Creating Stored
Procedures with
SQL Server

I n this chapter, I’'m going to show you how to build and
debug stored procedures using SQL Server. Stored proce-
dures are basically subroutines that you can call from your pro-
gram to perform a database task. They are written in a language
called Transact-SQL, which is really just SQL with a few extra
statements that help you test conditions and perform loops.

Introducing Stored Procedures

A stored procedure is a collection of SQL statements that are
stored in the database server. These statements are stored in
both text form and in compiled form for fast execution. They
can be used in place of an SQL statement or called like a func-
tion or subroutine.

The concept of stored procedures is common to most database
management systems on the market today, though the imple-
mentations are usually sufficiently different to make converting
stored procedures from one vendor to another vendor a diffi-
cult task. Yet stored procedures can make a big difference in
the performance of your application so many programmers rely
on them for their applications.

Why use stored procedures?

Stored procedures allow you to create a block of code that can
be called from any database application or database utility.
This common block of code has three primary advantages: per-
formance, convenience, and security. A stored procedure usu-
ally needs fewer resources to run when compared to a block

of regular code, coupled with calls to the database server. A
stored procedure is easy to use, since it typically represents

s
C HAR P_JgbnR

e

O O O O
In This Chapter

Introducing stored
procedures

Using Transact-SQL
to build stored
procedures

Creating stored
procedures with
SQL Server

Debugging stored
procedures in Query
Analyzer

g 0 0O 0O

558

Part VI O SQL Server

a complicated programming object that can be used as easily as a normal SQL state-
ment. Since a stored procedure is secured just like any other database object, you
can also grant others the capability to perform a task that exceeds their normal
security permissions.

Improving performance

The number one reason people use stored procedures is that they are usually more
efficient than explicitly including the code in your application program. This is
because when you submit an SQL statement to the database server, the following
steps occur each time an application program attempts to perform a task:

1. The application program transmits the SQL statement to the database server
over the network.

2. The database server parses the SQL statement and then compiles it for exe-
cution.

3. The database server executes the compiled statement.

4. The execution’s results are returned over the network to the application
program.

5. The application program receives the results and repeats steps 1 through 4 as
needed to complete the task.

With a stored procedure, this process is much different. Before the program is run,
the following steps occur:

1. The stored procedure is transmitted to the database server.

2. The stored procedure is parsed and compiled.

3. The compiled code is saved for later execution.
Then when the application program is ready to perform the same task:

1. The application program transmits a request to call the stored procedure over
the network.

2. The database server retrieves the compiled copy of the stored procedure and
executes it.

3. The results are returned to the application program.

Note that there is only one interaction between the application program and the
database server. This reduces network traffic, which can make a big difference on
heavily-loaded or low-speed networks. Also, the stored procedure is compiled before
the application calls it. This saves a lot of work for the database server, since pars-
ing and compiling SQL statements can be very CPU-intensive.

Chapter 25 [Creating Stored Procedures with SQL Server 5§50

Increasing convenience

Stored procedures can be called by different application programs or called by any
program that is capable of directly executing SQL statements. This means that you
can develop standard stored procedures that perform a task that can be shared
among all of your applications. Because the logic for the stored procedure is isolated
to a single place (i.e., the database server), you can change the stored procedure
without necessarily changing the application that calls it. Thus, you can change your
underlying database structure, while leaving your applications untouched.

Providing security

Since a stored procedure is just another database object, it can be secured using
the same techniques used to secure other database objects. Thus, you can create
a stored procedure that allows your users to perform a particular task that they
might not otherwise be able to perform. For instance, you might create a stored
procedure to insert a row in a table that your users don’t normally have access to.

Introducing Transact-SQL

Transact-SQL (also known as T-SQL) is the name of Microsoft’s implementation of
SQL on SQL Server. In addition to the SQL statements I've used throughout this
book, there are a number of extensions that allow you to build complex stored
procedures. Like any programming language, Transact-SQL consists of a number
of syntax elements, such as identifiers, data types, variables, functions, expres-
sions, and statements.

