Creating Stored
Procedures with
Oracle8i

I n this chapter, I’'m going to discuss the details of how to
create various procedural objects, such as stored proce-
dures and functions. I'll also discuss Oracle’s implementation
of SQL and the extensions necessary to provide a rich pro-
gramming environment.

Introducing PL/SQL

Every database vendor has its own variation of the SQL lan-
guage, and Oracle is no exception. Procedural Language/SQL,
also known as PL/SQL, contains a series of extensions that
make it possible to build efficient programs which can per-
form complex database functions.

PL/SQL is used primarily to build stored procedures and func-

tions. These routines essentially become an extension to the
PL/SQL language. Thus, you can call your own stored proce-
dure as easily as you would use a Select statement. In fact, it
may be easier to call a stored procedure than use a Select
statement, since stored procedures typically have fewer
parameters.

Comments

Comments in PL/SQL are the same as SQL Server’s T-SQL.
Double hyphen comments (- -) mark the start of a comment
whose text continues to the end of the line. Slash asterisk,
asterisk slash comments (/* */) can be used anywhere a
space can be used, and may span multiple lines.

.f‘(‘)

In This Chapter
Introducing PL/SQL

Writing stored
procedures in PL/SQL

Creating a package

g 0O 0O 0O

628 Part VIl O Oracle8i

Constants

String values must be enclosed in single quotes ('), as shown below:
'This is a string constant.'

If you wish to embed a single quote in a string constant, simply use two single
quotes together, like this:

'This is a ''string'' with embedded single quotes.'
This string constant would be understood by PL/SQL as:
This is a 'string' with embedded single quotes.

Caution Quote’'th the raven, never double: Double quotes (") are not the same thing as
two single quotes (' '). Double quotes are used to indicate case-sensitive identi-
fiers, while two single quotes inside a string constant indicate that a single single
quote should be inserted at that position.

Numbers, as you might expect, may begin with a plus sign (+) or a minus sign (-),
followed by a series of numeric digits, a decimal point, and more digits. Some exam-
ples of numbers are:

0 3.1415926 1000.0 -100.001 +512

Dates, which are stored internally in a special format, are written like strings,
except theyare formatted as DD-MM-YY. For example,

'27-Jul-65" '27-Jul-1965" "1-May-2000"

are valid Date constants.

Identifiers

An identifier can be up to 30 characters in length. They must begin with a letter and
may contain letters, numbers, and the underscore character (_). Identifiers are used
as the name of a stored procedure or function, as a local variable, and as the name of
various database objects. Double quotes (") surround identifiers that contain
spaces or special characters.

Variables

PL/SQL allows you to define local variables that can be used in stored procedures
and functions. They are declared in the Declare section of your procedure. You can

Chapter 28 [0 Creating Stored Procedures with Oracle8i

declare a variable to be of any data type supported by Oracle8i. Unlike SQL Server,
variables need not begin with a special character. Any identifier that doesn’t con-
flict with an Oracle8i keyword may be used.

-Cross- |\ See the discussion of Oracle8i data types in Chapter 26 if you would like to

Reference ',
g}

il

Functions

become more familiar with them.

PL/SQL provides a number of functions that can be used to perform calculations or
data conversions. Some of the more interesting functions are listed in Table 28-1.

Table 28-1
Selected Functions in PL/SQL

Function Description

Add_months Adds the specified number of months to the specified date.

ASCII Returns the ASCII code of the left-most character of the specified
character string.

Ceil Returns the smallest integer value greater than or equal to the
specified value.

Chr Returns the character corresponding to the specified numeric
ASCII code value.

Floor Returns the largest integer value less than or equal to the
specified value.

Initcap Capitalizes the first character of each word in a string.

Instr Returns the position of the specified search string in a specified
data string.

Last_day Returns the date of the last day of the month for the specified
data value.

Length Returns the size of a string, number, date, or expression.

Lower Converts all uppercase characters to lowercase.

Ltrim Removes leading blanks from a character string.

Mod Computes the remainder after dividing the two values.

