
Codeless
Database
Programming

In this chapter, I’m going to show you how to create a work-
ing Visual Basic database program without writing a single

line of code. I’ll use the ADO Data Control and some common
controls found in nearly every Visual Basic Program.

Data Binding
One of the most powerful concepts in Visual Basic is the con-
cept of data binding. By using data binding, you can delegate
many of the details of moving data between your database
and your program.

What is data binding?
Data binding is a technique that allows a data source to be
tied to a data consumer. Then when the data values associ-
ated with the data source change, the updated information is
reflected in the data consumer. Likewise, data values that are
updated in the data consumer are passed back to the data
source for updating.

In the case of a Visual Basic program, both the data source and
data consumer are typically ActiveX controls, although other
types of COM objects may be used (see Part III, Hardcore ADO,
for more information about this subject). The classic data
source in a Visual Basic program is the data control, while the
classic data consumer is a text box control.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How bound
controls work

The ADO
Data Control

Common Bound
Controls

Connecting to
a database

Building a program
without code

Binding a text box to
a data control

✦ ✦ ✦ ✦

4728-3 ch07.f.qc 7/31/00 09:44 Page 105

106 Part II ✦ Beginning Database Programming

One data control doesn’t fit all: There are three different data controls, one for
each object model (DAO, RDO, and ADO). The DAO control is simply known as the
Data Control, while the RDO data control is also known as the RemoteData con-
trol. The ADO Data Control is also called the ADODC. You should pick the data
control corresponding to the object model you wish to use and if you don’t have a
specific need to use the DAO or RDO object models, you should use the ADO Data
Control to take advantage of the enhancements and features in the ADO object
model.

How does data binding work?
Data binding is a two-step process. First, you create a data source and provide the
information necessary for it to connect to the database server. Then you create
one or more data consumers that are in turn connected to a specific database
field returned by the data source. Since the data consumers are typically common
controls such as the text box control, they are also known as bound controls.

The binding information is handled by setting various property values in the bound
controls. Two properties in particular are very important when binding a control to
a data source. The DataSource property identifies the name of the data source
control, while the DataField property identifies which database field will supply
the data for the bound control.

Then, when your application begins, the data control establishes a connection with
the database server and each of the bound controls establishes a connection with
the data control. Whenever the data control moves to a new record, the information
in each of the bound controls can be updated automatically. Likewise, whenever
the user changes a value in a bound control, the information is passed back to the
data control, which in turn will automatically update the database when the user
moves to a different record.

Connecting to the database
After binding the controls the user will interact with the data control, which needs to
be connected to the database. Again, this is handled via a set of properties. The key
property is the ConnectionString property, which holds the information needed to
connect to the database server. This is a String value that contains four main pieces
of information. The name of the database server and the name of the data provider
are used to create a vehicle that can be used to link the program to the database
server. Then the user name and password are used to authenticate the user and
determine the user’s privileges in the database.

Once you have a valid ConnectionString, you need to specify the source of the
data. This is kept in the RecordSource property. This value can be the name of a
database table, an SQL Select statement, or a stored procedure. Typically with a
data control, you’ll want to specify a table name, since it will make all of the records

Note

4728-3 ch07.f.qc 7/31/00 09:44 Page 106

107Chapter 7 ✦ Codeless Database Programming

in the table available to the user. Also, by specifying a table name, you won’t run
into any complications with adding records to your database.

See Chapter 4 for details about Select statements.

Intrinsic bound controls
Visual Basic includes two main types of controls: intrinsic and ActiveX. Intrinsic con-
trols are included with the Visual Basic runtime library and are always available to
the Visual Basic programmer. While these controls are not true COM objects, they
are much more efficient and the most frequently used. Many of these controls can
be bound to a data control, including:

✦ CheckBox ✦ ListBox

✦ ComboBox ✦ PictureBox

✦ Image ✦ TextBox

✦ Label

Of these controls, probably the one you’ll use most often is the TextBox control,
since this control makes it easy to display a database value to a user and allows
them to modify it. Other controls you might find yourself using are an Image or
Picture control when you want to display a picture on your form and the CheckBox
control when you want to display a Boolean value from your database. While you
might think that the ComboBox control might also be heavily used, there is a more
database-friendly ActiveX control called the DataCombo control that you will find
yourself using in place of the ComboBox control in most applications.

ActiveX bound controls
Unlike the intrinsic bound control, the ActiveX bound controls are true COM objects
and are external to the Visual Basic runtime libraries. Also, unlike the intrinsic bound
controls, the ActiveX controls are more complex and have the ability to work with
more than one database field at a time.

