
SQL Statement
Primer

In this chapter, I’m going to show you some of the key SQL
statements that you will be using when you develop your

applications. These statements will allow you to create tables,
views, and indexes. The rest of the statements can be used to
add, remove, change, and retrieve rows from your database.

Using SQL Statements
A detailed knowledge of SQL isn’t necessary for most pro-
grammers. However, it will be impossible to write a database
program without knowing a little bit about the language. The
statements I’m going to cover in this chapter apply to all of
the database systems that will be discussed in this book.

SQL for Dummies: If you really want to learn more about
the SQL language, read the book SQL for Dummies, 3rd

Edition, by Allen G. Taylor. This is a good introduction to the
SQL language and covers all of the essential elements of
the language. More advanced users should refer to the
database vendor’s documentation for their extensions to
the SQL language.

SQL statements
The SQL language consists of a series of statements that per-
form specific tasks (see Table 4-1). There are statements to
create databases and tables, statements to add and delete
rows in a table, and statements to retrieve rows from a table or
set of tables. There are other statements that deal with data
security and data integrity. These statements are constructed
according to a set of complex rules that vary slightly from one
database system to another. However, for most users, these
differences aren’t all that important.

Note

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The Select statement

The Insert statement

The Delete statement

The Update statement

The Create Table
statement

The Create Index
statement

The Create View
statement

✦ ✦ ✦ ✦

4728-3 ch04.f.qc  7/31/00  09:42  Page 49



50 Part I ✦ Database Programming Fundamentals

Table 4-1
Some Common SQL Statements

Statement Name Description

Create Index Builds an index on a set of columns on a table.

Create Table Builds an empty table in a database.

Create View Builds a view.

Delete Removes rows from a table.

Drop Index Deletes an index from a database.

Drop Table Deletes a table from a database.

Drop View Removes a view from a database.

Insert Adds rows to a table.

Select Retrieves rows from a table.

Update Changes the data values of one or more columns in the table.

Data definition language statements
The Create Table, Drop Table, Create View, Drop View Create Index, and Drop
Index statements are known as Data Definition Language (DDL) statements, while
the Insert, Delete, Update, and Select statements are known as Data Manipulation
Language (DML) statements. In most database systems today, you rarely execute
DDL statements when you want to create a database structure. Instead, you use a
utility supplied with the database system that allows you to fill in all of the informa-
tion into a table, or you use a wizard that will help you create your table or index.

This doesn’t mean that the DDL statements aren’t used. It merely means that you
enter the information in a different fashion. The database utility usually includes a
feature that will allow you to generate the SQL statements from the definitions you
entered. Then you might use these SQL statements to create a copy of the database
on another computer or include them in your application if you want your users to
be able to create the database structures on the fly.

SQL data types
Each column in a table must have a data type associated with it. The data type you
choose for a column must be compatible with a Visual Basic variable data type.
Table 4-2 lists some of the most common data types used by SQL, along with their
equivalent data types in Visual Basic.

4728-3 ch04.f.qc  7/31/00  09:42  Page 50



51Chapter 4 ✦ SQL Statement Primer

Table 4-2
Some Common SQL Data Types

SQL Data Type Visual Basic Data Type Description

Char String A fixed-length string of characters.

Date Date A value containing a date and time
value. (Available with Oracle only.)

Datetime Date A value containing a date and time
value. (Available with SQL Server only.)

Decimal Currency An exact numeric value of the specified
size.

Float Double A 64-bit floating-point number.

Int Long A 32-bit integer.

Money Currency An exact numeric value. (Available with
SQL Server only).

Number Currency An exact numeric value. (Available with
Oracle only.)

Real Single A 32-bit floating-point number.

Smallint Integer A 16-bit integer.

Varchar String Variable-length character string.

These data types can be loosely grouped into four main types: exact numeric values,
floating point values, string values, and date values. Most database servers also offer
many other data types to choose from.

For more detailed information about the data types available in a particular
database, see Chapter 23, “Overview of SQL Server,” Chapter 26, “Overview of
Oracle 8i,” or Chapter 29, “Overview of Microsoft Jet.”

Exact numeric data types
Exact numeric data types represent numbers by using an exact value. These data
types generally fall into two sub classes: integer values and packed decimal values.
Integer values store their numbers as a binary value. This offers more efficient
storage for large numbers than when you use a packed decimal value.

Money, money, money: If you need to perform calculations using currency values,
you should always use an exact numeric data type.