Comments

It's always a good idea to include comments in your code. There are two types of
comment indicators you may use: double hyphen (--) and slash asterisk, asterisk
slash (/* */).Double hyphen comments are usually used at the end of a line of
code, though they can be placed on a line by themselves. Everything from the dou-
ble hyphens to the end of the line is treated as a comment and is ignored by the
parser. For example:

-- Procedure: GetCustomerByName

-- Written by: Wayne S. Freeze

-- Date written: 28 April 2000

-- Description: This procedure returns a customer's information
-- for a particular customer id.

CREATE PROCEDURE GetCustomerByName (@CustId Int)

AS

Select *

From Customers

Where Customerld = @Custld

560

Part VI O SQL Server

Tip

Slash asterisk, asterisk slash comments can be used anywhere a space can be used;
thus, they can be embedded in your code. A slash asterisk (/*) marks the start of
the comment, while an asterisk slash marks the end of a comment (*/). The com-
ment may span multiple lines, as shown below:

/*
** Procedure: GetCustomerByName
** Written by: Wayne S. Freeze
** Date written: 28 April 2000
** Description: This procedure returns a customer's
** information for a particular customer id.
*/
CREATE PROCEDURE GetCustomerByName
(@CustId Int /* customer id must be non-negative */)
AS
Select *
From Customers
Where Customerld = @Custld

Hiding code: Sometimes when you are debugging a stored procedure, it is useful
to hide blocks of code from the server so they are not executed. One easy way to

do this is to insert a line containing a slash asterisk before the code you want to
hide and an asterisk slash after the code.

Identifiers

An identifier is simply the name of a database object, such as a database, table, or
column. It can also be a Transact-SQL keyword or the name of a variable or label
within a stored procedure.

There are two different types of identifiers: delimited identifiers and regular identi-
fiers. Delimited identifiers can be any combination of characters up to 128 total. You
may use letters, numbers, spaces, and any special symbol except for double quotes
(") or square brackets ([]). This is because you must enclose the identifier in dou-
ble quotes or inside a pair of square brackets. Some examples of delimited identi-
fiers are:

"My Table"
[This identifier includes a comma, an asterisk * and a period.]

Regular identifiers must begin with a letter, an underscore (_), an at sign (@), or a
number sign (#) and can also contain up to a maximum of 128 characters. The first
character signifies how the identifier is used. System functions begin with two at
signs (@@). Variables begin with an at sign, while a number sign identifies a tempo-
rary table. Some examples of regular identifiers are:

MyTable
@LocalVariable

Chapter 25 [0 Creating Stored Procedures with SQL Server

Variables

Variables in T-SQL are basically the same as they are in Visual Basic. They hold
information local to the stored procedure or represent parameters passed to the
stored procedures. Variables begin with an at sign (@) and must be declared before
they can be used. Before you can use a variable, you must declare it as a local vari-
able using the Declare statement or as a parameter using the Create Procedure
statement.

Each variable must be assigned a valid data type that is compatible with how you
plan to use it. You can choose from the same data types that you would use in a
Create Table statement, except for Text, Ntext, and Image. In the following exam-
ple, | declare two variables, @ounter and @Name, which are assigned Int and
Varchar data types respectively.

Declare @Counter Int
Declare @Name Varchar(64)

Functions

Functions in T-SQL are identical to those in Visual Basic. They take a series of zero
or more parameters and return a value to the calling program. Table 25-1 contains
some of the functions that are available for you to use in your stored procedure.

Table 25-1
Selected functions in T-SQL

Function Description

@@CPU_Busy Returns the number of milliseconds of CPU time SQL Server has
consumed since it was started.

@@Cursor_Rows Returns the number of qualifying rows for the most recently
opened cursor.

@@DBTS Returns the next timestamp for the database.

@@Error Returns the error code for the more recently executed SQL
statement.

@@Fetch_Status Returns the status of the last Fetch operation.

@@I10_Busy Returns the number of milliseconds SQL Server has spent

performing 1/0.

@@Nestlevel Returns the nesting level of the current stored procedure. First
level has a value of zero.

Continued

561

Part VI O SQL Server

Table 25-1 (continued)

Function Description

@@Servername Returns the name of the database server.