Continued

629

630 Part VIl O Oracle8i

Table 28-1 (continued)

Function Description

Months_between Computes the number of months between two dates.

New_time Converts a Date value to the specified time zone.

Next_day Returns a Date value containing the day that follows the
specified date.

Replace Replaces the search string with a replacement string in the
specified string.

Round Rounds the specified Number or Date value to the specified
accuracy.

Rtrim Removes trailing blanks from a character string.

Substr Returns a string of characters from the specified string with the
specified starting location and length.

Sysdate Returns the current date and time.

To_char Converts the specified value to a character string.

To_date Converts the specified value to a Date value.

To_number Converts the specified value to a numeric value.

Trunc Truncates the specified Date or Number value using the
specified accuracy.

Upper Converts all lowercase characters to uppercase.

User Contains the user name of the current user.

Tip If you don't like these, then build your own: If you need a function that isn’t

available in PL/SQL, you can easily build your own using the Create Function

statement. Functions are a variation on stored procedures. The only difference is
that a function returns a single value that can be used as part of an expression,
while a stored procedure can't be used as part of an expression.

Block structure

The block structure is the fundamental way statements are organized into a stored
procedure or function. A block structure is broken into three main sections, the
Declare section, the main body and the Exception section. The Declare section is

Chapter 28 [Creating Stored Procedures with Oracle8i 3]

used to declare block-wide variables. These variables can be used in between the
Begin and End statements. You may optionally assign an initial value for these
variables.

The Begin statement marks the start of the executable commands section of the
block. When the block is called, control will begin with the first statement following
the Begin statement. Program flow will continue until it reaches either the End state-
ment or the Exception statement. When either of these statements is reached, exe-
cution is complete and control will return to the calling program.

If an error occurs while running in the executable commands section of the block,
control will be transferred to the first statement following the Exception statement.
If the Exception section isn’t present, an error message will be returned to the call-
ing program. Once you transfer control the to Exception section, you can’t return
to the executable commands section.

Note Nesting: A block can be used anywhere a PL/SQL statement can be used.
-y Thus, you can nest one block inside of another. In the innermost block, you
can use any of the variables declared in the outer blocks. However, you can’t
use any of the variables declared in an inner block once you are outside that

block. The syntax for a block is:

<< <block_name> >>
[Declare
<variable> <datatype> [:= <initial_value>];
[<variable> <datatype> [:= <initial_value>];]
]

Begin
{statement>;
[<statement>;]...
[Exception
When <condition> Then <statement>; [<statement>;]...
[When <condition> Then <statement>; [<statement>;]...1]...

End [<block_name>]; where <bTock_name> is an identifier that is associated with
the block; <variable> is an identifier that will be used to store information locally
in the block; .<datatype> is any legal Oracle8i data type; <initial_value>isa
constant that is appropriate for the data type; <statement> is any legal PL/SQL
statement or command; and <condition> is an exception (see Table 28-2), a list of
exceptions that are Or’ed together, or the keyword Others, which traps any remain-
ing exceptions.

632 Part VIl O Oracle8i

Note

Table 28-2
Exceptions

Exception

Description

CURSOR_ALREADY_OPEN

DUP_VAL_ON_INDEX

INVALID_CURSOR

INVALID_NUMBER

LOGIN_DENIED

NO_DATA_FOUND
NOT_LOGGED_ON

PROGRAM_ERROR

STORAGE_ERROR

TIMEOUT_ON_RESOURCE

TOO_MANY_ROWS

TRANSACTION_BACKED_OUT
VALUE_ERROR

ZERO_DIVIDE

An Open statement tried to open a cursor that was already
open.

An Insert or Update statement created a duplicate value in
a Unique index.

An Open statement tried to open an undefined cursor; a
Close statement tried to close a closed cursor; a Fetch
statement tried to use an unopened cursor, and so on.

An illegal numeric value was found when trying to convert
a character string to a numeric value.

The user name and password combination was invalid in a
Connect statement.

A Select statement returned zero rows.