Tip

Cross-
Reference

4728-3 ch04.f.qc  7/31/00  09:42  Page 51



52 Part I ✦ Database Programming Fundamentals

Packed decimal values store numbers as a string of numeric digits. Four bits are
used to represent a value from zero to nine. Most database servers will allow you to
determine the number of digits you want when you specify the data type.

The advantage of exact numeric values is that when you perform arithmetic with
them, you never lose accuracy. This isn’t true with floating point values.

Floating point data types
Floating point data types represent numbers by breaking them into two pieces: a
mantissa and an exponent. Floating point numbers are expressed in terms of a value
time 10 to some power. For instance, the value 12,345 is written as 1.234 ×105 and
often displayed on the computer as 1.2345E5, where E means 10 raised to this
poser. In this example, the mantissa is 1.2345 and the exponent is 5.

Because of the way they are stored, floating point numbers are only accurate to so
many decimal places. This allows you to represent very large numbers with much
less storage than what would be required if you stored every single digit. Generally,
single values have about five decimal places of accuracy, while double values are
accurate to about ten decimal places.

Maybe, maybe not: You’ll probably never need to use a floating point data type in
your database, because most people don’t appreciate adding 1,000,000.02 + 0.01
and getting 1,000,000 because the floating point value stored only 5 digits of
information in the mantissa.

String data types
String data types hold character information. There are two different types of charac-
ter strings: fixed-length and variable-length. The fixed-length strings always reserve
the same amount of space in a table whether you store one character in the column
or fifty. Variable-length strings, on the other hand, store only the characters you
have in the string, plus some additional information that holds the length of the
string.

In general, you should choose variable-length strings over fixed-length strings. This
tends to save space in your database, especially if the amount of data you store in
the column varies significantly from one row to the next. Using variable-length
strings also allows you to create your strings with a larger maximum size. This is
useful in situations where you may have an unusually large value that you don’t
want to truncate, such as a person’s name.

Fixed-length strings are good when the size of each value remains relatively con-
stant, as with a two-character abbreviation for a state or a product identifier code.
This is especially true for small strings where the extra overhead to keep track of
the true length of the string occupies more space then the string itself.

Tip

4728-3 ch04.f.qc  7/31/00  09:42  Page 52



53Chapter 4 ✦ SQL Statement Primer

Date data types
Date data types are almost always unique to a particular database system. Even
though there isn’t much compatibility among the database vendors’ implementa-
tions, the alternatives are worse. You could allocate an eight-character string and
use the first four characters for the year, the next two for the month, and the last
two for the year. You could also use an integer value to track the number of days
since 1900 or since the day your organization was created.

Both of these methods have a drawback: the lack of integrated support for the values
by the database server. If you store your date values as a character string instead of a
date data type, when you use an interactive query tool, all you’ll see is the raw, unfor-
matted value. When using these values with Visual Basic, you’ll have to manually con-
vert your values to and from a Date variable in order to take advantage of the wide
range of date and time functions already included in Visual Basic. In the long run,
using the supplied date data types from the database server is a much better idea.

Testing SQL statements
One of the advantages of SQL is that the same language can be used interactively 
or embedded in your application. This means that you can code and test your SQL
statements using an interactive query tool and then add them to your program.
While the query tools differ depending on the database system you’re using, they
all do the same thing. You enter your statement and click on a button to execute it.
The results will then be displayed on your computer.

For the examples in this chapter, I’m going to use the SQL Server database and the
Query Analyzer tool to run the queries against the book’s sample database. However,
once you create and load the sample database in your database system of choice,
you will be able to use the corresponding query tool to run the same examples.

The Select statement
Of the statements in the SQL language, the Select statement is the most commonly
used. Its purpose is to identify the rows you want to retrieve from the database.

Here is the syntax for this statement:

Select [<selectoption>]<selectexpression>
[,<selectexpression>]...
From <tableref> [, <tableref>] ...
[Where <expression>]
[Order By <expression> [Asc|Desc] 

[,<expression> [Asc|Desc] ]...

4728-3 ch04.f.qc  7/31/00  09:42  Page 53



54 Part I ✦ Database Programming Fundamentals

where

<selectoption> ::= All | Distinct | Top <number>
<selectexpression> ::=  * | <selectitem> [ [As] <alias> ]
<selectitem> ::= <column> | <table>.<column> | 

<function> ( [Distinct]<expression> ) |  <expression>
<function> ::= Count | Max | Min | Sum

and

<alias> is an alternate name of a column or table.
<expression> is a valid expression.
<number> is a valid number.