@@Trancount Returns the current nesting level of a set of nested transactions.

@@Version Returns the date, version, and processor type for the database

server.

App_Name Returns the name of the current application.

ASCII Returns the ASCII code of the left-most character of the specified
character string.

Cast Converts a value in one data type to another data type.

Ceiling Returns the smallest integer value greater or equal to the
specified value.

Char Returns the character corresponding to the specified humeric
ASCII code value.

Col_Length Returns the length of the specified column.

Columnproperty

Convert

Current_User
Cursor_Status
Datalength

Floor

Getdate

Host_Name

Len

Lower
Ltrim
IsDate
IsNumeric

Is_Member

Object_Id

Returns the requested information about the specified column.

Returns the specified value using the specified data type using
the specified style.

Returns the name of the current user.
Returns the status of the specified cursor.
Returns the number of bytes in the specified expression.

Returns the largest integer value less than or equal to the
specified value.

Returns the current date and time as a Datetime value.

Returns the name of the current computer. (Not the database
server.)

Returns the number of characters in a string, excluding trailing
blanks.

Converts all uppercase characters to lowercase.

Removes leading blanks from a string.

Returns True if the specified expression contains a valid date.
Returns True if the specified expression is a valid number.

Returns True if the current user is a member of the specified
role.

Converts the specified database object into a numeric object
identification number.

Tip

Chapter 25 [0 Creating Stored Procedures with SQL Server

563

Function

Description

Object_Name

Returns the name of the specified object identification number.

Patindex Returns the location of a pattern in the specified string.

Rand Returns a random value between 0 and 1.

Round Rounds the specified value to the specified length or precision.
Rtrim Removes trailing blanks from a string.

Substring Returns the specified part of a string.

Suser_Sid Returns the security identification number for the specified login

Suser_Sname

Typeproperty
Upper

name.

Returns the login name for the current user or the login name
for the specified security identification number.

Returns the requested information about a data type.

Converts all lowercase characters to uppercase.

Confusing, isn’t it: To prevent confusion with system functions, you should never

declare a variable with double at signs.
F

Expressions

Expressions are used to compute a single value based on a series of local variables,
parameters, columns retrieved from a table, and functions. You can assign an
expression to a variable by using the Set statement, as shown here.

Set @Counter =0
Set @MyString = Upper(Rtrim(CustomerName))

You may also assign a value to a local variable using the Select statement. The only
restriction is that the Select statement must return only one row. Otherwise, the
variable will be assigned the last value retrieved by the Select statement. In front
of each column, you must specify the local variable, followed by an equal sign (=),
and then the column name. A simple example is shown below:

Select @Name = Name, @EMail = EMailAddress
From Customers
Where CustomerId = @CustId

Flow control

T-SQL includes flow controls statements, such as If and While, to help you build
your stored procedures. You can even call other stored procedures using the
Execute statement.

564

Part VI O SQL Server

Tip

If statement
You construct an If statement using the following syntax:

If <boolean_expression>

{ <sql_statement> | Begin <sqgl_statement_list> End }
[Else

{ <sgl_statement> | Begin <sql_statement_list> End }]

If <boolean_expression> is True, then the statement that immediately follows the
expression will be executed. Otherwise, the statement that immediately follows the
Else clause will be executed. You can substitute a Begin End pair that surrounds a
list of SQL statements for the single statements if you want to execute one or more
statements.

Beginnings and endings: Use Begin and End clauses even if you only have a sin-

gle statement. This makes it easy to include additional statements in the future.
#

While statement
While statements are constructed with the following syntax:

While <boolean_expression>
{ <sql_statement> | Begin <sqgl_statement_list> End }

The statement or block of statements delimited by the Begin End pair are repeated
until the <boolean_expression> is False. Inside a Begin End pair, you can end a
While loop early by using the Break statement. The Continue statement ignores
the rest of the statements in the While loop and restarts the loop.

Execute statement
The basic syntax for the Execute statement’s syntax is shown below:

[Execute] [<return>=] <procedure_name>
[[<parm>=1{<value>|<var>}]...