An attempt was made to access database resources
without being connected to the database.

A catchall error used by PL/SQL to trap its own errors.

Insufficient memory was available to execute the function,
or the available memory was corrupted (possible
subscripting error).

A resource wasn't available when it should have been.

A Select statement that should return a single row
returned more than one row.

A remote part of a transaction failed and was rolled back.

A conversion error, a truncation error, or a precision error
affecting a variable or column value occurred

An attempt was made to divide by zero.

Blockhead: The name of a block is an optional feature that marks the beginning
of a block. It is simply an identifier that is enclosed in double less than (<<) and
double greater than (>>) signs, such as <<MyBlock>>. The same name that
begins the block must also be specified in the End statement, like this:End

MyBTock.

Note

Chapter 28 [0 Creating Stored Procedures with Oracle8i

Procedures, functions, and packages

Procedures and functions contain code that can be treated as an extension to
PL/SQL. A procedure can be used in much the same way as a command or SQL
statement, while a function can be incorporated into any expression. Procedures
and functions can be written as standalone routines or combined in a single unit
called a package. (The Create Package statement is explained at the end of this
chapter.)

Just a routine check: Procedures and functions are basically the same thing. The
only difference is in how they are used. Functions can be used within an expres-
sion, while a procedure must be called as a separate statement | use the term
“routine” to refer to something that can be either a procedure or a function. For
instance, | might say that “Routines have parameters” rather than saying “Pro-
cedures and functions have parameters”. Not only does this make things a little
clearer, it also saves me a lot of typing.

Procedures and functions

Procedures and functions are just blocks with a header that defines the name of a
particular routine and the list of parameters associated with it. A procedure is simi-
lar to a Visual Basic subroutine in how it is used. You pass a series of parameters to
a procedure as a single statement. When it finishes, control is returned to the next
statement in your program.

A PL/SQL function works like a Visual Basic function. It is used in an expression to
compute a value based on a set of parameters. When the function returns its value,
the rest of the expression is processed.

The syntax for a procedure definition is:

Procedure [<username>.]<procedure>
[(<argument> [,<argument>]...)]
{Is|As} <block>

The syntax for a function definition is:

Function [<username>.]<function>
[(<argument> [,<argument>]...)]
Return <datatype>
{Is|As} <block>

where <username> is the name of the user associated with the procedure or func-
tion; <procedure> is the name of the procedure; <function> is the name of the
function;<argument> is <parameter> [In|Out|In Out] <datatype>, where
<parameter> is the name of the parameter; In means that the parameter is passed
to the routine, but any changes in the parameter are not returned to the calling

633

634

Part VIl O Oracle8i

Tip

program, Out means that no value is passed to the routine, but the routine will
return a value to the calling program, In Out means that a value is passed to the
routine and any changes in the parameter will be returned to the calling program,
and <datatype> is the data type associated with the parameter; and

<bTock> is a block declaration as | discussed in the Block structure section earlier
in this chapter. It is separated from the rest of the statement by using the Is or As
keywords.

Return statement

The Return statement is used to return a value to the calling program. It uses the
following syntax:

Return(<value>);

where <value> is a variable or expression containing the information that will be
returned as the value of the function.

Packages

A package is merely a single unit containing a collection of one or more procedures
and functions (or routines), with some optional global variables. It corresponds to a
Visual Basic module. The package consists of three parts: global declarations, which
are optional, at least one routine, and a block of code that is executed each time a
routine in the package is called. This block is executed first, which allows you to ini-
tialize global variables, open a cursor, or any other logic that is common to all of the
routines.

I love packages: Besides the obvious benefit of creating a single installation unit
that combines many different routines, packages are often more efficient than

independent stored procedures and functions, since the code is compiled
together as a single unit. Thus, you avoid the extra costs of locating the new rou-
tine, loading it, and preparing to run it. All of this work is done when the first rou-
tine in the package is called.