The Select statement is the most complicated statement in SQL. The above syntax
represents only a small part of the full Select statement syntax. However, you will
rarely need anything beyond these clauses when building your application. A Select
statement is composed of a series of clauses, such as From, Where, and so on. Only
the From clause is required. I’m going to discuss how the basic Select statement
works, and then discuss each of the clauses that work with it.

Simple Select statements
To use a Select statement, all you need to do is identify the table and the columns
you want to retrieve from the database. Immediately following the Select keyword
is the list of columns you want to retrieve, and the From clause specifies the name
of the table you want to access.

Retrieving all columns
The following statement retrieves all of the columns from the Customers table in
the sample database you’ll find in the CD-ROM:

Select *
From Customers

The asterisk (*) implies that you want to retrieve every column from the table.
Running this statement in Query Analyzer should generate results similar to those
shown in Figure 4-1.

Retrieving a list of columns
If you only need a few specific columns, then you should replace the asterisk with
the list of column names you want returned, as shown here:

Select CustomerId, Name, Zip
From Customers

Each column name should be separated from the previous column by a comma (see
Figure 4-2).

4728-3 ch04.f.qc  7/31/00  09:42  Page 54



55Chapter 4 ✦ SQL Statement Primer

Figure 4-1: Running a simple query to retrieve all columns from the Customer table

Figure 4-2: Running a simple query with a list of columns

4728-3 ch04.f.qc  7/31/00  09:42  Page 55



56 Part I ✦ Database Programming Fundamentals

Selecting a subset of a table
Returning an entire table is not terribly useful in an application program. Typically,
you will want to retrieve only a single row or a handful of rows that are related to
some other value. This is where the Where clause comes into play. The Where
clause allows you to specify a search expression that identifies the set of rows you
want to return.

Where oh where is my favorite clause: If the Select statement is the most com-
monly used statement in the SQL language, the Where clause is the most 
commonly used clause. It is used in a number of other statements, including the
Delete and Update statements.

Using simple search expressions
The trick to using a Where clause is to create a search expression that will only
return the row or rows you want. For instance, let’s assume that you want all of the
information about a customer 431. The information is stored in the Customers
table. Thus, the search expression CustomerId = 431 would retrieve all of this
information. Since CustomerId column is the primary key for the Customers table,
only a single row will be returned by the following Select statement (see Figure 4-3):

Select *  
From Customers
Where CustomerId = 431

Searching for expressions with all the wrong operators: SQL supports all of the
same operators that Visual Basic includes (=, <, >, <=, >=, <>, Not, And, and Or)
to make it easy to build an expression. SQL also supports a few other operators,
such as In (discussed in Nested Queries below) and Like, which is used to match
a specified pattern, and which may include wild card characters. Of course, paren-
theses may also be used to ensure that the expression is evaluated properly.

Only those rows containing a CustomerId value of 431 will be returned. Since
CustomerId is the primary key of this table, you know that each value of CustomerId
is unique, so at most, one row will be returned. Note that if you specify a value for
CustomerId that isn’t in the table, no rows will be returned.

Of course, if you use an expression that is true for multiple rows, then multiple
rows will be returned. The following Select statement may return multiple rows
from the Customers table, since there may be multiple rows where the State column
contains the value “MD” (see Figure 4-4):

Select *  
From Customers
Where State = “MD”

Note

Note

4728-3 ch04.f.qc  7/31/00  09:43  Page 56



57Chapter 4 ✦ SQL Statement Primer

Figure 4-3: Selecting information about CustomerId 431

Figure 4-4: Selecting customers from Maryland

4728-3 ch04.f.qc  7/31/00  09:43  Page 57



58 Part I ✦ Database Programming Fundamentals

More complex search expressions
Search expressions can be as complicated as you want. You can use And, Or, and
Not to compile multiple simple expressions together to narrow the search. The fol-
lowing Select statement returns all of the customers who were added to the
database since 1999 and who also live in California (see Figure 4-5):

Select *
From Customers
Where State = “CA” And DateAdded >= “1-January-1999”

Figure 4-5: Retrieving all the customers living in California who were added since 
1999

Waiting for it to end: Always try to include at least one column in your search
expression that is part of an index. Otherwise, the database server will have to
search through every row in the table to find the rows you want. While searching
the whole table can be fairly quick for small tables, it can take a long time for large
tables.

