
Programming
with Data
Environments

In this chapter, I’m going to discuss how to use the Data
Environment Designer to create a Data Environment, which

simplifies many of the tasks of building a database applica-
tion. It exploits the ADO object model and helps you create
standardized ADO objects that simplify access to the
database.

The Data Environment Designer
The Data Environment Designer is a tool in the Visual Basic
IDE that helps a programmer create a database application
more quickly than if they had to perform the same tasks man-
ually. The Designer creates ADO objects corresponding to the
tables in your database; it also provides other objects to help
you manipulate your database. These objects are available as
part of the Data Environment object at runtime.

ADO, not DAO and RDO: The Data Environment Designer
only works with the ADO object model. The DAO and RDO
object models are not supported. The UserConnection
designer is a subset of the Data Environment Designer and
supports the RDO object model.

See Chapter 6 for explanations of the ADO, DAO, and
RDO models.

Cross-
Reference

Note

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The Data Environment
Designer

Connecting to
databases

Creating and using
commands

Using the Data
View window

✦ ✦ ✦ ✦

4728-3 ch09.f.qc 7/31/00 09:45 Page 141

142 Part II ✦ Beginning Database Programming

Enabling the Data Environment Designer
To add the Data Environment Designer to your project, choose Project ➪ Add Data
Environment from the main menu. If you don’t see it listed directly under the Project
menu, try looking under the More ActiveX Designers menu (or Project ➪ More ActiveX
Designers ➪ Data Environment from the main menu). This will display the main win-
dow for the Data Environment Designer.

If the Data Environment Designer doesn’t appear in either location, you’ll need to
add it to Visual Basic. Choose Project ➪ Components from the main menu to display
the Components dialog box, then select the Designer tab to see the window as
shown in Figure 9-1. Place a check mark in the box next to Data Environment and
press OK. This will add the Data Environment Designer to the Project menu. If you
don’t see Data Environment listed on the Designers tab, you need to install the Data
Environment feature from your Visual Basic CD-ROM.

Figure 9-1: Adding the Data Environment Designer
to the Visual Basic IDE

Exploring the Data Environment Designer
The main Data Environment Designer window (see Figure 9-2) includes a series of
icons that are used to perform common operations, plus an icon tree view of the
objects used in the Data Environment.

4728-3 ch09.f.qc 7/31/00 09:45 Page 142

143Chapter 9 ✦ Programming with Data Environments

Figure 9-2: Exploring the Data Environment Designer window

✦ Add Connection – adds a new Connection object to the data environment,
which will be used to access a database.

✦ Add Command – adds a new Command object to the data environment, which
will be used to execute an SQL command.

✦ Insert Stored Procedure – adds a Command object with the information to call
a stored procedure on the database server.

Add
Command

Add
Connection

Add Child
Command

Delete

Insert Stored
Procedure

Design

Refresh

View
Code

Options

Properties Arrange by Objects

Icon tree

Arrange by
Connections

4728-3 ch09.f.qc 7/31/00 09:45 Page 143

144 Part II ✦ Beginning Database Programming

✦ Add Child Command – adds a Command object to another Command object to
create a hierarchical structure of data.

✦ Delete – removes an object from the data environment.

✦ Refresh – refreshes the selected object. Connection objects are closed and
reopened, while all of the metadata associated with a Command object will be
rebuilt.

✦ Design – accesses the SQL query designer when you specify an SQL statement
as the data source for a Command object.

✦ Properties – displays the properties associated with the selected object.

✦ View Code – displays the code associated with a particular object.

✦ Options – displays the Options dialog box that controls how the Data
Environment Designer works.

✦ Arrange by Connections – arranges the objects in the icon tree by the
Connection object they access.

✦ Arrange by Objects – arranges the objects in the icon tree by object type.

✦ Icon Tree – the list of objects associated with the data environment.

Many of these functions are also available via a pop-up menu that you can display
by right clicking on an object in the icon tree.

Data Environment building blocks
The Data Environment Designer helps you create three main types of objects:
Connections, Commands, and Recordsets. These objects are used at both design
time and runtime to access your database. At design time, information about your
database is extracted and made available to help you create your program. At run-
time, these objects are used to perform typical database operations.

It’s not what it seems: While these objects appear to be part of the Data Environ-
ment Designer, they are really normal ADO objects that the Data Environment
Designer helps you create. For more information about all of the capabilities of
these objects, please refer to Chapter 11.

Connection objects
A Connection object contains the properties and methods needed to access a
database. Since the Connection object is used at both runtime and design time, a
related object called the DECconnection is used by the Data Environment Designer
to track information about each mode. This information contains the user name,
password, how to prompt for password information, and whether to save password
information at the end of the session for both runtime and design-time use.