Expressions

You can compute a single value based on a collection of local variables, parameters,
functions, and columns retrieved from a table, and then assign the value to a local
variable or column. PL/SQL uses the assignment operator (: =) to perform the
assignment, as shown below:

MyVariable := "A string value';
MyNumber := 3.14159265;
MyNumber := MyNumber * 20;

Chapter 28 [0 Creating Stored Procedures with Oracle8i

Flow control

Oracle8i /SQL supports a wider range of flow control statements than Microsoft’s
SQL Server. You can use statements such as If, For, and While to control the flow
through your stored procedure. You can also call procedures and functions directly
without having to use a special statement.

If statement
The If statement has the following syntax:

If <boolean_expression>
{<statement>|<block>}
[E1sif <Boolean_expression>

{<statement>|<block>}]...
[Else

{<statement>|<block }]
End If;

<boolean_expression> is a boolean expression that is either True or False. If the
Boolean expression is True, then the statement or block that immediately follows
the expression will be executed. Otherwise, the statement or block that immedi-
ately follows the Else clause will be executed.

<{statement> is an SQL statement or PL/SQL command.
<block> is a PL/SQL block. While variables and exceptions can be included, typi-

cally all you would use is the Begin and End statements to enclose a group of state-
ments to be executed if <boolean_expression> is True.

Exit statement
The Exit statement allows you to exit from a loop or from a block. Its syntax is:

Exit [<block_name>] [When <boolean_expression>];

<block_name> is the name of a block (such as, <<myblock>>).If <bTock_name>
isn’t specified, the processing will resume with the statement that immediately fol-

lows the next End statement. Otherwise, processing will resume with the End state-

ment that matches the specified <block_name>.

<boolean_expression> is an expression that, when True, will exit a loop or block
of code, Otherwise processing will continue normally.

635

636

Part VIl O Oracle8i

Loop statement
The Loop statement has the following syntax:

Loop
{statement>
[{statement>]
End Loop;

where <statement> is a valid PL/SQL statement.

Note that this looping statement creates an infinite loop. The only way to leave the
loop is to use an Exit statement.

While statement
While statements are constructed with the following syntax:

While <boolean_expression>
Loop
{statement>
[<statement>]

End Loop;

<boolean_expression> is evaluated at the start of each loop. As long as this
expression is True, the statements contained in the loop will be executed. If
the expression is False, execution will resume with the statement after the End
Loop statement.

<{statement> is avalid PL/SQL statement.

For statement

The For statement should be familiar if you’re a Visual Basic programmer. However,
its syntax is a little different than that which Microsoft uses:

For <variable> In <start_expression> .. <end_expression>
Loop
{statement>
[{statement>]...

End Loop;

where <variable> is the variable to be incremented; <start_expression> is the
initial value for the For variable; and<end_expression> is the ending value for the
For variable.

Chapter 28 [Creating Stored Procedures with Oracle8i 37

Unlike the Visual Basic For statement, the PL/SQL For statement allows you to
increment only the For variable.

~Cross- '\ For cursors only: See the section on Cursors later in this chapter to see how to

Reference , jncrement a cursor.

il

cursors

Cursors are a special type of variable that allow you to access the contents of a
Select statement one row at a time. You can move the cursor through the result set
and perform various operations on the columns retrieved, including updating val-
ues, deleting rows, and inserting rows.

The Cursor statement
The Cursor statement defines a cursor. Its syntax is:

Cursor <cursor>
[Is <select_statement>];

where <cursor> is the name of the cursor variable; and<select_statement>isa
Select statement that returns rows to be accessed through the cursor.

Defining a cursor merely creates the data structures necessary to access informa-
tion from the database. No rows are actually retrieved until the Open statement is
executed. However, information about the columns retrieved is available and can be
accessed by using the %Rowtype and %Type cursor attributes.

Cursor attributes

You can determine additional information about a cursor by using a cursor
attribute. Cursor attributes are appended to a cursor variable, such as:

MyCursor%Found

which will return a value indicating whether the last operation that used it was suc-
cessful. You can use the combination of cursor and attribute anywhere you can use
avariable.