Note

4728-3 ch04.f.qc  7/31/00  09:43  Page 58



59Chapter 4 ✦ SQL Statement Primer

Sorting results
By default, the Select statement doesn’t return rows in any particular order. In
many cases this isn’t a problem, but if you want to display these rows to the user,
you might find it beneficial to sort them before they’re displayed with the Order By
clause.

Order By follows the Where clause and includes the list of columns that you want
to use to sort the results. If you follow a column name with the key Asc or Desc,
that particular column will be sorted in ascending or descending order, respec-
tively. If you don’t specify either keyword, the data will be sorted in ascending
order. In the statement below, I’m going to retrieve all of the customers who live 
in North Carolina and sort them by their name (see Figure 4-6):

Select *
From Customers
Where State = “NC”
Order By Name

Figure 4-6: Sorting rows retrieved from a table

4728-3 ch04.f.qc  7/31/00  09:43  Page 59



60 Part I ✦ Database Programming Fundamentals

Note that since the data in the Name field is stored first name then last name, the
results are sorted by the person’s first name.

For more information about foreign keys and keys in general, refer to Chapter 2,
“Indexes and Keys.”

Using multiple tables
The Select statement allows you to combine information from multiple tables into a
single “virtual table.” This “virtual table” can’t be updated, but it makes it easier
when you need to collect information you want to display in your application.

Join operations: The technical term for combining the rows and columns in two
or more tables is known as a join operation.

The wrong way to use two tables
The Select statement allows you to specify a list of tables in the From clause.
However, the results are probably not what you would expect. Consider the follow-
ing tables. Each table has three rows, with two columns in each row. Each letter
represents a specific value in a particular column.

Table A: {{A, I}, {B, J}, {C, K}}
Table B: {{X, I}, {Y, J}, {Z, K}}

If you specify two tables in the From clause, the Select perform would look like this
and you’ll get the following result:

Select *
From A, B

Note that the Select operation matched every row in the first table with each row
in the second. This created a table with nine rows, each row having four columns.
While there may be cases where you want this result, I can’t think of any off the
top of my head.

{{A, I, X, I}, {A, I, Y, J}, {A, I, Z, K},
{B, J, X, I}, {B, J, Y, J}, {B, J, Z, K},
{C, K, X, I), {C, K, Y, J}, {C, K, Z, K}}

The right way to use two tables
Generally when you want to use two tables, it is because the
two tables are related to each other. This means that the
tables have one or more columns in common. These columns could
be part of a foreign key relationship. Suppose that Table A and

Note

Cross-
Reference

4728-3 ch04.f.qc  7/31/00  09:43  Page 60



61Chapter 4 ✦ SQL Statement Primer

Table B have the Column2 in common, which is the second column
in each table. Then the following Select statement would allow
you to join the two tables together based on the rows that have
a common value in their second column:

Select *
From A, B
Where A.Column2 = B.Column2

This Select statement would then generate the following result:

{{A, I, X, I}, {B, J, Y, J}, {C, K, Z, K}}

Note that even though Column2 values are identical, they are repeated twice
because the rows were appended to each other. Also, if you look back at the previ-
ous set of results, you will find these three rows buried. The Where clause merely
filtered out the rows where the values in Column2 didn’t match.

Equijoins: A join that uses the Where clause to match column values in different
tables is known as an equijoin, which is short for equality join.

Resolving column names
In the above example, I had two tables with the same column name. In order to
know which column is associated with which table, it is necessary to qualify the
column name by using the table name, as shown in the example below:

Select LastName, StateName
From Customers, States
Where Customers.State = States.State

To make life easier, you may want to use table aliases, which allow you to define an
alternate name for your table. The table aliases are specified in the From clause by fol-
lowing the table name with the alternate name you want to use for the table. Personally,
I prefer to use short one- or two-character abbreviations for table aliases, but you can
choose whatever size name you want. Using table aliases, I can rewrite the previous
query as follows:

Select LastName, StateName
From Customers C, States S
Where C.State = S.State

Note that using table aliases can shorten the expression in the Where clause. While
this doesn’t save much in this particular example, it can make a big difference in a
very complex Where clause.

