor
	5.4.3 Getting callbacks before the result is executed with the PreResultListener
	5.4.4 Looking out for interceptor interactions

	5.5 Interceptors vs. servlet filters
	5.6 Summary

	Inversion of Control
	6.1 Examining the pattern
	6.1.1 Common patterns for active resource management
	6.1.2 Inverting resource management
	6.1.3 How IoC helps with testing

	6.2 IoC essentials
	6.2.1 WebWork’s IoC history
	6.2.2 Dependencies
	6.2.3 Scope and lifecycle

	6.3 Using WebWork’s IoC framework
	6.3.1 Configuration
	6.3.2 Creating a new component
	6.3.3 Using IoC on any object
	6.3.4 Dealing with complex dependencies

	6.4 An example from CaveatEmptor
	6.4.1 The HibernateSessionFactory component
	6.4.2 The PersistenceManager component
	6.4.3 Configuring the components
	6.4.4 Using the new components

	6.5 Alternatives
	6.5.1 Alternative IoC containers
	6.5.2 Non-IoC alternatives

	6.6 Summary

	Using results
	7.1 Life after the action
	7.1.1 A simple result
	7.1.2 Configuring a result

	7.2 Common results
	7.2.1 Dispatching to a page
	7.2.2 Redirecting to a page
	7.2.3 Chaining to another action

	7.3 Other results
	7.3.1 Streaming Velocity templates directly to the output
	7.3.2 FreeMarker: an alternative to Velocity
	7.3.3 Generating reports with JasperReports

	7.4 Summary

	Getting data with the expression language
	8.1 What is an expression language?
	8.1.1 Why an expression language?
	8.1.2 Why OGNL?
	8.1.3 Other expression languages
	8.1.4 Key OGNL concepts

	8.2 Basic expression language features
	8.2.1 Accessing bean properties
	8.2.2 Literals and operators
	8.2.3 Calling methods
	8.2.4 Setting values and expression lists
	8.2.5 Accessing static methods and fields
	8.2.6 Accessing the OGNL context and the ActionContext

	8.3 Working with collections
	8.3.1 Working with lists and arrays
	8.3.2 Working with maps
	8.3.3 Filtering and projecting collections
	8.3.4 The multiple uses of "#"

	8.4 Advanced expression language features
	8.4.1 Linking the value stack to the expression language
	8.4.2 Data type conversion
	8.4.3 Handling null property access
	8.4.4 Creating lambda expressions on the fly

	8.5 Summary

	Tag libraries
	9.1 Getting started
	9.2 An overview of WebWork tags
	9.2.1 The WebWork tag syntax

	9.3 Data tags
	9.3.1 The property tag
	9.3.2 The set tag
	9.3.3 The push tag
	9.3.4 The bean tag
	9.3.5 The action tag

	9.4 Control tags
	9.4.1 The iterator tag
	9.4.2 The if and else tags

	9.5 Miscellaneous tags
	9.5.1 The include tag
	9.5.2 The URL tag
	9.5.3 The i18n and text tags
	9.5.4 The param tag

	9.6 Summary

	Velocity
	10.1 Introduction to Velocity
	10.1.1 What is Velocity?
	10.1.2 Getting ready to use Velocity

	10.2 Basic syntax and operations
	10.2.1 Property access
	10.2.2 Method calls
	10.2.3 Control statements: if/else and loops
	10.2.4 Assigning variables

	10.3 Advanced techniques
	10.3.1 The VelocityContext
	10.3.2 WebWork-supplied objects in the context
	10.3.3 Customizing the Velocity context

	10.4 Using JSP tags in Velocity
	10.5 Loading Velocity templates
	10.6 Summary

	UI components
	11.1 Why bother with UI tags?
	11.1.1 Eliminating the pain
	11.1.2 More than just form elements

	11.2 UI tag overview
	11.2.1 Templates
	11.2.2 Themes
	11.2.3 Tag attributes

	11.3 UI tag reference
	11.3.1 Common attributes
	11.3.2 Simple tags
	11.3.3 Collection-based tags
	11.3.4 Advanced tags

	11.4 Summary

	Type conversion
	12.1 Why type conversion?
	12.1.1 The Servlet specification
	12.1.2 An action without type conversion
	12.1.3 A view without type conversion
	12.1.4 What WebWork’s type conversion gives you