The Execute statement is used to call another stored procedure. While the actual
syntax is more complex, chances are you’re not going to use much more than this.
Note that the Execute part of the statement may be omitted. If the stored procedure
returns a value, you must include a local variable for <return>. Otherwise, this
clause should be omitted.

The name of a stored procedure follows normal database rules for the most part.
However, if the name of a stored procedure begins with sp_, then the database
server will search the master database for the stored procedure rather than the
local database. If the name of the stored procedure isn’t qualified and it isn’t found
under the current user name, the database server will search for the stored proce-
dure using the dbo as the owner of the stored procedure.

Tip

Chapter 25 [Creating Stored Procedures with SQL Server 565

For example, if you are accessing the database with the user name MyUser and
specify the stored procedure name MyProc, SQL Server will look for the stored pro-
cedure named MyUser .MyProc in the current database. If it isn’t found then it will
look for the a stored procedure named dbo.MyProc also in the current database. If
it still isn’t found, then it will return an error message saying the stored procedure
couldn’t be found. This approach allows you to test a stored procedure with the
same name and move it to under dbo only when you're satisfied it works properly.

Now if you call the stored procedure, sp_MyProc, SQL Server will look for the stored
procedure dbo.sp_MyProc in the master database. If it isn’t found there, then it will
look for the stored procedure MyUser.sp_MyProc in the current database. If it still
isn’t found, then it will look for the stored procedure dbo.sp_MyProc in the current
database. The reason it works this way is that you can’t override how a system
stored procedure works. Overriding a system stored procedure could compromise
security.

There are two ways to specify parameters: you can simply list them in the order
they were defined in the stored procedure, or you may assign a value explicitly to
each parameter name. Note that if you list the parameters explicitly, you need not
worry about the order you use.

The following calls are identical:

Execute MyProc @MyVar, 24

MyProc @MyVar, 24

Execute MyProc @Parml = @MyVar, @ParmZ = 24
MyProc @Parm?2 = 24, @Parml = @MyVar

Exectly: You can also abbreviate Execute as Exec.
.
Cursors

Cursors are used to allow you to scroll through a set of rows identified by a Select
statement. The cursor maintains the current record pointer and allows you to use
other statements, such as Fetch to retrieve information from the current record
into local variables, and Update to change the values in the current record.

Declare Cursor

This Declare Cursor statement defines a pointer and can be used to access one row
of data returned by a Select statement:

Declare <cursor> Cursor

[Local|Global]

[Static | Keyset | Dynamic | Fast_Forward]
[Read_Only | Scroll_Locks | Optimistic]
For <select_statement>

566

—

Part VI O SQL Server

The <cursor> is a normal SQL Server identifier that will be used by other state-
ments to access the cursor. The Local keyword implies that the cursor can’t be
accessed outside this routine, while the Global keyword implies that the cursor
can be accessed by other stored procedures as long as the current connection to
the database is still active.

The Static keyword means that the database server will make a temporary copy of
the data in tempdb to prevent modifications to the data while you are processing it.
The Keyset keyword instructs the database server to keep a list of pointers to the
rows, which means that your stored procedure will see the current values to the
rows, but not rows that were added after the cursor was opened. The Dynamic key-
word implies that any and all changes made to the selected rows will be visible to the
stored procedure. However, this also implies that the order of rows may change as
new rows are added and existing rows deleted. The Fast_Forward keyword implies
that the rows can’t be changed and that the cursor may only be moved in a forward
direction (i.e., you can only use the Fetch Next statement).

The Read_Only keyword ensures that the rows can’t be changed. Scroll_Locks
implies that rows are locked when they are fetched, so that updates and deletes will
always succeed. Specifying Optimistic means that the row isn’t locked until you are
ready to commit the changes. This also implies that there is the possibility that the
changes may fail because the rows were changed by another program.

Where did | see that before: The keywords described here refer to the cursors
and locking mechanisms that are available in ADO.

Open
In order to use the cursor, you have to use the Open statement. Its syntax is listed
below:

Open <cursor>

The Open statement essentially executes the Select statement and creates the data
structures necessary to access the rows you selected.