Table 28-3 lists the attributes available for each cursor. Note that you need not do
anything to make these attributes available. They are automatically present once a
cursor has been defined.

638 Part VIl O Oracle8i

Table 28-3
Cursor Attributes
Attribute Description
%Found Is True when the last operation (Select, Insert, Update, or Delete)
was successful.
%lsopen Is True when the cursor is open.
%Notfound Opposite of %Found.
%Rowtype Returns a record variable containing the same structure as the entire

row in the table.

%Type Returns the data type of the selected column.

The %Rowtype and %Type attributes are used in the Declare section as a data type
for other variables. This allows you to declare a variable for a column or for the
entire row without necessarily knowing their data type. You reference a particular
column by using <rowtype_variable>.<column_name>. Consider the following
code fragment:

Declare
Cursor MyCursor Is
Select MyColumn, AnotherColumn From MyTable;
MyRow MyCursor%Rowtype;

Begin
Open MyCursor;

If MyRow.MyColumn = 0
/* insert processing statements here */

Else
/* insert processing statements here */

End;

Close MyCursor;
End;

MyRow.MyCoTlumn is used to retrieve information from the MyColumn column from
the MyTable table in the database.

The %Found and %Notfound attributes are extremely useful when managing loops.
You can retrieve rows of information from the database in a While loop using the
%Notfound attribute, as in the following code fragment:

Note

Chapter 28 [Creating Stored Procedures with Oracle8i §39

Open MyCursor
While MyCursor%Notfound
Loop
Fetch MyCursor Into MyVariable;
/* insert processing statements here */
End Loop;

As long as there are rows remaining to be fetched, this loop will process each row. If
the cursor didn’t return any rows, the processing loop would be skipped.

Open statement
Before you access a cursor, you must use the Open statement. The syntax follows:

Open <cursor>;
where <cursor> is the name of a cursor that has already been declared.
When the Open statement is executed, the Select statement associated with the
cursor is executed and the information is made available. You can then use the
Fetch statement to retrieve the information, and the Delete or Update statements

to modify the information. (The Fetch statement is covered later in this chapter.)

But | did open it: Trying to access a cursor that hasn't been opened will generate

- an error. Also, trying to open a cursor that is already open will generate an error.

You can use the %IsOpen attribute to verify that your cursor is in the proper state
before trying to use it. This is extremely important if you are implementing code in
the Exceptions section and you may not know the exact state of the cursor.

Close statement
The Close statement deallocates the resources associated with the cursor. Its syn-
tax is simple:

Close <cursor>;
<cursor> is the name of a cursor that has already been declared.

Once a cursor has been closed, you need to open it again before you can use it.

Fetch statement
The Fetch statement is used to retrieve the next record into a variable for local
access. It has the following syntax:

Fetch <cursor> Into {<record>|<variable> [,<variable>]...};

where

640

Part VIl O Oracle8i

{cursor> is an open cursor; <record> is a variable declared using <cursor>
%Rowtype as its data type; and<variable> is a variable whose data type is com-
patible with the data type of the corresponding column from the cursor. The list
of variables must match the list of columns retrieved from the cursor in both
number and data types.

For statement

Another variation of the For statement you saw earlier in “Flow Control” makes it
easy to process all of the rows retrieved from the database. You should use the fol-
lowing syntax:

For <record> In <cursor>

where <record> is a variable declared using <cursor>%Rowtype,and <cursor> is
an open cursor.

Consider the following code fragment:

Open MyCursor;
For MyRow In MyCursor
Loop

/* insert processing statements here */

End Loop;

The statements in the Loop body will be processed for each row retrieved from the
database. You don’t need a Fetch statement to retrieve the row into a variable. The
For statement handles that for you automatically. Using the record variable also sim-
plifies your code, since you don’t have to worry about ensuring that each individual
column is specified correctly in the Fetch statement.