	12.2 Configuration
	12.2.1 Role of a type converter
	12.2.2 Global type converters
	12.2.3 Class-level type converters

	12.3 Simple type conversion
	12.3.1 Basic type conversion
	12.3.2 Built-in type conversion
	12.3.3 Handling null property access

	12.4 Advanced topics
	12.4.1 Handling null Collection access
	12.4.2 Handling conversion errors
	12.4.3 An example that puts it all together

	12.5 Summary

	Validating form data
	13.1 Manually validating data
	13.1.1 Validating in the execute() method
	13.1.2 Implementing the Validateable interface

	13.2 Using the Validation Framework
	13.2.1 Building your first *-validation.xml file
	13.2.2 Registering validators
	13.2.3 Applying the validation interceptor
	13.2.4 Pulling it all together
	13.2.5 Looking at some validation XML examples

	13.3 Exploring the advanced features of the Validation Framework
	13.3.1 Implementing a custom validator
	13.3.2 Validating with different contexts
	13.3.3 Short-circuiting validation
	13.3.4 The ExpressionValidator
	13.3.5 Reusing validations with the visitor field validator

	13.4 Summary

	Internationalization
	14.1 Exploring a quick internationalization example
	14.2 Sources for messages
	14.2.1 Understanding the ResourceBundle search order
	14.2.2 Adding default resource bundles
	14.2.3 The <ww:i18n> tag

	14.3 Using internationalized messages
	14.3.1 Parameterizing localized texts
	14.3.2 Using getText() in taglib attributes
	14.3.3 Formatting dates and numbers
	14.3.4 Using localized messages in validations
	14.3.5 Using internationalized texts for type conversion messages

	14.4 Tips and tricks
	14.4.1 Programmatically setting the locale
	14.4.2 Implementing ResourceBundles as classes
	14.4.3 Using the <ww:param> tag to pass dynamically generated text to message texts
	14.4.4 Setting the encoding: here, there, and everywhere
	14.4.5 A note on Java PropertyResourceBundles
	14.4.6 A final note

	14.5 Summary

	Best practices
	15.1 Setting up your environment
	15.1.1 Setting up your IDE
	15.1.2 Reloading resources

	15.2 Unit-testing your actions
	15.2.1 Using mock objects
	15.2.2 The advantage of IoC for testing
	15.2.3 Handling statics and ThreadLocals

	15.3 Putting the pieces together: integration testing
	15.3.1 Testing your configuration
	15.3.2 Seeing the configuration with the config browser

	15.4 Testing validations
	15.4.1 Testing programmatic validations
	15.4.2 Testing validation.xml files

	15.5 Advanced UI tag usage
	15.5.1 Overriding existing templates
	15.5.2 Writing custom templates
	15.5.3 Writing custom themes

	15.6 Using form tokens to prevent duplicate form submissions
	15.6.1 Using the <ww:token> tag
	15.6.2 Applying the TokenInterceptor
	15.6.3 Transparently re-rendering pages with the TokenSessionStoreInterceptor

	15.7 Displaying wait pages automatically
	15.8 A Single action for CRUD operations
	15.8.1 Creating new categories with newCategory
	15.8.2 Reading and updating with viewCategory and editCategory
	15.8.3 Saving categories with saveCategory
	15.8.4 Setting the parentCategory

	15.9 Summary

	Appendix: WebWork architecture
	A.1 Implementing the Command pattern
	A.1.1 Basic Command pattern features
	A.1.2 Advanced Command pattern features
	A.2 Actions
	A.3 Interceptors
	A.4 Results
	A.5 Value stack
	A.5.1 OGNL
	A.6 ActionProxy / ActionInvocation
	A.7 ActionContext
	A.7.1 ThreadLocal storage
	A.8 The servlet dispatcher
	A.9 Summary

	index