Fetch
The syntax for the Fetch statement follows:

Fetch [Next|Prior|First|Last|Absolute <location>|Relative
<offset>]
From <cursor> Into <variable_list>

The Fetch statement is used to retrieve information from a row. If Next, Prior, First,
Last, Absolute, or Relative are specified, then the movement is performed before
the information is returned. If the first call to Fetch after opening the cursor includes

Note

Chapter 25 [0 Creating Stored Procedures with SQL Server

the Next keyword, the current record pointer is moved to the first row and Fetch
returns the values from the first row. For Fast_Forward cursors, Next is the only
allowable movement option.

The Absolute keyword allows you to move the current record pointer to the speci-
fied row, where the first row is Absolute 1 and the second row is Absolute 2. The
last row would be known as Absolute -1, while the next to the last row would be
found by using Absolute —2. The Absolute keyword is not legal when using a
Dynamic cursor.

The Relative keyword allows you to move the current pointer relative to the cur-
rent record pointer. If the current record pointer is pointing to row 7, Relative -2
will reposition the current record pointer to row 5, while Relative 3 will move the
current record pointer to row 10.

The Into clause requires that you supply a series of local variables to receive the
columns from the Select statement. The local variables must be compatible with
the data types returned in the Select statement and must appear in the same order
as those listed in the Select statement. A runtime error will occur if there are too
few or too many variables listed in the Into clause.

Update

The syntax for using the Update statement with cursors is shown below:

Update <table> Set [<column> = <value>]
Where Current 0f <cursor>

If you Declare a cursor that maps to a table, you can use the Update statement to
update the row at the current record pointed to by the specified cursor by using
the Where Current Of clause. In place of <value> you may use any expression of
the appropriate data type, including functions and local variables.

Delete
Shown below is the syntax for using the Delete statement with a cursor:

Delete From <table>
Where Current of <cursor>

Substituting the table name of the table used in the Declare Cursor statement for
<{table> and the name of the cursor for <cursor> will allow you to delete the row
that is pointed to by the cursor’s current record pointer.

Where did my row go?: If you delete a row in a cursor’s rowset and later try to
read the row with a Fetch statement when you declared the cursor as Static or
Keyset, the @@Fetch_Status function will return —2, meaning that the row has
been deleted.

567

568

Part VI O SQL Server

Close
The syntax for the Close statement is listed below:

Close <cursor>

The Close statement releases the results obtained when the specified cursor was
opened. Any locks held also released.

Deallocate
The syntax for the Deallocate statement is listed below:

Deallocate <cursor>

Just because you have closed the cursor doesn’t mean that the cursor is no longer
available. You must Deallocate the cursor to free all of the resources owned by the
cursor.

An example of how to use a cursor

Rather than try to build a small example for each of the above statements, | wrote
a simple routine that demonstrates how to retrieve some information from your
database (see Listing 25-1). This routine retrieves names from the Customers table
and prints them (see Figure 25-1).

Listing 25-1: Using cursors in a simple stored procedure

Declare @CustName VarChar(64)
Declare @RecCount Int

Declare CustCursor Cursor
Local Fast_Forward Read_Only
For Select Name From Customers Where State = 'MD'

Open CustCursor
Set @RecCount =0

Fetch Next From CustCursor Into @CustName
While @@Fetch_Status = 0
Begin
Print @CustName
Set @RecCount = @RecCount + 1
Fetch Next From CustCursor Into @CustName
End

Chapter 25 O Creating Stored Procedures with SQL Server 569

Print RTrim(Convert(VarChar(20), @RecCount)) + ' records
found."'
Close CustCursor

Deallocate CustCursor

BEEX fhRME | 8| o FE ppfee 5

Deolars ECustiam: Yarlhar (&9
Do lers BR=cCount Int

|®

Declare Castsursor Cucmoc

Local Fast Focward Read Only

For Select Hame From Cuatamscs Mhece State

Cpan CustCurscs b

Ser @Rectoust ¢ 0

Fecoh Mext Frow CuscCuracr Ieco RCuwscHans
Whil= Ll L= 1: a

=
| |
Fred Frige =]
Jomeph Bell
Fali Carlisle
0 records found,
wl
| |
r.F.-v.l-._l."
lﬁ.quu.w [Evec b RO000 | Q1o [T

| [Comeciors1 [[[
Figure 25-1: Running the sample routine

The routine begins by declaring variables to hold the customer’s name and the num-
ber of records processed. Then it declares a cursor called CustCursor that will be
used to access the information in the Customers table. To keep the amount of data
to a minimum, | selected only those customers that live in Maryland. | also declare
the cursor as local to this routine and choose to make it Fast_Forward and
Read_Only since I'm just going to read the data in a single pass.

