Clustering LAMP

The ubiquitous Linux, Apache, MySQL, and PHP/Perl/Python (LAMP) combination
powers many interactive web sites and projects. When demand exceeds the
capabilities of a single server, the database is typically moved to a different
server to spread the workload. When demand exceeds a two server solution, it's
time to think cluster.

LAMP cluster defined

Before getting into the details, it helps to distinguish what is meant by
cluster in the context of this article. This is not the Beowulf kind of cluster
that uses specialized message passing software to tackle a compute intensive
task. Also, it does not cover high availability features such as automatic fail
over. Rather, it is a load sharing cluster that distributes web requests among
multiple web and database servers while appearing to be a single application.

Everything required to implement this cluster is done with software
that ships with most Linux distributions, making it easy and (relatively)
inexpensive to implement. We'll construct a cluster using seven computers for a
fictitious company, foo.com. Two servers will run DNS (primary and backup) to
distribute web requests among three web servers that read and write data from
two MySQL database servers.

Any number of different designs can be built, with more or fewer of each kind
of server, but the model will serve as a good illustration of what can be done.

Load balancing

The first part of the cluster handles load balancing by using the round robin
feature of the popular DNS software, Berkeley Internet Name Daemon (BIND). To
use round robin, each web server must have its own public IP address. A common
scenario is to use network address translation and port forwarding at the
firewall to assign each web server a public IP address while internally using a
private address. In the DNS example, I show private IP addresses, but public IPs
are required for the web servers so DNS can work its magic.

This snippet from the DNS zone definition for foo.com assigns the same name
to each of the three web servers, but uses different IP addresses for each:

;

; Domain database for foo.com

;

foo.com. IN SOA ns1.foo.com. hostmaster.foo.com. (

 2006032801 ; serial

 10800 ; refresh

 3600 ; retry

 86400 ; expire

 86400 ; default_ttl

)

;

; Name servers

;

foo.com. IN NS ns1.foo.com.

foo.com. IN NS ns2.foo.com.

;

; Web servers

; (private IPs shown, but public IPs are required)

;

www IN A 10.1.1.11

www IN A 10.1.1.12

www IN A 10.1.1.13

When DNS gets a request to resolve the name www.foo.com, it will
return one IP address, then a different address for the next request and so on.
Theoretically, each web server will get one third of the web traffic. Due to DNS
caching and because some requests may use more resources that others, the load
will not be shared equally. However, over time it will come close.

Hardware load balancers

If round robin DNS is too crude and you have the money, hardware load
balancers offer better performance. Some take into account the actual load on
each web server to maximize cluster performance instead of just delegating
incoming requests evenly. They may also have features to solve the cookie
problem discussed below. Cisco and Citrix are popular choices of companies that
sell hardware load balancers. You can even use round robin DNS in front of the
hardware load balancers.

Web servers

Configuring the web servers is largely the same as configuring a single
Apache web server with one exception. The content on each web server has to be
identical to maintain the illusion that visitors are using one web site and not
three. That requires some mechanism to keep the content synchronized.

The most elegant solution would be to use some kind of global shared file
system. NFS won't work very well due to locking and performance issues.
Red Hat's Global
File System might work, or Intermezzo, but they are beyond the scope of this
work.

For file syncronization, my tool of choice is rsync. First, designate one
server, web1 for example, as the primary web server and the other two as
secondaries. We make content changes only on the primary web server and let
rsync and cron update the others every minute. Due to the advanced algorithms in
rsync, content updates happen quickly.

I recommend creating a special user account on each web server, called "syncer"
or something similar. The syncer account needs to have write permissions to the
web content directory on each server. Then, generate a pair of secure shell (SSH)
keys for the syncer account using ssh-keygen on the primary web server and
distribute the public keys to the /home/syncer/.ssh directory on the other two
web servers. This allows the use of password-less SSH along with rsync to keep
the content updated.

Here is a shell script that uses rsync to update the web content.

#!/bin/bash

rsync -r -a -v -e "ssh -l syncer" --delete /var/www/ web2:/var/www/

rsync -r -a -v -e "ssh -l syncer" --delete /var/www/ web3:/var/www/

This script should be set up in cron to run every minute and push updates out
to web2 and web3.

The cookie conundrum and application design

Cookies can be a tricky issue when LAMP applications use this kind of
cluster. By default, Apache stores it's cookies in the /tmp directory on the
server where it is running. If a visitor starts a session on one web server but
future HTTP requests are handled by a different web server in the cluster, the
cookie won't be there and things won't work as expected.

Because the IP of a web server is cached locally, this doesn't happen often,
but it is something that must be accounted for and may require some application
programming changes. One solution to the cookie problem is to use a shared
cookie directory for all web servers. Be particularly aware of this issue when
using pre-built LAMP applications.