Note

4728-3 ch04.f.qc  7/31/00  09:43  Page 61



62 Part I ✦ Database Programming Fundamentals

Nested queries
Of all the things you can do with the Select statement, nested queries are the most
complex. In a nested query, you use a second (or third or fourth) Select statement
nested inside your main statement. Typically, nested queries are used to return a
set of values that can be used with the In operator.

Selecting rows using the In operator
Sometimes you want to compare a column to a list of values, as shown in the query
below:

Select *
From Customers
Where State = “ND” 

Or State = “SD”
Or State = “MN”

While this is fairly easy to write, imagine the problems you might have if you had a
list of 15 or 20 different values to find. An alternative to writing a bunch of different
clauses is the In operator. The In operator allows you to compare a column against
a set of values, as shown in the query below. It will return a list of customer names
that live in North Dakota, South Dakota, or Minnesota (see Figure 4-7).

Select *
From Customers
Where State In (“ND”, “SD”, “MN”)

Sets of values
You can also create a set of values using a Select statement that can be used with
the In operator. Consider the following query, which answers the question, “Which
customers are in the same ZIP code as any of the customers that have been added
since 1 January 1999?”:

Select Name, Zip
From Customers
Where Zip In (Select Zip 

From Customers
Where DateAdded >= “1-January-1999”)

While this query is somewhat contrived, it gives you an alternate way to create a
set of values. You may also think that this query is similar to the one listed below,
but it isn’t:

Select Name, Zip
From Customers
Where DateAdded >= “1-January-1999”

4728-3 ch04.f.qc  7/31/00  09:43  Page 62



63Chapter 4 ✦ SQL Statement Primer

Figure 4-7: Finding customers in multiple states

The two queries could only be identical if each ZIP code had only one customer.

Complex to write, complex to debug: Nested queries often take a while to
debug. The syntax errors will drive you nuts. I suggest that you avoid using them
unless you can’t do the query any other way. Unfortunately, there are some ques-
tions that you might want to ask that can only be answered using nested queries.

Using functions
You can also include various functions in your Select statement. For instance, the
following Select statement counts the number of Customers who live in the state of
Maryland (see Figure 4-8):

Select Count(CustomerId)
From Customers
Where State = “MD”

Tip

4728-3 ch04.f.qc  7/31/00  09:43  Page 63



64 Part I ✦ Database Programming Fundamentals

Figure 4-8: Counting the customers from Maryland

Other functions that you can use include Min, Max, and Average, which will com-
pute the minimum, maximum, or average of a particular value across all of the rows
selected from the database.

Not in my program, you don’t: You probably aren’t going to use functions in your
application program. However, using functions in an interactive query program
may help you decide if your program is working. You can use the Count function
to determine the number of rows that you just added to your table, or you can use
it to count the number of rows your program updated. Sometimes, just a quick
check can help you identify if you actually processed all of the rows you thought
you had.

Inserting Rows into a Table
The SQL Insert statement is used to add one or more rows to a table. Here is the
syntax for this statement:

Insert [Into] <table> [(<column> [, <column>} ...])]   [ Values
(<value> [,<value>]...) |
As <selectstatement> ]

Tip

4728-3 ch04.f.qc  7/31/00  09:43  Page 64



65Chapter 4 ✦ SQL Statement Primer

where

<table> is the name of where you want to insert new rows.
<column> is the name of a column in the table.
<value> is a value that you wish to insert into a column.
<selectstatement> is a valid Select statement.

The Insert statement adds a row into the specified table. You can specify a list of
columns for which you will assign the values or use the list of columns specified
when the table was created. You can either explicitly specify the list of values in the
Value clause or use the As keyword to specify a Select statement that will retrieve
values from another table.

Using the Value clause, you will specify the list of values to be inserted into the
table. The position of each value corresponds to the order of the columns specified
in the Insert statement, or if the list columns were not specified, the values will cor-
respond to the order of the columns in the table definition.

Using the As clause with a Select statement allows you to populate a table with data
from another table. Like the Value clause, the columns retrieved in the Select state-
ment must match up with the columns specified after the table name.

Testing with copied data: When you are testing code that deletes or updates data
in a table, it is often useful to create a temporary table with a copy of your test data
and use that table for your testing. This allows you to easily refresh your data after
your program deletes the wrong information. Using the Insert statement with the
As clause makes this very easy to do.