Next, | use the Open statement to open the cursor and retrieve the information
from the database. After setting @RecCount to zero, | fetch the information from the
first row into @CustName and start a While loop that will process the rest of the row
in the cursor’s rowset. For each row, | print the value saved in @CustName and use
the Fetch Next statement to retrieve the next value. This process continues as long
as the Fetch statement is successful (@@Fetch_Status =0).

570

Part VI O SQL Server

At the end of the routine, | print the total number of records found, using the Convert
function to convert the value in @RecCount to a string value. Then | Close the cursor
and Deallocate it. This frees all of the resources associated with the cursor.

Processing transactions

Now that you know how to build simple T-SQL programs that can access individual
rows in your database, | want to cover the facilities for transaction processing. As
you might expect, these facilities parallel those found in ADO. Basically, you mark
the beginning of a transaction and then you can either save the changes you made
to the database or abort the changes without changing the database.

Begin Transaction

Begin Transaction marks the start of a transaction. This statement has the follow-
ing syntax:

Begin Transaction [<transaction_name>]

You don’t have to specify a value for <transaction_name>, but if you do, it must
be a unique name following the standard rules for identifiers, though only the first
32 characters will be used. The names are only used for the outermost level of a set
of nested transactions, though you may want to assign a name to any nested trans-
actions as well to clarify which Begin Transaction is matched with which Commit
Transaction or Rollback Transaction.

When using nested transactions, each new Begin Transaction increments the value
in @@Trancount. This is important, since only the outer most transaction can com-
mit the changes to the database. Of course, the inner transactions must complete
successfully and have their results committed as well, but changes aren’t actually
posted to the database until the outermost transaction is committed.

Commit Transaction

The Commit Transaction statement saves the changes made by a transaction to the
database. This statement has the following syntax:

Commit Transaction [<transaction_name>]

If the <transaction_name> parameter is specified, it must match the correspond-
ing value in the Begin Transaction statement.

Rollback Transaction

The Rollback Transaction statement discards all of the changes made by a transac-
tion to the database. This statement has the following syntax:

Rollback Transaction [<transaction_name>]

Chapter 25 O Creating Stored Procedures with SQL Server 5§71

If the <transaction_name> parameter is specified, it must match the correspond-
ing value in the Begin Transaction statement.

Other useful statements

There are a few other T-SQL statements that you may find useful when building a
stored procedure that don't fit into any of the categories I've discussed so far.

Use

The Use statement specifies the database that will become the default database and
has the following syntax:

Use <database>

You can use this statement at the beginning of a stored procedure to ensure that
the stored procedure is running in the appropriate database. You can also use the
Use statement to switch databases in the middle of a stored procedure.

Note User must exist in order to use Use: In order to switch databases, the person’s
-y login must map to a valid user, otherwise an error will occur.

Print

The Print statement is used to return a user-defined message to the calling pro-
gram. The syntax of print is:

Print <string_expression>

where <string_expression> can be a string of text enclosed by quotes such as
"text', alocal variable or function whose data type is either Char or Varchar, or
an expression that evaluates to a Char or Varchar value, such as Convert or the
string concatenation operator (+).

Some common uses of the Print statement are:

Print 'Hello Raymond'
Print Convert(Varchar(20), @@CPU_Busy)
Print 'CPU Busy is ' + Convert(Varchar(20), @@CPU_Busy)

Raiserror

Another way to return information to the calling program is to use the Raiserror
statement.