Update statement

You should use the following syntax when updating information retrieved by using
acursor:

Update <table>
Set <column> = <value> [, <column>=<value>]
Where Current Of <cursor>

where <table> is the name of the table you want to update; <column> is the name
of the column you want to update; <value> is the value you want to assign to the
column; and <cursor> is an open cursor containing the information you want to
updated.

Chapter 28 [Creating Stored Procedures with Oracle8i 4]

The Update statement affects only the information in the current row. No other
rows are affected when the Where Current Of cursor clause is included. Note that
in order to perform the update, you need to ensure that your cursor accesses an
updateable view. This means that you may only access one table at a time when
you declare the cursor.

Delete statement

Using the Delete statement, you can delete the current row pointed to by the
cursor, with the following syntax:

Delete From <table>
Where Current Of <cursor>

where <table> is the name of the table containing the row you want to delete, and
<cursor> is an open cursor containing the information you want to delete.

Like the Update statement, the Delete statement may only reference a single table
and the Where Current Of clause ensures that only the currently fetched row is
affected by the statement.

Transactions

By now, you understand the importance of using transactions in your application
where you need to ensure multiple changes are performed together as a single
atomic unit. So it should come as no surprise that PL/SQL also includes support for
transaction. As you would expect, there is a statement to mark the beginning of the
transaction and another statement to mark the end of the transaction.

Set Transaction statement

The Set Transaction statement marks the beginning of a transaction and has the
following syntax:

Set Transaction {Read Only|Use Rollback Segment <segment>}

where <segment> is the name of a rollback segment that is used by the transaction
to hold undo information.

The Set Transaction statement must be the first statement in your transaction.
You can ensure this by executing the Commit statement before executing the Set
Transaction statement. (The Commit statement is covered later in this chapter.)
The Read Only clause is used to ensure that records you read will always be con-
sistent, though you will be prohibited from updating any of this data. If you want
to update this data, you must specify the Use Rollback Segment clause and spec-
ify the rollback segment associated with your application. Each Set Transaction
statement must be matched with the appropriate Rollback or Commit statement.
(The Rollback statement is covered later in this chapter.)

642

Part VIl O Oracle8i

Savepoint statement

The Savepoint statement allows you to mark a place in your transaction where you
may choose to rollback your work. Its syntax follows:

Savepoint <savepoint>

where<savepoint> is an identifier that uniquely identifies the savepoint location.

Commit statement

The Commit statement saves all of the database changes made to the database
since the Set Transaction statement was executed. It has the following syntax:

Commit [Work];

The Work keyword is optional and has no real meaning. It exists solely to comply
with the ANSI SQL standard.

Rollback statement

The Rollback statement discards all of the changes made by a transaction to the
database. This statement has the following syntax:

Rollback [Work] [To [Savepoint] <savepoint>]

If you rollback to the specified <savepoint>, all changes done after the Savepoint
statement are discarded. All work done prior to the Savepoint remains uncommit-
ted. You must use a Commit statement to save the changes or a Rollback statement
without specifying a savepoint.

Other useful statements

Besides the statements and commands discussed so far, there are a few others that
you may find useful.

DBMS_Output Package

PL/SQL includes a package to assist you with sending output to the console. This
package is mostly useful when debugging your stored procedures using SQL*Plus.
The package consists of three stored procedures with the following format:

DBMS_OUTPUT.PUT (<Kvalue>);

DBMS_QUTPUT.PUT_LINE (<value>);
DBMS_QUTPUT.NEW_LINE;

where <value> is a value to be printed on the console.

Chapter 28 O Creating Stored Procedures with Oracle8i §43

The Put routine displays a single value on the console. The output cursor remains
on the same line, so that another call to Put will display another value next to the
first. The New_Line routine advances the cursor to the first position in the next

line. Put_Line is the equivalent of calling Put, immediately followed by New_Line.

These routines are controlled by the SERVEROUTPUT feature that you manage with
the Set statement. Turning On this feature means that the output will be sent to the
console, while Off means that the output will be discarded.