A simple Insert statement
Here’s a very simple Insert statement:

Insert Into Customers
(CustomerId, Name, Street, City, State, Zip, Phone,
EmailAddress, DateAdded, DateUpdated, MailingList,

Comments)
Values (99999, “Christopher J. Freeze”, “1234 Main Street”,

“Beltsville”, “MD”, 20705, “(800) 555-5555”,
“CFreeze@JustPC.net”, “1-January-2000”, “1-January-2000”,
1, “”)

It adds a single row of information into the Customers table (see Figure 4-9). Note
that I explicitly specify each of the columns in the table. Each of the values listed in
the Values clause corresponds to the column listed in after the table name.

Tip

4728-3 ch04.f.qc  7/31/00  09:43  Page 65



66 Part I ✦ Database Programming Fundamentals

Figure 4-9: Adding a single row to the Customers table

The Insert statement listed below is identical to the previous one, but it assumes
that the order of the columns as defined in the database is the same as the order of
the data in the Value clause.

Insert Into Customers
Values (99999, “Christopher J. Freeze”, “1234 Main Street”,

“Beltsville”, “MD”, 20705, “(800) 555-5555”,
“CFreeze@JustPC.net”, “1-January-2000”, “1-January-2000”,
1, “”)

To run once is good, to run twice is bad: Running this statement more than once
will cause an error. Since the CustomerId field is the primary key for the table and
each row must have a unique value, attempting to add another row with the same
value will cause an error.

Note

4728-3 ch04.f.qc  7/31/00  09:43  Page 66



67Chapter 4 ✦ SQL Statement Primer

Deleting Rows from a Table
The Delete statement is used to remove one or more rows from a table. Here is the
syntax for this statement:

Delete From <table>
[Where <expression>]

where

<table> is the name of the database table from which you want
to delete the rows.
<expression> is an expression that is used to determine which
rows to delete.

The Delete statement is the opposite of the Insert statement. It is used to remove
rows from a table. The Delete statement uses the Where clause from the Select
statement to identify which rows should be deleted.

Deleting rows: When deleting a specific row from a table, use the primary key in
the Where clause to identify the specific row you want to delete.

A Sample Delete Statement
The following Delete statement will delete the row I just added (see Figure 4-10):

Delete From Customers
Where CustomerId = 99999

You code the Where clause the same way you would the Select statement. In this
case, I only want to delete the one row, so I need to code the Where clause to select
the specific row I want to delete.

The Delete statement can also be very dangerous. The following statement will
delete all of the rows in the Customers table:

Delete From Customers

Note that the only difference between this statement and the previous one is the
missing Where clause.

Tip

4728-3 ch04.f.qc  7/31/00  09:43  Page 67



68 Part I ✦ Database Programming Fundamentals

Figure 4-10: Deleting a single row from the Customers table

Don’t delete everything: It is very easy to delete everything from a table. For that
reason, you should exercise extreme caution whenever you use the Delete state-
ment. Always use the Where clause when using the Delete statement. Failure to
do so will delete all of the rows in your table. Unless you are deleting data as part
of a transaction (see Chapter 16, “Transactions” for more information), you can’t
recover any deleted records.

Updating Rows in a Table
The Update statement allows you to change values in one or more columns in one
or more rows. Here is the syntax for this statement:

Update <table>
Set <column> = <value> [, <column> = <value>] ...
Where <expression>

where

<table> is the name of the table you want to update.
<column> is a column name in the table you want to update.

Caution

4728-3 ch04.f.qc  7/31/00  09:43  Page 68



69Chapter 4 ✦ SQL Statement Primer

<value> is an expression containing the new value for the
column.
<expression> is true for the rows you want to update in the
table.

The Update statement allows you to change any value in any row in a table. Like the
Delete statement, you need to include a Where clause to isolate the effects of this
statement only to the rows you want to update. Otherwise, you would apply the
change to all of the rows in the table.

A Sample Update Statement
The following Update statement will search for all rows that have a Null value for
DateUpdated in the Customers table and replace the value with a valid date (see
Figure 4-11).

Update Customers
Set DateUpdated = “1-January-1997”
Where DateUpdated Is Null

Figure 4-11: Changing Nulls to a valid date

4728-3 ch04.f.qc  7/31/00  09:43  Page 69



70 Part I ✦ Database Programming Fundamentals

The Create Table Statement
The Create Table statement is used to build a new table in your database.

There’s more to this statement than meets the eye: Nearly all database vendors
have added many vendor-specific extensions to the Create Table statement that
I’ll cover in more detail when I focus on the specific database systems in Chapters
23, 26, and 29.