Raiserror (<message>, <severity>, <state> [, <argument_list>])

572

Part VI O SQL Server

Calling Raiserror simply sets a system flag to record that an error occurred. Your
stored procedure will continue to run normally. The <message> parameter is either
a numeric value that refers to a user-defined message in the sysmessages table or a
string containing a custom error message. You can choose to allow values to be
substituted into <message> by specifying a list of values in <argument_Tist> and
including C style printf formatting commands in <message>.

You must also specify a severity code in <severity>. This value can range from 0
to 18 for normal users and 19 to 25 for users with the sysadmin fixed server role.
Severity levels greater than 19 are considered fatal, and they will immediately termi-
nate the connection to the database. Otherwise the exact meaning of <severity>
is up to you.

Note But it’s almost fatal: You should use a severity of 19 for non-fatal errors in
- stored procedures running under the sysadmin fixed server role.

The <state> value provides additional information about the particular error. It
can range from 1 to 127. This value has no meaning outside the context of the error
message.

Tip Add your own errors: You can add errors to the sysmessages table by calling the

sp_addmessage stored procedure. You may delete a message by calling the
sp_dropmessage stored procedure.
Caution Which way is right?: In Visual Basic, RaiseError is spelled with two E’s, while in

T-SQL Raiserror is spelled with one E.

Go

Technically, Go isn’'t a T-SQL statement, but a command that is used by Query
Analyzer and some other query tools to execute the group of T-SQL statements that
precede the Go command. Go must occupy a line by itself in order to be properly
recognized.

For instance, the following statements are executed as a single batch:
Declare @MDCount Int
Select @MDCount = Count(*)
From Customers
Where State = 'MD'
Declare @SDCount Int
Select @SDCount = Count(*)

From Customers
Where State = 'SD'

Chapter 25 [0 Creating Stored Procedures with SQL Server

Print 'MD Count
Print 'SD Count

' + Convert(Varchar(10),@MDCount)
' + Convert(varchar(10),@SDCount)

while these statements are executed as two independent groups:

Declare @MDCount Int

Select @MDCount = Count(*)

From Customers

Where State = 'MD'

Print "MD Count = " + Convert(Varchar(10),@MDCount)

Go

Declare @SDCount Int

Select @SDCount = Count(¥*)

From Customers

Where State = 'SD'

Print 'SD Count = ' + Convert(varchar(10),@SDCount)

Finally, these statements will generate an error in the first Print statement because
the variable @MDCount will no longer be in scope.

Declare @MDCount Int
Select @MDCount = Count(*)
From Customers

Where State = 'MD'

Go

Declare @SDCount Int
Select @SDCount = Count(¥*)
From Customers

Where State = 'SD'

Print '"MD Count
Print 'SD Count

" + Convert(Varchar(10),@MDCount)
" + convert(varchar(10),@SDCount)

Creating and Testing Stored Procedures

While creating and testing a stored procedure isn’t very difficult, it is very cumber-
some. You have to develop the code using a tool like Query Analyzer, unless you're
one of those perfect programmers whose code always runs correctly the first time.
Then you have to save the code into the database as part of a Create Procedure or
Alter Procedure statement using either Query Analyzer or Enterprise. Next, you
have to build the Visual Basic program to access the stored procedure and verify
that it works the way you expect it. Of course it won’t, so you may have to revise
the code using Query Analyzer and try it over again. Fortunately, Visual Basic
includes a sophisticated T-SQL debugger to help you troubleshoot why your stored
procedure didn’t work as designed.

573

574 Partvi O sQL Server

Creating stored procedures in SQL Server

Stored procedures created by using the Create Procedure statement are kept in sys-
tem tables in your database. The Create Procedure statement supplies the name of
the stored procedure and the list of parameters associated with it. Following the As
clause is the list of SQL statements that comprise the stored procedure.

Create Procedure <procedure>
[<parameter> <data_type> [= <default>]1]
As <sql_statement> [<sql_statement>]

You can use Enterprise Manager to create a stored procedure by following these
steps:

1. Expand the icon tree to show the Stored Procedures icon beneath the
database where you want to create the stored procedure. Right click on the
Stored Procedures icon and select New Stored Procedure to show the Stored
Procedure Properties window (see Figure 25-2).