SET SERVEROUTPUT {ON|OFF}

Setting the Serveroutput feature outside your routines means that you can leave
the debugging code in the routines. If you feel that you need to trace the routines
execution, you can Set Serveroutput On and call the routine in SQL*Plus. If you
don’t want to view your debugging code, simply Set Serveroutput Off.

Raise statement

Handling errors is always interesting, especially when you have stored procedures
calling other stored procedures. Sometimes you find an error condition where you
want to kill the entire transaction or stored procedure. The Raise statement allows
you to trigger an error condition.

The syntax for the Raise statement is:
Raise [<exception>]

where <exception> is an exception value selected from Table 28-2. If a value for
<exception> is specified, the code in the current block’s Exception section will be
triggered. You can omit <exception> only when you are already processing an error
in the Exception section and wish to pass the error onto the Exception section of the
block that encloses the current block.

Creating Stored Procedures

Creating a stored procedure, function, or package in Oracle8i involves building a
Create Procedure, Create Function, or Create Package statement and running
it. While you can do this with DBA Studio, you can also use any of the SQL*Plus
variations.

644

Part VIl O Oracle8i

Note

Creating a procedure or function

The Create Procedure statement is used to create a stored procedure, while the
Create Function statement is used to create a stored function. The syntax for
these are:

Create [Or Replace]
{<procedure_definition>|<function_definition>}

where <procedure_definition> is the syntax for a procedure as described
above, beginning with Procedure and ending with End; and <function_defini-
tion> is the syntax for a function as described above, beginning with Function and
ending with End;.

If you specify the Or Replace clause, the routine will be replaced with the new rou-
tine in <procedure_definition> or <function_definition>.

Creating a package

The Create Package statement is used to create a package. Its syntax is:

Create [Or Replace] Package Body <package> As
[<variable> <datatype> [:= <initial_value>];]
{<procedure_definition>|<function_definition>}
[{<procedure_definition>|<function_definition>}]...
[Begin

{statement>
[{statement>]...

]
End [<package>];

where <variable> is an identifier that will be used to store information locally in
the block; <datatype> is any legal Oracle8i data type; <initial_value> isacon-
stant that is appropriate for the data type; <procedure_definition> is the syntax
for a procedure as described above, beginning with Procedure and ending with
End; <function_definition> is the syntax for a function as described above,
beginning with Function and ending with End; and <statement> is any legal
PL/SQL statement or command.

A happy ending: The last End statement in your routine should include the rou-
tine’s name as the <block_name>, such as End MyProcedure; . This will prove
extremely useful when trying to identify the beginning and end of a routine in the
package.

Chapter 28 [Creating Stored Procedures with Oracle8i §45

Thoughts on Oracle8i Stored Procedures

| prefer to use three tools to create and test my stored procedures. | use a tool like Write to
actually code the SQL statements. Then | use SQL*Plus for DOS to load the statements from
the file and add them to my database. | leave the Write session active, so that | can correct
syntax errors or add new functions while | have the SQL*Plus session. That way, all | have to
do is save the file and reload it in SQL*Plus.

Once the stored procedure (or function or package) is loaded into my database, | execute
the stored procedure directly in SQL*Plus. This lets me review the results interactively. | also
like to use the DBMS_OUTPUT package to sprinkle my code with debugging statements.
After all, executing the Set Serveroutput command allows me to quickly turn the informa-
tion off or on, depending on how bad my luck is running.

After I'm satisfied that the procedure it doing what is should be doing, | create a simple
Visual Basic program to verify it. Just because my procedure works with Oracle’s tools does-
n’'t mean that it will automatically work with Microsoft’s tools. Once the program works, I'll
move the procedure to my application and test it over again.

Now if you believe that | always follow this process, I've got a great deal for you on a bridge
in San Francisco. But | do keep the tools lying around in case of problems, which occur
more frequently than you might expect.

Summary

In this chapter you learned:

O about the language elements in PL/SQL language.

O about the key statements of the PL/SQL language.

O how to create transactions in PL/SQL.

O how to create stored procedures and functions in PL/SQL.

O how to create packages in PL/SQL.

U g g