✦ DataList ✦ MaskEdit

✦ DataCombo ✦ MonthView

✦ DataGrid ✦ MSFlexGrid

✦ DateTimePicker ✦ MSChart

✦ ImageCombo ✦ RichTextBox

Of these controls, probably the most useful are the DataCombo, the DateTimePicker,
the MaskEdit, and the MonthView control. All of these controls have one common
feature: they make it harder for a user to enter an incorrect value into the program.

Cross-
Reference

4728-3 ch07.f.qc 7/31/00 09:44 Page 107

108 Part II ✦ Beginning Database Programming

Keep the Garbage Out

You’re probably familiar with the old expression “Garbage in, garbage out”. One of the most
important goals of a database programmer is to prevent bad data from getting into the
database. When you get bad data in your database, you may find it hard to isolate and cor-
rect. I remember a situation where one slightly corrupted field in a database prevented a
financial application from closing the books at the end of a fiscal year. It took nearly a week
to track down and correct the bad piece of data. In the meantime, none of the other pro-
grams in the application would run correctly, and other processing involving the general
ledger came to a complete halt. In a small business this may not be a big problem, but in a
billion dollar a year organization, you can believe the top-level management wasn’t very
happy. So think about it this way, keeping bad data out of your database is a good way of
keeping yourself happily employed.

Building the Codeless Program
Building a codeless program is an interesting exercise and one that is probably
worth your time, especially if you are relatively new to Visual Basic. Bound controls
will make your life much easier, especially in more complex applications. They defi-
nitely reduce the amount of code you have to write in your application and anything
that reduces the amount of code you have to write appeals to the lazy programmer
in everyone. For the rest of this chapter, I’m going to show you how to build a code-
less program that allows you to access the Customers table in the database I
designed in Chapter 3.

It’s your turn: This program is available on the CD-ROM as \VB6DB\
Chapter07\NoCode\Project1.vbp. To run this program, simply create a
Data Link File as described in Configuring the ADO Data Control below for your
ADODC1 control that reflects your database server, database name, user name,
and password information. Then run the program.

Preparing your project
When you start Visual Basic, you have a number of different project templates you
can choose from. These templates allow you to build many different types of Visual
Basic programs. For this program, I’m going to take the Standard EXE project and
add everything I need to build the program (see Figure 7-1).

The next step is to add the ADO Data Control to the project. This is done using the
Components dialog box. To open this dialog box, choose Project ➪ Components
from the main menu. Then select the Controls tab if it isn’t already selected and
scroll down the list of controls until you find the Microsoft ADO Data Control (see
Figure 7-2). Click on the checkbox and press OK to add the control to your Toolbox.

On the
CD-ROM

4728-3 ch07.f.qc 7/31/00 09:44 Page 108

109Chapter 7 ✦ Codeless Database Programming

Figure 7-1: Selecting a
Standard EXE project

The service pack game: Figure 7-2 reflects the names of the controls that were
updated using Visual Studio Service Pack 3. This is identified by (SP3) in the name
of the control.

Figure 7-2: Adding the ADO
Data Control to the project

Configuring the ADO Data Control
Once you add the ADO Data Control to your project, you need to place a copy of
the data control on your form and set the properties so that it will access your
database. You can either set the properties though the Visual Basic Properties
Window, or you can right click on the control and select ADODC Properties from
the popup menu. This will display a set of Property Pages for the control (see
Figure 7-3).

Note

4728-3 ch07.f.qc 7/31/00 09:44 Page 109

110 Part II ✦ Beginning Database Programming

Figure 7-3: Setting the data
control’s properties

On the General tab, you’ll see that there are three different ways to connect to a
database server. You can use a Data Link File, an ODBC Data Source Name, or a
Connection string. I’m going to show you how to build a Data Link File in this
chapter and you can see how to create a Connection String in Chapter 9.

OLE DB, not ODBC: The ADO Data Control is based on the OLE DB architecture,
which is more efficient and offers a more flexible architecture. While you can cre-
ate an ODBC Data Source, you would be much better off using a Data Link File or
creating a Connection string.

Selecting a Data Link File
After selecting Use Data Link File as the Source of Connection, press the Browse but-
ton to either select an existing Data Link File or create a new one. The Select Data
Link File dialog box (see Figure 7-4) will be displayed with the default directory for
data link files (\Program Files\Common Files\System\OLE DB\Data Links\).
If you have an existing Data Link File, simply select it and press Open. If not, you can
create one by right clicking in the file area of the dialog box and choosing New ➪
Microsoft Data Link. A new file called New Microsoft Data Link will be created.