Tip

Tip

4728-3 ch09.f.qc 7/31/00 09:45 Page 144

145Chapter 9 ✦ Programming with Data Environments

Command objects
A Command object contains the information necessary to execute a command
against your database. A command may be an SQL statement, a call to a stored pro-
cedure, or the name of a table. Some commands will require you to include a list of
parameters when they are run. Some commands will return a set of rows, while oth-
ers will return nothing but a status condition.

Recordset objects
Rows are returned from your database in a Recordset object. The Recordset object
presents a single row of data, known as the current record. A cursor is used to point
to the current record in the Recordset. You can manipulate the cursor by using
various methods in the Recordset object.

If the rows in the Recordset object can be updated, there are other methods that
allow you to add a new row, delete a row, and update a row. If you need to update
multiple rows, you can easily create a Command object, which will call the appropri-
ate SQL statement, or you can use the cursor to move through the rows in the
Recordset object one at a time and use the appropriate methods to perform your
updates.

Like the ADO Data Control, a Recordset object can be used as a data source
with bound controls. This means that you can easily replace the ADO Data
Control with the appropriate Recordset object by changing the DataSource
property on each of the bound controls.

Hierarchical Recordsets
A hierarchical recordset is based on a normal Recordset, except that in place of
one of the values in a row of data is another Recordset, known as a child recordset.
The child recordset is created by a child Command, whose values are determined by
a relationship with the parent recordset. It is also reasonable for a child recordset
to have its own child recordsets, thus creating a multi-level hierarchy.

Hierarchical recordsets are useful when you want to retrieve data from multiple
tables, but don’t want to merge the data into a single table. The classic case of a
hierarchical recordset is the customers, orders, and order items. A company has a
collection of customers, each customer may have placed multiple orders, and each
order a customer has placed may have multiple items.

Connecting to Your Database
The first step in working with the Data Environment Designer is to define a connec-
tion to the database. By default the Data Environment Designer creates a single
Connection object called Connection1. This object is used at both design time
and runtime to access information from the database.

4728-3 ch09.f.qc 7/31/00 09:45 Page 145

146 Part II ✦ Beginning Database Programming

Setting Connection properties
Selecting the Connection1 object and pressing the Properties button displays
the Data Link Properties dialog box, as shown in Figure 9-3. While there are four
tabs on the dialog box, only the Provider and Connection tab are typically used.
The Advanced tab contains information regarding network settings, connection
timeout, and access permissions whose default settings are almost always okay.
The All tab lists all of the initialization parameters that will be used when establish-
ing the database connection.

Figure 9-3: Setting Data Link properties
for a Connection object

Selecting an OLE DB provider
The first step in defining your connection to the database is to choose an OLE DB
provider on the Provider tab of the Data Link Properties dialog box. All of the pro-
viders available for your system will be listed. You should choose the native OLE
DB provider for your database server, if one is available. Otherwise, you should
choose the Microsoft OLE DB Provider for ODBC Drivers. Once you select the
proper OLE DB provider, press Next to continue defining the connection properties.

Entering connection information
Since I chose the Microsoft OLE DB Provider for SQL Server in the previous step,
pressing Next will request the information shown in Figure 9-4 using the Connection
tab. In this case, my database server is on Athena. I’m going to use Windows NT
integrated security and I want to use the VB6DB database as my default database.

4728-3 ch09.f.qc 7/31/00 09:45 Page 146

147Chapter 9 ✦ Programming with Data Environments

Once I enter this information, I can press the Test Connection button to verify that
everything is correct. If there is a problem, a message box will be displayed with
a description of the error; otherwise, a message box saying Test connection suc-
ceeded will be displayed. After pressing OK on the test’s message box, press OK
to save the connection information.

Figure 9-4: Entering connection
information for the Microsoft
OLE DB Provider for SQL Server

The information entered in the Data Link dialog boxes is used to build a connection
string. This value is used anytime you want to connect an ADO object to a database.
For more information about connection strings, see the ConnectionString prop-
erty and the Connection object in Chapter 11. For details about how to connect to
a specific database, see Connecting to SQL Server in Chapter 23, Connecting to
Oracle8i in Chapter 26, or Connecting to Jet in Chapter 29.

Creating Commands with the Designer
After you have defined a Connection object, you can begin to define some
Command objects. The Data Environment Designer treats Command objects in two
different ways — as commands and as stored procedures. The difference is primar-
ily how the information for the objects is obtained. If you choose to add a stored
procedure, the designer will get a list of stored procedures from the database, you
will need to enter a single, dynamically executed SQL statement as one of the prop-
erties of the Command object. Stored procedures are discussed later in this chapter
under “Selecting a Database Object.”