Here is the syntax for this statement:

Create Table <tablename> (<columndef> [, <columndef>]...)

where

<columndef> ::= <columnname> <datatype> [Null | Not Null ]

and

<tablename> is the name of your table.
<columnname> is the name of a column in your table.
<datatype> is a valid data type.

The Create Table statement allows you to define the collection of columns that
make up a table. The table must not already exist in your database, or you’ll get an
error message when you try to create it.

Each column must be assigned a valid data type. Table 4-2 earlier in this chapter
lists some of the common data types available for a relational database.

For more detailed information about the data types available in a particular
database, see Chapter 23, “Overview of SQL Server,” Chapter 26, “Overview of
Oracle 8i,” or Chapter 29, “Overview of Microsoft Jet.”

Gone with the table: To remove a table from your database, use the Drop Table
<tablename> SQL statement. This statement will also delete any indexes associ-
ated with the table. Just be certain that you really want to delete the table, since it
can’t be undeleted.

The following SQL statement creates the Customers table for SQL Server:

Create Table Customers (CustomerId Int Not Null,
Name Varchar(64), Street Varchar(64), City Varchar(64),
State Char(2), Zip Int, Phone Varchar(32), 

Tip

Cross-
Reference

Note

4728-3 ch04.f.qc  7/31/00  09:43  Page 70



71Chapter 4 ✦ SQL Statement Primer

EMailAddress Varchar(128), DateAdded Datetime,
DateUpdated Datetime, MailingList Bit, 
Comments Varchar(256))

Note that I declare the value CustomerId as Not Null, since this column is the 
primary key for this table.

The Create Index Statement
The Create Index statement is used to add an index to a table in your database.

Choose carefully, my child: Picking the right set of indexes can be difficult. You
should use an index on the primary key of a table, especially if you plan to retrieve
rows based on the primary key. However, adding any other indexes can severely
impact your database’s performance, since each time you add a row to the
database, the database server has to update all of the indexes. The more indexes
you have, the longer it will take to update your data.

Here is the syntax for this statement:

Create [Unique] Index <indexname> On <tablename> (<columnname>
[, <columnname>]...)

where

<indexname> is the name of your index.
<tablename> is the name of your table.
<columnname> is the name of a column in your table.

The Create Index statement adds an index to your table using the specified columns.
Using an index can improve the performance of queries that use those columns at
the cost of additional work the database server must do each time any of the values
in the specified columns are changed.

Including the keyword Unique means that the set of values included in the index
will be unique in the table. This is a useful feature if you need to ensure that you
don’t have two or more rows with the same value in the indexed columns.

Index be gone: To remove an index from your table, use the Drop Index <index-
name> SQL statement.

Tip

Caution

4728-3 ch04.f.qc  7/31/00  09:43  Page 71



72 Part I ✦ Database Programming Fundamentals

A Sample Create Index Statement
The following SQL statement creates a Unique index on the CustomerId field of the
Customers table:

Create Unique Index CustomerIndex
On Customers (CustomerId)

This ensures that each value of CustomerId in the table will be unique and also that
queries using the CustomerId column in the Where clause will run faster.

The Create View Statement
The Create View statement creates a virtual table that can be used like any other
table in your database. Here is the syntax for this statement:

Create View <viewname> [(<columnname> [, <columnname>]...)] 
As <selectstatement>

where

<viewname> is the name of your view.
<columnname> is the name of a column in your view.
<selectstatment> is valid select statement that returns the
information in your view.

For more information about views, refer to “Views” in Chapter 2.

The virtual table that the Create View statement defines in your database is indis-
tinguishable from a regular table for any operations involving a Select statement.
The virtual table can often be updated, depending on how the view was created.

In order to update a view, the Select statement must only reference a single table
known as the base table, and it must not return any calculated values using func-
tions and/or mathematical formulas. Also, any columns not explicitly included in
the view must be able to accept Null values. When you try to add a row to a view,
any columns in the base table that are not part of the view will be set to Null.

Bye-bye view: To remove a view from your table, use the Drop View <viewname>
SQL statement.

The following SQL statement creates a view that consists of the customer’s name
and the CustomerId column:

Create View CustomerNames As
Select Name, CustomerId
From Customers

Tip

Cross-
Reference

4728-3 ch04.f.qc  7/31/00  09:43  Page 72



73Chapter 4 ✦ SQL Statement Primer

Figure 4-12 shows the results of using a Select statement against the view. This view
can be updated, since the columns that are not included will accept Null values. This
technique is known as vertical partitioning, since only some of the columns are made
available to the user.