Genaial |

Haree: M Sloned Proceduse: 2115 |
Dot
Comate dsta:

Tt
CFEATE FROCEDURE [PROCEDURE NAME]AS -

J o

heck Syt | A

| ok | caed | Hew

Figure 25-2: Creating a new stored procedure

2. Replace [PROCEDURE NAME] with the name you wish to call your stored
procedures and include any parameters that belong to the procedure imme-
diately after the name. Then add the body of your stored procedure (see
Figure 25-3).

3. Press the Check Syntax button to verify that the syntax is correct. If there’s
an error, a message box will be displayed containing a short description of
the error. Otherwise, a message box saying Syntax check successful! will be
displayed.

4. Press OK to save your stored procedure.

Chapter 25 O Creating Stored Procedures with SQL Server 5775

Genaial |

A Blare: i Sloned Proceduss:
ey

Dhwrest
Cozats dste:

Tet
L FEATE PROCEDLUAE GeCudorne Slusdd Ind -
55
3 et
O LA
it Curboirsl d = @k

| |;|d

Eheck Syt | 165

[o]| s | Help

Figure 25-3: Typing your stored procedure into the
Properties window

Tip Changes anyone: You can change your stored procedure anytime by right clicking
on the stored procedure name in the Details window and choosing Properties
from the pop-up menu. The same Properties window you used to create your
stored procedure will be displayed, though the Create Procedure statement will
be changed to Alter Procedure.

Note Another way to do it: You can also execute the same Create Procedure state-
ment in Query Analyzer to create a stored procedure.

Caution Rename me twice: If you choose to rename your stored procedure by using the
pop-up menu Rename command in Enterprise Manager, you must remember to
open the Properties window for the stored procedure and correct its name in the
Alter Procedure command.

Testing stored procedures in Query Analyzer

Query Analyzer is a general-purpose tool that allows you to run SQL statements
interactively. This also includes stored procedures. There are two ways to test your
procedure. First you can use the T-SQL debugger to your stored procedure. Second,
you can test the block of code standalone Query Analyzer. This involves running
the individual statements directly in Query Analyzer and verifying that they do
what you want them to. Then you can create the stored procedure and call it using
Query Analyzer.

For example, the stored procedure | just wrote can easily be run in Query Analyzer
by typing its name followed by a Customerld value (see Figure 25-4). This is a good
way to make sure that you are getting the results you want before you build a Visual
Basic program to use it.

576 PartVvi O SQL Server

BEE¥ LN RME- |k n| o FE pelfee = |
[recoustomer 1 =]

=l
4 3
[ouatomecId Heme Srreet =]
1 Halik Hubert T5T6 Redwond Drive

(1 rowix] affected|

1| | _'rl:I

[Fmnalc
[—— [Evec brm DOODZ [V 1w [tlnzca
| [Comestios:1 [[[

Figure 25-4: Running the stored procedure in Query Analyzer

Tip But VB’s better: Remember that Visual Basic includes a comprehensive stored

% procedure debugger, called the T-SQL Debugger. You can set breakpoints,

examine variables and single step through the code. Refer to Chapter 13,
“Using Commands and Stored Procedures,” for details about how to use this
powerful tool.

Thoughts on Stored Procedures in SQL Server

Stored procedures are a powerful tool in SQL Server that can make a big difference in how
your application runs. They also are a way to isolate your application from the underlying
database system, since you could create a series of stored procedures for each database
management system you use.

However, in SQL Server, stored procedures to encapsulate simple SQL statements aren’t as
critical as they are in other database management systems. SQL Server 7 will remember the
SQL statements you have used recently and reuse the compiled code if the query is the
same. This makes parameterized queries nearly as efficient as stored procedures and some-
what easier to use.

Chapter 25 [0 Creating Stored Procedures with SQL Server

Summary

In this chapter you learned:
O how stored procedures can improve performance, increase convenience and
provide security.
O about the features of Transact-SQL.

O about the statements available in Transact-SQL that help you write stored
procedures.

O how to use cursors in Transact-SQL.
O how to process transactions in Transact-SQL.

O hot to create and test stored procedures using Enterprise Manager and Query
Analyzer.

o177