Cross-
Reference

4728-3 ch09.f.qc 7/31/00 09:45 Page 147

148 Part II ✦ Beginning Database Programming

Adding a command
Adding a Command object by pressing the Add Command button on the Data
Environment Designer toolbar simply adds a new command object beneath the
currently selected Connection. All of the properties associated with the Command
object are left at their default values and must be changed in order to use the
command.

Setting general command properties
Pressing the Properties button or right clicking on the Command object will display
the Command1 Properties dialog box as shown in Figure 9-5. On the General tab, you
can specify the name of the command, which connection will be used by the com-
mand, and the Source of Data for the command.

Figure 9-5: Viewing the general
properties of the Command1 object

The Source of Data section is somewhat misleading since a Command object need
not return data. It really depends on whether the database object you select or the
SQL statement you enter returns any data.

Selecting a database object
You have a choice of four different database objects: a Stored Procedure, a Table, a
View, or a Synonym. A stored procedure is nothing but a series of one or more SQL
statements that are executed on the database server. Any data returned depends
on whether the stored procedure includes a Select statement. Selecting Table or
View will always return all of the data visible in the selected table or view. A syn-
onym is an alternate name for a database object, such as a table or view.

Once you select which type of database object you want, you must specify the
object name. The designer makes this easy because after you specify the type of
database object you want, it will automatically connect to the database server using

4728-3 ch09.f.qc 7/31/00 09:45 Page 148

149Chapter 9 ✦ Programming with Data Environments

the specified Connection object and retrieve the list of available objects. These
objects are then made available in the Object Name drop-down list directly below
the Database Object drop down box. All you need to do is select the one you want.

Entering an SQL Statement
If you want the command to execute an SQL statement, simply enter the statement
in the SQL Statement area in the dialog box. No other statement, except for the
Select statement, will return data. To make it easier to create an SQL Select state-
ment, you can press the SQL Builder button to display the Design window, which
will help you build SQL queries.

One of the side effects of using an SQL statement or a stored procedure is that the
designer doesn’t know what fields will be returned. The only way for the Command
object to know what fields are returned is to execute the command. Before execut-
ing the command, the designer will ask you for permission (see Figure 9-6), since
the command could potentially update your database.

Figure 9-6: Asking for permission
to execute an SQL statement

Test it first: You should take the time to verify that the SQL statement will work
before you enter it into the SQL Statement area. The easiest way to do this is to
use a tool like SQL Server’s Query Analyzer.

Setting parameters
If you are using a stored procedure as your command, you will probably have one
or more parameters associated with it. Consider the stored procedure in Listing 9-1.
It will retrieve all of the information about the customer specified in CustId.

Listing 9-1: The GetCustomer stored procedure

Create Procedure GetCustomer (@CustId Int)
As
Select *
From Customers
Where CustomerId = @CustId

Tip

4728-3 ch09.f.qc 7/31/00 09:45 Page 149

150 Part II ✦ Beginning Database Programming

Figure 9-7 shows you the Parameters tab of the Properties dialog box. You can view
the details about a particular parameter by clicking on it in the Parameters frame.
The information related to it will be displayed in the Parameter Properties frame.

Figure 9-7: Looking at the
parameters of a stored
procedure

Each parameter has a number of different properties associated with it:

✦ Name – contains the formal name of the parameter.

✦ Direction – classifies the parameter as input, output, or input/output parame-
ter.

✦ Data_Type – specifies the data type associated with the parameter.

✦ Precision – specifies the precision of a numeric data type.

✦ Scale – specifies the scale of a numeric data type. This field is disabled for
non-numeric data types.

✦ Size – specifies the size associated with the data type. This field is disabled
for non-numeric data types.

✦ Host Data Type – specifies the data type that will be used by the host. This
value must be compatible with the value specified in the Data_Type field.

✦ Required – is TRUE when you must specify a value for the parameter before
the command can be executed.

✦ Value – contains the default value for the parameter. It will be used at design
time to test the Command object. At runtime, you will typically override this
value with the real value you wish to use.

4728-3 ch09.f.qc 7/31/00 09:45 Page 150

151Chapter 9 ✦ Programming with Data Environments

I can’t change anything: If the type of command you are creating doesn’t allow
parameters, all of the fields on this tab will be blank, and even if the type of com-
mand does support parameters, some of the properties of the parameter may be
disabled, meaning that you can’t change them.

Setting advanced properties
The Advanced Properties tab (see Figure 9-8) contains a number of different proper-
ties that affect how the command will be executed and how the results will be
returned. Depending on the type of command you choose, some or most of these
properties may be disabled.

Figure 9-8: Reviewing
advanced properties

Reviewing Recordset management properties
The four properties in the RecordSet Management section (CursorType,
CursorLocation, LockType and CacheSize) control how the Recordset
object will be created and how it can be accessed from your program.

See the Recordset object in Chapter 14 for a more complete discussion of
cursors and locks.