Figure 4-12: Preventing someone from seeing customer information beyond the
customer’s name and CustomerId

You can also use a Where clause to retrieve only some of the rows in a table. This
technique is known as horizontal partitioning. Horizontal partitioning is useful if you
need to create a view where only some of the rows in the table are retrieved. The
following SQL statement creates a view containing only the customers found in
Maryland (see Figure 4-13):

Create View MdCustomers As
Select *
From Customers
Where State = “MD”

Note that this view is updateable, since all of the columns from the base table are
present. Also, even though the view is restricted so that only customers from
Maryland will be returned, you can insert rows using a different value for State.
Thus, it is possible to add a row to the view that you will be unable to later retrieve.

4728-3 ch04.f.qc  7/31/00  09:43  Page 73



74 Part I ✦ Database Programming Fundamentals

Figure 4-13: Restricting the view to only the customers from Maryland

Thoughts on Using SQL to Speed 
Your Development Process

The Create Table, Create View, and Create Index statements are known as Data Definition
Language (DDL) statements, while the Insert, Delete, Update, and Select statements are
known as Data Manipulation Language (DML) statements. In most database systems
today, you rarely execute DDL statements when you want to create a database structure.
Instead, you use a utility supplied with the database system that allows you to fill in all of
the information into a table or use a wizard that will help you create your table or index.

This doesn’t mean that the DDL statements aren’t used. It merely means that you enter the
information in a different fashion. The database utility usually includes a feature that will
allow you to generate the SQL statements from the definitions you entered. Then you might
use these SQL statements to create a copy of the database on another computer or include
them in your application if you want your users to be able to create the database structures
on the fly. Visual Basic includes several object models that isolate the programmer from the
underlying SQL statements. So, while you may not need to know how to use the SQL state-
ments to write a database application, you may find yourself backed into a corner, in terms
of the technology.

4728-3 ch04.f.qc  7/31/00  09:43  Page 74



75Chapter 4 ✦ SQL Statement Primer

Summary
In this chapter you learned:

✦ about the SQL statements and data types.

✦ how to use the Select statement to retrieve information from your database.

✦ how to use the Insert, Delete, and Update statements to manipulate the data
in your database.

✦ how to use the Create Table statement to create a new table.

Simply using an interactive query tool to retrieve information from your database will help
you understand if your program is working properly or not. You can use the Select state-
ment to return rows from a table and you can verify that they were updated properly. When
used with the Count function, you can find out if your program processed the correct num-
ber of rows.

The Insert and Create Table statements can be used together to create test copies of a
table, with which you can test updating and deleting rows repeatedly until you are satisfied
that your program is running correctly.

Most database vendors supply a rich environment for executing SQL statements. Using this
environment, it is possible to write multi-statement SQL programs called stored procedures
that perform fairly complex operations. Since these stored procedures run totally on the
database server, they may run significantly faster than executing them one statement at a
time from your local computer. This is an important concept to keep in mind when devel-
oping a database application, and one that I’ll explore in more depth when I talk about the
stored procedures.

Also, keep in mind that many OLE DB providers translate the activities you perform into SQL
statements that are sent to the database server for execution. This happens even if you
don’t explicitly include SQL statements in your program. So, in cases where every cycle
counts, you might consider coding the SQL statements yourself rather than letting the
provider do the work.

Another thing to keep in mind is that this chapter contains just enough information to get
you started in learning how to use SQL. Since I feel that the best way to learn is by doing, I
suggest you take the time to use Query Analyzer, SQL*Plus, or any other interactive SQL util-
ity program to practice building and executing SQL statements. While I believe in the KISS
rule (Keep it Simple Stupid!), there are times where it is appropriate to use very complex
SQL statements. And the best way to write complex SQL statements that work is by practic-
ing writing simple SQL statements.

4728-3 ch04.f.qc  7/31/00  09:43  Page 75



76 Part I ✦ Database Programming Fundamentals

✦ how to use the Create Index to allow the database to find specific rows in
your table more quickly.

✦ how to use the Create View statement to create a virtual table that can be
used just like a real table, but whose contents are dynamically created from
other tables in the database.

✦ ✦ ✦

4728-3 ch04.f.qc  7/31/00  09:43  Page 76