Figure 7-4: Choosing a Data Link File

Note

4728-3 ch07.f.qc 7/31/00 09:44 Page 110

111Chapter 7 ✦ Codeless Database Programming

Name of the game: I like to include the database server and the default database
name in the name of my Data Link files. This makes it easy to identify the connec-
tion information.

Choosing an OLE DB provider
You can edit the properties in a Data Link File by right clicking on its icon and
selecting Properties from the popup menu. This will display the Properties dialog
box for the data link file. Select the Provider tab of the Properties dialog box to
begin configuring your data link (see Figure 7-5).

Figure 7-5: Viewing the properties of
a Data Link File

Define me before you use me: If you just created this file, you must edit the
properties before it can be used.

There are a number of choices for the data provider. For best performance, you
should always choose the OLE DB provider for your database system. If you can’t
locate one for your specific database management system, then choose Microsoft
OLE DB Provider for ODBC Drivers. Once you’ve chosen your provider, press the
Next button.

It isn’t there: Microsoft only supplies OLE DB providers for SQL Server and Oracle.
If you are using a different database system, contact your database vendor to get
their OLE DB provider.

Tip

Note

Tip

4728-3 ch07.f.qc 7/31/00 09:44 Page 111

112 Part II ✦ Beginning Database Programming

Entering provider-specific information
Each OLE DB provider has a list of information it needs in order to connect to a
database server. Figure 7-6 shows the information required for the Microsoft OLE
DB Provider for SQL Server.

Figure 7-6: Selecting the database
server and default database

There are three basic pieces of information needed in this form: the name of the
database server, login information, and the name of the default database. In this
example, I’m using Athena as my database server, Windows NT Authentication for
my login information and VB6DB as the default database.

Testing the connection
Once you’ve finished entering the properties, press the Test Connection button to
verify that you can connect to the database server. If the information you specify
is correct, you should see a message box saying, “Test connection succeeded”. If
there is a problem, you will see an error message describing the problem. You
should then correct the information you provided and try it again.

After you are able to test the connection successfully, you should press the OK but-
ton to close the Properties dialog box, and then press the Open button on the Select
Data Link File dialog box to choose the data link file. This will return you to the data
control’s Properties window.

4728-3 ch07.f.qc 7/31/00 09:44 Page 112

113Chapter 7 ✦ Codeless Database Programming

Choosing a RecordSource
The last step of configuring the data control is to choose a source of data. This
information is stored in the RecordSource property. You can edit this property on
the RecordSource tab of the Properties window. In this case, since you want to
make the Customers available via this program, you should choose a CommandType
of adCmdTable and then select the Customers table from the drop-down list found
immediately below that field (see Figure 7-7). This will automatically be entered into
the RecordSource property. Then I can press OK to close the Property Pages dia-
log box and save these values in the data control.

Figure 7-7: Selecting the Customers
table as the RecordSource

Adding bound controls
After adding and configuring the ADO Data Control, it’s time to add some bound
controls. I’m going to start by adding a text box for the Name field and binding it to
the data control (see Figure 7-8).

Drag a text box onto your form, and size it to hold a person’s full name. Then view the
Properties window and scroll it so that the DataSource and DataField properties
are both visible. Select the DataSource property. A drop-down arrow will appear at
the end of the property’s value field. Press it and select the data control from the
drop-down list. It should be the only item on the list.

Next, select the DataField property and press the drop-down arrow. A list of all of
the fields in the table will be listed. Select the Name field to bind the text box to the
Name column in the Customers table.

4728-3 ch07.f.qc 7/31/00 09:44 Page 113

114 Part II ✦ Beginning Database Programming

Figure 7-8: Adding the text box for
the Name field to your form

The Database Connection: You may not have given this much thought at this
point, but the Visual Basic development environment automatically uses the con-
nection information you specified in the ADO Data Control to gather information
about your database at development time. It then uses this information to help
you avoid mistakes when you enter values into the various properties. Of course,
you can enter all of the information for the bound controls manually and then con-
figure the data control, but that isn’t the lazy programmer’s way of doing things.

Testing your program
Even though this program can only display the person’s name from the Customers
table, it is worth running it to verify that the program actually works. After choos-
ing Run ➪ Start from the main menu, the program will load, establish a connection
to the database, retrieve the first row from the Customers table, and display the
value from the Name field in the text box (see Figure 7-9).

You can press the Next Row button on the data control to display the name from the
second row in the table and you can return to the first row by pressing the Previous
Row button. Pressing the Last Row button will take you to the last row of the table,
while pressing the First Row button will return you to the first row in the table.