The type of cursor used in a Recordset determines many of its characteristics.
Client-side cursors are restricted to using only static cursors, while server-side
cursors can use any of these four different types of cursors:

✦ Forward Only cursors point to a collection of rows that can only be accessed
in a forward direction. Moving backwards isn’t permitted. Otherwise, this cur-
sor type is identical to Static.

✦ Keyset cursors point to a collection of rows that see all changes (including
deletions) to the database, except for records that have been added after the
Recordset was created.

Cross-
Reference

Note

4728-3 ch09.f.qc 7/31/00 09:45 Page 151

152 Part II ✦ Beginning Database Programming

✦ Dynamic cursors point to a collection of rows that see all changes (including
additions and deletions) to the database after the Recordset was created.

✦ Static cursors point to a collection of rows that will not change until the
Recordset is closed. Any rows that have been added, deleted, or updated
by any other database user are not seen.

The CursorLocation property describes where the cursor is located. Choosing
Use server-side cursors means that the cursor will be managed by the database
management system, while choosing Use client-side cursors means that the cursor
will be managed by a cursor library located on the same computer as the applica-
tion. Client-side cursors are more flexible than server-side cursors, while server-
side cursors are easier to use than client-side cursors.

The LockType property determines how you and other users can access the data
in the database.

✦ Read-only locks mean that you can’t alter any of the data in the Recordset.

✦ Pessimistic locks mean that the row is locked immediately when you begin to
change the values in a row. The lock will be released when you complete your
changes.

✦ Optimistic locks mean that the row is not locked until you have finished mak-
ing your changes. Then the row is locked and the current values of the row in
the database are checked against the original values before you changed
them. If they are the same, your changes will be saved to the database, other-
wise an error will be returned to your program.

✦ Batch Optimistic locks work just like optimistic locks, except that multiple
rows of information are updated locally and are sent to the database server in
a single batch. Any errors will be returned to your program. Your program
must then identify the rows that weren’t updated and take the appropriate
action for each row.

Lock least: You should lock the least amount of data possible in order to make it
easy to share data. If you don’t need to update any of the data, you should use a
read-only lock. In the beginning, you should use a pessimistic lock with a server-
side cursor to prevent others from updating the data you are editing. Once you are
comfortable with database programming, you should consider using client-side
cursors with either optimistic or batch optimistic locking.

The CacheSize property determines how many rows are buffered in the client
machine. Increasing this size allows the database server to operate more efficiently
when returning data to the client system. It will also improve the performance of
the client system, since most of the time, it will retrieve data from the local cache
rather than request data from the server. However, the data in the cache will not be
updated if changes are made to the same rows on the database server. The more
rows you keep in the cache, the greater the chance that someone else may have

Tip

4728-3 ch09.f.qc 7/31/00 09:45 Page 152

153Chapter 9 ✦ Programming with Data Environments

updated the data. If you choose pessimistic locking, you should set the CacheSize
property to one to prevent invalid records from sitting in your cache.

Reviewing other advanced properties
Like the properties in the RecordSet Management section, those in the Command
Configuration section are taken from the Command object discussed in Chapter 11.
However, the Command Timeout is important enough to discuss twice. This prop-
erty contains the number of seconds the command is allowed to run before it is
canceled. When dealing with large volumes of data or very complex stored proce-
dures, the default value of 30 seconds may not be enough to allow the command to
finish. If this happens, you will need to increase this value.

The Call Syntax section describes how a stored procedure will be called, including
the list of parameters and the return value. While you can edit this value to change
the number of parameters and presence of a return value, in general you should
leave this field alone.

Saving the Command
To save your property settings and continue working with the properties, press
the Apply button, or to save your changes and close the Command1 Properties
dialog box, press the OK button. If the Apply button is grayed out, it indicates
that the saved version of the environment is the same as the one you are viewing.
Once your Command has been defined, you can see the list of fields that the com-
mand will return in the Data Environment by expanding the plus sign in front of
the command’s icon (see Figure 9-9).

Figure 9-9: Viewing the fields
returned by a command

4728-3 ch09.f.qc 7/31/00 09:45 Page 153

154 Part II ✦ Beginning Database Programming

Adding a Child Command
One of the nicer features of the Data Environment Designer is its ability to create
hierarchical recordsets easily. Simply select the command you want to add the
child to and press the Add Child Command button. This creates a new command
that is nested at the same level as the fields on the parent command. Note that the
command you choose as the parent command must return a Recordset, other-
wise you will not be able to add the child command.

After selecting the child command, you can press the Properties button to define its
properties. The first thing you must do in the Properties dialog box is to define the
Source of Data. As with the parent command, you must choose a Source of Data
that returns a Recordset. If you don’t define a source of data, you’ll receive a warn-
ing message if you try to access any of the other tabs in the Properties dialog box.