Aside from the cookie issue, the only other requirement for the application
is that all database writes are sent to the database master, while reads should
be distributed between the master and slave(s). In our example cluster, I would
configure the master web server to read from the master database server, while
other two web servers would read from the slave database server. All web servers
write to the master database server.

Database servers

MySQL has a replication feature to keep databases on different servers
synchronized. It uses what is known as log replay, meaning that a transaction
log is created on the master server which is then read by a slave server and
applied to the database. As with the web servers, we designate one database
server as the master, call it db1 to match the naming convention we used
earlier, and the other one, db2, is the slave.

To set up the master, the first thing to do is create a replication account.
This is a user ID defined in MySQL, not a system account, that is used by the
slaves to authenticate to the master in order to read the logs. For simplicity,
I'll create a MySQL user called "copy" with a password of "copypass". You will
need a better password for a production system. This MySQL command creates the
copy user and gives it the necessary privileges:

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.*

TO copy@"10.1.0.0/255.255.0.0"

IDENTIFIED BY 'copypass';

Next, edit the MySQL configuration file, /etc/my.cnf, and add these entries
in the [mysqld] section:

Replication Master Server (default)

binary logging is required for replication

log-bin

required unique id

server-id = 1

The log-bin entry enables the binary log file required for replication, and
the server-id of 1 identifies this server as the master. Then, restart MySQL.
You should see the new binary log file in the MySQL directory with the default
name of $HOSTNAME-bin.001. MySQL will create new log files as
needed.

To set up the slave, edit the /etc/my.cnf file and add these
entries in the [mysqld] section:

required unique id

server-id = 2

#

The replication master for this slave - required

(replace with the actual IP of the master database server)

master-host = 10.1.1.21

#

The username the slave will use for authentication when

connecting to the master - required

master-user = copy

The password the slave will authenticate with when connecting to

the master - required

master-password = copypass

How often to retry lost connections to the master

master-connect-retry = 15

binary logging - not required for slaves, but recommended

log-bin

While not required for a slave, it is good planning to create the MySQL
replication user ("copy" in our example) on each slave in case it needs to take
over from the master in an emergency.

Restart MySQL on the slave and it will attempt to connect to the master and
begin replicating transactions. When replication is started for the first time
(even unsuccessfully), the slave will create a master.info file with all the
replication settings in the default database directory, usually /var/lib/mysql.

To recap the database configuration steps,

1. create a MySQL replication user on the master (and optionally on the
slave)

2. grant privileges to the replication user

3. edit /etc/my.cnf on master and restart mysql

4. edit /etc/my.cnf on the slave(s) and restart mysql

How to tell if replication is working

On the master, login to the mysql monitor and use "show master status":

mysql> show master status \G;

************************ 1. row ************************

 File: master-bin.006

 Position: 73

 Binlog_do_db:

Binlog_ignore_db:

1 row in set (0.00 sec)

On the slave, login to the mysql monitor and use "show slave status":

mysql> show slave status \G;

************************ 1. row ************************

 Master_Host: master.foo.com

 Master_User: copy

 Master_Port: 3306

 Connect_retry: 15

 Master_Log_File: intranet-bin.006

 [snip]

 Slave_IO_Running: Yes

 Slave_MySQL_Running: Yes

The most important fields are Slave_IO_Running and
Slave_MySQL_Running. They should both have values of Yes. Of course, the
real test is the execute a write query to a database on the master and see if
the results appear on the slave. When replication is working, slave updates
usually appear within milliseconds.

Recovering from a database error

If the slave database server loses power or the network connection, it will
no longer be able to stay synchronized with the master. If the outage is short,
replication should pick up where it left off. However, if a serious error occurs
on the slave, the safest way to get replication working again is to:

1. stop mysql on the master and slave

2. dump the master database

3. reload the database on the slave

4. start mysql on the master

5. start mysql on the slave

Depending on the nature of the problem, a full reload on the slave may not be
necessary, but this procedure should always work.

If the problem is with the master database server and it will be down for a
while, the slave can be reconfigured as the master by updating its IP address
and /etc/my.cnf file. All web servers have to be changed to read from the new
master. When the old master is repaired, it can be brought up as the slave
server and the web servers changed to read from the slave again.

Going large

Clusters make it possible to scale a web application to handle a tremendous
number of requests. As traffic builds, network bandwidth also becomes an issue.
Top tier hosting providers can supply the redundancy and bandwidth required for
scaling. The number of possible cluster configurations is only limited by your
imagination. MySQL 5 introduced a special storage engine designed for
distributed databases called NDB that provides another option. For more in depth
information on MySQL clustering, see the MySQL
web site or High
Performance MySQL by Jeremy Zawodny and Derek Balling.

By Linux Box Admin, Keith Winston: linuxboxadmin.com