Finishing your program
Of course, a program that lists one field from a database table is a significant
accomplishment in terms of all the little steps necessary to make it work, but it isn’t
a terribly useful program. So at this point, you need to add controls for the rest of
the fields in the table. Also, you should take the time to place labels beside each
field so that the user will understand the information displayed. When you’ve fin-
ished, your form might look like the one shown in Figure 7-10.

Tip

4728-3 ch07.f.qc 7/31/00 09:45 Page 114

115Chapter 7 ✦ Codeless Database Programming

Figure 7-9: Running your codeless program for the
first time

Figure 7-10: Finishing your codeless program

Updating database information
To change a value in the database using this program, simply change the value in
the field and move to another row. As you change the data displayed on the form,
the bound controls pass the changes back to the data control, which will automati-
cally update the row when it moves to another row. Of course, if there is an error

Previous row

First row

Last row

Next row

4728-3 ch07.f.qc 7/31/00 09:45 Page 115

116 Part II ✦ Beginning Database Programming

with the update process, a message box will appear and you will remain on the cur-
rent row until you correct the problem.

Using numeric fields
You may remember that the Zip field stores its information using a 32-bit integer
rather than a character string. While you might think that some special code
might be necessary to handle the data conversion from Long to String and back
again, you would be wrong. The conversion is handled automatically by the text
box control.

One limitation of using text boxes to display numeric information is that you can
enter non-numeric information into the text box without immediately triggering an
error. Of course, attempting to update the row will trigger a runtime error because
you can’t put a non-numeric value into a numeric field.

Using Boolean fields
Boolean fields are a natural fit for the CheckBox control. You set the DataSource
and DataField properties just like the TextBox control. The control will display a
TRUE value by placing a check mark in the check box and will clear the check box
when the database value is FALSE.

Using Datetime fields
Like numeric values, date and time values also undergo a dynamic conversion pro-
cess when information is displayed in the control. As long as the date and time
information is properly formatted and legal, the control will automatically handle
the conversion. If there is an error, the old Operation canceled message will be dis-
played, and the original values will be restored.

Adding new records
By default, the ADO Data Control doesn’t allow you to add new records to the
database. However, by changing one property value, you can easily include this
capability in your codeless program. The EOFAction property determines what
happens when the user attempts to move beyond the last row in the table.

By default, the data control will simply move the user back to the last row in the
table if the user attempts to move beyond it. However, if you set EOFAction to
adDoAddNew (2), the data control will automatically add a new blank row anytime
the user attempts to move beyond the end of the file.

Once the user adds a record and enters the proper values into each of the fields,
moving to another row will save the new row to the database. Of course, when you
add a record using this technique, the final data must meet the database rules for
acceptability. Any invalid values must be corrected before you can move to
another row.

4728-3 ch07.f.qc 7/31/00 09:45 Page 116

117Chapter 7 ✦ Codeless Database Programming

I’ve added a record and I can’t get out: One downside to using a codeless pro-
gram to add records to your database is that there isn’t a convenient method to
abort the add process. In fact, the only way to abort the add process is to end the
program, which is pretty drastic. Of course, this is a situation where a little code
can go a long way towards making the program much easier to use.

Summary
In this chapter you learned the following:

✦ What data binding is and how it works.

✦ Which controls you can bind in your Visual Basic program.

✦ How you can use bound controls to build a meaningful program without
any code.

✦ How to choose an OLE DB provider and build an ADO connection string to
connect to your database.

✦ ✦ ✦

Caution

Thoughts on Codeless Programming

Okay, so a codeless program may not be perfect, but it will work and can often be useful in
the early stages of building an application. If you’re willing to add a little code to handle
non-database functions, such as edit checking and menu management, Visual Basic offers
a much better alternative to building a database application in Access.

Access is primarily an easy to use database forms generator with some scripting capabilities
added. While it allows you to build simple database applications quickly, when building
more complex applications you constantly run into situations that aren’t easy to handle
because of the many limitations in Access. However, Visual Basic is a true programming lan-
guage and doesn’t suffer from the same limitations.

The primary drawback to using a true programming language like Visual Basic is that it can
be difficult to create programs that perform a complex task like accessing a database.
However, by using bound controls and other tools in Visual Basic, you can easily create
database programs that require very little code and that offer more power and flexibility
than their Access counterparts.

4728-3 ch07.f.qc 7/31/00 09:45 Page 117

4728-3 ch07.f.qc 7/31/00 09:45 Page 118