Once you’ve defined the Source of Data, you should define any properties on the
Parameters and Advanced tabs that are needed to retrieve the data. Note that the
Recordset object returned by the child command is always read-only. In fact, most
of the properties on the Advanced tab will be disabled, and the properties will be
set to be compatible with the properties selected for the parent command.

Defining a relationship
On the Relation tab (see Figure 9-10), you must define how the parent and child
commands are related. At the top of the page, you’ll see the Relate to a Parent
Command Object check box and the Parent Command drop-down box. By default,
the check box will be checked, meaning that this command is a child command,
and its parent command will be the one that was selected when you pressed the
Add Child Command button. Unchecking the check box will make this a regular
command that is independent of any other commands in the Designer, while select-
ing a different parent command will make this command a child of the selected
command.

Figure 9-10: Defining a relationship
between a child command and its
parent

4728-3 ch09.f.qc 7/31/00 09:45 Page 154

155Chapter 9 ✦ Programming with Data Environments

Once the parent has been selected, you need to choose the fields that establish the
parent child relationship in the Relation Definition frame. Specifying pairs of fields,
one in the parent and one in the child, defines the relationship between the two
commands. For each row retrieved by the parent command, the child command will
be executed and the values from the parent fields will be used to select only those
rows with matching values in the child command. Since this is a somewhat complex
concept, let’s use an example from the sample database. Assume that the parent
command retrieves all of the rows from the Customers table. Then the child com-
mand is set up to retrieve all of the rows from the Orders table. The relationship
information specified on the Relation tab associates the CustomerId value in the
Orders table with the CustomerId value in each row retrieved from the Customers
table.

The information needed to build the sample database can be found in the
\SampleDB directory on the CD-ROM.

The retrieved records would look like the information in Table 9-1. Notice that for
each row retrieved from the Customers table (CustomerId and Name), one or more
rows of information will be retrieved from the Orders table (OrderNumber and
DateOrdered).

Table 9-1
A View of a Hierarchical Recordset

CustomerId Name OrderNumber DateOrdered

0 Dexter Valentine - -

0 - 1000 1 Jan 2000

1 Malik Hubert - -

1 - 1001 1 Jan 2000

1 - 1004 1 Feb 2000

2 Lee Holt - -

2 - 1002 2 Jan 2000

2 - 1005 2 Feb 2000

3 Scotty Waltrip - -

3 - 1003 3 Jan 2000

3 - 1006 3 Feb 2000

3 - 1007 3 Mar 2000

On the
CD-ROM

4728-3 ch09.f.qc 7/31/00 09:45 Page 155

156 Part II ✦ Beginning Database Programming

Using groupings
An alternate way to create a hierarchical recordset is to define a grouping using the
Grouping tab of the Properties dialog box (see Figure 9-11). A grouping allows you to
take a single recordset and break it into two levels. A new level is created each time
the values of the Fields Used for Grouping change.

Figure 9-11: Selecting fields
for grouping

To define your grouping, simply select the field or fields you want to move in the
Fields in Command section of the form and press the > button to move them to the
Fields Used for Grouping. You can move a field in the reverse direction by using the
< button. The >> and << buttons move all of the fields in the direction of the arrows.

Aggregating data
In the Aggregates tab of the Command Properties dialog box (see Figure 9-12), you
can create summary data for your recordset or hierarchical recordset. You can
define aggregates that are based on grouping levels. You can also define grand
totals for the entire recordset. The aggregated data will appear as part of a hierar-
chical recordset.

Figure 9-12: Selecting aggregations
for a hierarchical recordset

4728-3 ch09.f.qc 7/31/00 09:45 Page 156

157Chapter 9 ✦ Programming with Data Environments

To add a new aggregation, press the Add button to create a default aggregation. A
new aggregation will appear in the Aggregation frame. Clicking on the aggregation
will display all of its settings in the Aggregation Settings frame. Also, you can
remove an aggregation by selecting it in the Aggregates frame and pressing the
Remove button.

When working with a hierarchical recordset, you can define aggregations in two
ways — as a grand total, which is computed over the entire recordset, or as a group
summary over a child command. You can’t define an aggregation on the lowest
level of a hierarchical recordset. If you are working with a regular recordset, you
can only define aggregations over the entire recordset for a grand total.

If you aggregate values over a child command, the aggregated values will be added
to the current level of the hierarchical recordset. If you create a grand total, it adds
a new level above the current level of the hierarchical recordset. When adding an
aggregation, you need to give it a name and decide how to compute it. Remember
that an aggregation will appear as a field in the recordset, so using a meaningful
name is important.

To compute an aggregation, you need to define three pieces of information: the
level of aggregation (the name of a child command or grand total), the name of the
field that you want to aggregate, and the name of function that you want to use to
perform the aggregation (see Table 9-2).

Table 9-2
Aggregation Operations

Operation Description

Any Performs the default operation for the field.

Average Averages the values for a particular field.

Count Counts the number of rows retrieved.

Maximum Returns the highest value found in the field.

Minimum Returns the lowest value in the field.

Standard Deviation Computes the standard deviation of all of the values for the
selected field.

Sum Adds the values of the specified field together.

Inserting a stored procedure
Even though a stored procedure uses the same property window as regular Command
objects, a special dialog box makes it easy to add multiple stored procedures to the
Data Environment Designer. Clicking the Insert Stored Procedures button will display

4728-3 ch09.f.qc 7/31/00 09:45 Page 157

158 Part II ✦ Beginning Database Programming

the dialog box shown in Figure 9-13. Simply select the stored procedures from the
Available list and press the > button to add them to the Add list. You can use the >>
button to add all of the stored procedures to the Add list. Pressing the < or << but-
tons will remove the selected or all of the stored procedures from the Add list
respectively.

Once you’ve created the list of stored procedures you want to add, press the Insert
button to add them to the Designer. When all of your selected stored procedures
have been added, you can repeat the process to select additional stored proce-
dures, or press the Close button to return to the Data Environment Designer.

Figure 9-13: Inserting a stored procedure

Building Programs with the Designer
The true power of the Data Environment Designer is shown when you use it to
design your forms. The Designer allows you to drag commands and fields from the
Designer onto a Visual Basic form to create controls that are bound to the objects
in the runtime component of the Data Environment Designer. Once the controls are
positioned, you can write code to manipulate the information on the form.

Drawing controls
If you expand a Command object, you will see the list of fields in the object (see
Figure 9-14). To add a field to your Visual Basic form, simply move the cursor to the
field you want to add, press the left mouse button, and drag the field onto the form
while still pressing the left mouse button. When the control is where you want it,
release the left mouse button, and the control will be added to your form.

4728-3 ch09.f.qc 7/31/00 09:45 Page 158

159Chapter 9 ✦ Programming with Data Environments

The new control is automatically bound to a Recordset object that is owned by the
runtime component of the Data Environment Designer. The additional fields that are
dragged onto the form from the same command will also be automatically bound to
the same Recordset object. In addition to dragging fields, you can also drag a com-
mand onto your form. All of the fields that are contained in the command will be
dropped on the form. Figure 9-15 shows the effect of dragging Command1 from Figure
9-14 onto a blank form.

Figure 9-14: Viewing the fields in a
command

Figure 9-15: The result of dragging
a command 8object onto a form

4728-3 ch09.f.qc 7/31/00 09:45 Page 159

160 Part II ✦ Beginning Database Programming

They’re still in one piece: When you drop the fields onto your form object, all of
the fields are selected. This makes it easy to move the fields around on the form
until they fit.

Setting options
You can control how a field appears on a form by setting the Field Mapping on Data
Environment Designer’s Options dialog box (see Figure 9-16). Depending on the data
type of the database field, the Designer will select a control type based on the infor-
mation shown in the Default Control Association area of the dialog box.

Figure 9-16: Changing the
field mapping

If the Drag and Drop Field Captions check box is checked, a Label control will auto-
matically be generated alongside the selected control. The Caption property of the
Label control will be set to the name of field in the database.

You can change the control associated with a data type by selecting the data type
under Category/Data Type in the list box area (see Figure 9-16). The data type will
appear in the Category/Data type area beneath the list box, and the control will
appear in the drop-down box below that. To change the control, simply press the
drop-down arrow to display a list of choices. All possible controls on your system
will be listed, whether or not they are available in your current project. If you
choose a control that isn’t available in your project, it will be added automatically.
Press OK to save your changes.

There’s more: On the General tab of the Options dialog box, there are some gen-
eral options you can enable or disable. While none of these options have a big
impact on how the Designer works, you might find that they make the Designer
more comfortable to use.

Tip

Tip

4728-3 ch09.f.qc 7/31/00 09:45 Page 160

161Chapter 9 ✦ Programming with Data Environments

Data Environment RunTime Object Model
The Data Environment Designer includes a runtime object called DataEnvironment
for your program. The DataEnvironment object is basically just a container for all
of the objects you created in the Designer.

DataEnvironment properties
The DataEnvironment object contains five main properties, which are listed in
Table 9-3. The Commands and Connections are references to collection objects
containing the commands and connections you defined using the Data Environ-
ment Designer.

Table 9-3
Properties of the DataEnvironment Object

Property Description

Commands An object reference to a collection object containing the set of
Commands objects defined in the Data Environment.

Connections An object reference to a collection object containing the set of
Connection objects defined in the Data Environment.

Name A String containing the name of the DataEnvironment object.

Object An object reference to the DataEnvironment object.

Recordsets An object reference to a collection object containing the set of
Recordset objects defined in the Data Environment.

The Recordsets collection contains a series of Recordset objects. Each Command
in the Commands collection will have a corresponding Recordset object in the
Recordsets collection, which will hold the results of the Command. Adding the char-
acters rs to the front of the Command object’s name forms the name of the Recordset
object.

Unlike traditional collection objects, you can’t add or delete objects from these col-
lections at runtime. The only way to add or delete objects from these collections is
by using the Data Environment Designer at design time.

Using these collections can be a little difficult. The following line of code is used to
retrieve the value of the CustomerId column:

DataEnvironment1.Recordsets(“rsCommand1”).Fields(“CustomerId”).
Value

4728-3 ch09.f.qc 7/31/00 09:45 Page 161

162 Part II ✦ Beginning Database Programming

You need to explicitly include the name of the Recordset when trying to access it
through the collection object. Since this approach is pretty messy, Microsoft included
a shortcut for each Recordset object in the DataEnvironment object. This allows
you to rewrite the statement as:

DataEnvironment1.rsCommand1.Fields(“CustomerId”).Value

Then if you use the With statement, you can rewrite this statement as:

With DataEnvironment1.rsCommand1
.Fields(“CustomerId”).Value

End With

With what: Using the With statement can be very useful if you need to perform
multiple operations against the Recordset. Not only do you save yourself a lot of
typing, your program will execute slightly faster. The better performance is a result
of having to resolve the reference to the DataEnvironent1.rsCommand1 object
once for the With block rather than once for each statement executed.

DataEnvironment methods
The default DataEnvironment object has no default methods. However, each
time you add a command in the Data Environment Designer, a shortcut method
will be added to the DataEnvironment object. This makes it easier to code your
application.

Calling a command without parameters
There are two ways to call a Command object using the DataEnvironment object.
You can access the command though the Commands property, like this:

DataEnvironment1.Commands(“Command1”).Open

Or you can use the shortcut method, like this:

DataEnvironment1.Commmand1

Calling a command with parameters
It isn’t difficult to call a Command object with parameters. You can specify the
parameters as part of the Command object’s Parameters collection, as shown
below:

DataEnvironment1.Commands(“Command1”).Parameters(“Parm1”).Value = 1
DataEnvironemnt1.Commands(“Command1”).Parameters(“Parm2”).Value = 2

Tip

4728-3 ch09.f.qc 7/31/00 09:45 Page 162

163Chapter 9 ✦ Programming with Data Environments

DataEnvironment1.Commands(“Command1”).Parameters(“Parm3”).Value = 3
DataEnvironment1.Commands(“Command1”).Open

Or you can use the shortcut method, like this:

DataEnvironment1.Commmand1 1, 2, 3

See Chapter 11 for more information about the Parameters collection.

Data Environment events
The Data Environment Designer automatically creates a separate module to hold
all of the code for the DataEnvironment object and all of the Connection and
Recordset objects created beneath it.

Event Initialize ()
The Initialize event is called when the DataEnvironment object is accessed for
the first time. Typically, this will be when your program is first started. This is a good
place to include code that prompts the user for a user Id and password if you don’t
want to use the default login form.

Event Terminate ()
The Terminate event is called just before the DataEnvironment object is
destroyed.

Viewing Databases with the
Data View Window

The Data View Window is the central component of the Visual Database Tools (see
Figure 9-17). It works with the Data Environment Designer to allow you to perform
various tasks with your database, such as designing your database, editing data in
the tables, creating Views, and managing stored procedures. These tools are based
on the tools that ship with SQL Server 7, and work with both SQL Server and Oracle
8i database systems.

Why doesn’t it work for me?: Some of the features of the Data View Window are
only available with the Enterprise Edition of Visual Basic.

Note

Cross-
Reference

4728-3 ch09.f.qc 7/31/00 09:45 Page 163

164 Part II ✦ Beginning Database Programming

Figure 9-17: Viewing databases with the
Data View Window

Configuring the Data View Window
To start the Data View Window, you can choose View ➪ Data View Window from the
main menu or press the Data View Window icon on the toolbar. You can also display
the Data View Window by pressing the Design button while in the Data Environment
Designer.

All of the Connection objects you defined in the Data Environment Designer will be
listed under the Data Environment Connections icon. Simply expand the icon to show
icons for Database Diagrams, Tables, Views, and Stored Procedures. Expanding these
icons will show you the list of database objects you can access through the Designer.

Data Environment Not: You don’t need to use the Data Environment Designer
with the Data View Window. You can create a Data Link by right clicking on the
Data Links icon and selecting Add a Data Link from the pop-up menu. You’ll see
the familiar Data Link Properties dialog box that you’ve seen many times before.
Simply select the OLE DB provider for your database and press the Next button.
Then enter the rest of the information and you’ll be all set to use the Data View
Window.

Working with database diagrams
A database diagram is a visual representation of a database that you can modify
(see Figure 9-18). You can add new tables, delete existing tables, or change any of
the characteristics of a table.

The Database Diagram tool is identical to the Database Diagram tool in SQL Server
7’s Enterprise Manager. See Chapter 24 for more information.

Cross-
Reference

Tip

4728-3 ch09.f.qc 7/31/00 09:45 Page 164

165Chapter 9 ✦ Programming with Data Environments

Figure 9-18: Working with a database diagram

Working with tables
There are two main functions you can perform with tables using the Data View
Window. The first is to open a table in design mode (see Figure 9-19) by simply
right clicking on the table name and selecting Design from the pop-up menu.

Each column in the table corresponds to a row of information displayed in the
Design window, including the Column Name, its Data Type and size information,
whether Nulls are allowed, etc. . . You can easily change most values directly by
editing the value in the particular cell. For instance, you can changethe length of a
Varchar field from 50 characters to 128 characters by changing the value 50 to 128.
You can also add new columns to the table by simply adding them to the end of the
list of columns.

But it’s not empty: Even if your table has data in it, you can still make some changes
to its structure in Design mode. Before the changes are applied to the database, the
utility will verify that the data in the table is compatible with the changes. If it isn’t,
an error message will be displayed and you can opt to save your changes into a
script file that can be applied later.

The other main function you can perform with a table is to view its data in a spread-
sheet-like grid, similar to the DBGrid control (see Figure 9-20). You can open your
table by right clicking on the table name and selecting Open from the pop-up menu.

You can change any value in the table by simply overtyping the data in the particu-
lar cell. The changes are committed to the database when you move your cursor to
another row. If you move your cursor to the first blank row at the end of the grid,
you can insert a new row into the table by right clicking on the table and choosing
New from the pop-up menu.

Note

4728-3 ch09.f.qc 7/31/00 09:45 Page 165

166 Part II ✦ Beginning Database Programming

Figure 9-19: Working with a table in design mode

Figure 9-20: Opening a table for viewing

You may select rows by clicking on the row header area, just before the first col-
umn. Pressing the delete key will display a dialog box asking if you really want to
delete the selected rows from your database. Pressing Yes will remove the rows,
while pressing No will return you back to the table.

Working with views
The same two main functions available with tables are also available for views. You
can open a view just like you opened a table, and the results will be displayed the
same way. You can also design a view using the Query Designer (see Figure 9-21).

4728-3 ch09.f.qc 7/31/00 09:46 Page 166

167Chapter 9 ✦ Programming with Data Environments

You can enter your Select directly or use the interactive Designer to create the
Select statement.

Figure 9-21: Designing a view

Working with stored procedures
You can design and debug stored procedures using the Data View Window. Right click
on the stored procedure you want to edit and choose Design from the pop-up menu.
This will display the Design window for the stored procedure (see Figure 9-22). You
can type your changes into the window and save them as a disk file or back to the
database. When you are finished, you can use the T-SQL Debugger to test it.

Figure 9-22: Changing a stored procedure

4728-3 ch09.f.qc 7/31/00 09:46 Page 167

168 Part II ✦ Beginning Database Programming

Thoughts on the Data Environment Designer

The Data Environment Designer is an alternate way to develop database applications. It is a
step up in functionality from the ADO Data Control that was discussed in Chapter 7, but it is
not as flexible as using the ADO objects, directly. The primary advantage to using the Data
Environment Designer is that it allows you to drag and drop bound fields to your form
objects. It is also useful when you want to create hierarchical recordsets for use with
Microsoft Report, which I’ll cover in Chapter 10.

The Data View Window allows Microsoft to reuse some of the code in SQL Server to provide
some of the basic design facilities that exist in SQL Server’s Enterprise Manager in Visual
Basic. This means that you don’t have to have the SQL Server software installed on your
development computer. While this is an interesting tool in theory, I find myself using SQL
Server’s Enterprise Manager or Oracle’s SQL*Plus for these functions anyway. I invariably
need Enterprise Manager or SQL*Plus open to perform a function that isn’t available in the
Visual Database Tools or to look at a piece of data while I’m running my program, because
the Data View Window is available only at design time.

Summary
In this chapter you learned the following:

✦ You can use the Data Environment Designer to simplify the process of creating
various ADO objects that are used to access your database.

✦ You can create Command objects to execute SQL statements.

✦ You can explicitly specify an SQL statement for a Command object or create a
reference to a table or stored procedure.

✦ You can use the Data View Window to view the contents and structure of a
database.

✦ You can design SQL statements and create stored procedures directly from
Visual Basic.

✦ ✦ ✦

4728-3 ch09.f.qc 7/31/00 09:46 Page 168

