c H.Arl;)E R
Designing a)
Relational
Database

Stating the problem

Brainstorming

I n this chapter, I’'m going to show you the way | design a Modeling entities
database. While I'll use SQL Server tools in this chapter, and relationships

the same concepts can be applied to any database system.

The key to using this approach is to understand the tech- Building the database
nigues I’'m going to show you and adapt them so that they

work for you. 0 0 0 0

Overview of the Design Process

Designing a relational database can be as easy or as hard as
you choose to make it. | generally use a seven-step approach
as outlined below:

1. Stating the problem

2. Brainstorming for ideas

3. Modeling entities and relationships
4. Building the database

5. Creating the application

I’'m going to discuss the first four steps in this chapter. The
rest of this book will focus on step five.
- Cross- | See Chapter 2 for information about the relational
Reference , gatabase model.

32 Part | [Database Programming Fundamentals

Stating the Problem

Note

While stating the problem may seem easy, it’s a lot harder than it looks. The problem
statement should present an understanding of what the organization is trying to
accomplish, while at the same time trying to emphasize the most critical business
needs. If you want to replace an existing application, you can use that application as
a basis for the answer. But if you are building an application for the first time, it is
very important to understand what problem you’re trying to solve. After all, if you
can’t identify the problem, how are you going to know if you really solved it?

The problem should be stated as simply as possible. For example, if the people at
Amazon.com were to state their problem, it might look like this: we want to estab-
lish Amazon.com as a brand name by selling books to consumers via the Internet
at the lowest possible cost to the consumer and with the best possible service,
while building market share that will ensure the long-term stability of the company.
A specialty mail-order catalog company might want to solve this problem: we want
to improve how we take customer orders over the telephone to reduce mistakes
and improve service to our customers. A small electronics supplier might state
their problem in this way: we need to improve our inventory control to increase
the number of times the inventory is turned over each year and to prevent stock-
piles of obsolete items. In this book, I'm going to use a common database for all of
the examples | create. I'll also update an application | wrote a few years ago called
Car Collector, which tracks a collection of toy cars. Since | originally wrote this
program, the Internet has become very important to collectors. Web sites like
eBay make it much easier for people to buy and sell collectibles. In fact, my wife
likes to buy and sell collectible dolls and has been asking me to build her a version
of Car Collector that is targeted at the doll market.

Taking this information into consideration, | can state my problem like this: | want
to update Car Collector to include support for other types of toys and collectibles
and add support for trading toys with other collectors over the Internet. With the
new features I’'m going to add, I’'m going to change the name of the application to
Toy Collector.

It's almost realistic: Toy Collector as used in this book isn't meant to be a com-
plete application, but rather a framework for showing you different techniques for
building database applications in Visual Basic. Therefore, the database design may
not be as complete as a commercial application, nor will all of the features found
in the commercial application be present in Toy Collector. Some of the data struc-
tures | use, as well as the features included in the application, may seem like
overkill, but they are necessary to illustrate various points along the way. So, focus
on the techniques that I'm going to show you and try to understand why and how
I do things, rather than focusing on why this feature was added or why that infor-
mation is missing.

Chapter 3 0 Designing a Relational Database 33

Brainstorming

Once you have a basic understanding of the problem your application needs to
solve, you need to design the database to accommodate the information related to
your application. The first step in this process it to take a look at your problem and
try to determine all of the information and functions that might be needed to solve
the problem. I call this step brainstorming.

Brainstorming is the act of discussing and recording ideas without regard to how
feasible they are to implement. This helps you identify all of the information you
need to keep and all of the tasks your application will need to perform.

| like to conduct brainstorming sessions that include everyone who will be involved
with the project in a single room with a white board. It helps to have as wide a range
of people present as possible. Everyone from end users, to programmers, to manage-
ment should be involved in this process.

Every idea that is raised should be listed on the white board, even if it’s similar to
an idea that’s already listed. After the meeting, the information should be orga-
nized, and similar ideas can be combined as a single item. The ideas should be clas-
sified as either a task that the application should perform or a piece of information
that will need to be kept.

It's important to understand that some of the ideas that come out of the brain-
storming session may not be practical. At this stage of the process, you shouldn’t
worry about practicality. It is far more important to be complete. Sometimes things
that seem impractical at this stage may prove easy to implement later, while other
ideas that seem easy to implement at first may not prove to be worth the time and
effort.

Also, it’'s important not to make fun of any ideas, no matter how bad they seem.
This is especially true for ideas coming from the less technical attendees. Quite
often, their ideas and comments may lead to a better understanding of how the
application should work.

Brainstorming Toy Collector

Since you can’t actively participate in the brainstorming session, | sat down and
held one myself, and came up with the following list of functions that need to be
performed by Toy Collector application:

O Track items currently in the collection

O Create reports of items in the collection

O Locate a toy in the inventory

34 Part | 0 Database Programming Fundamentals

0 Keep a mailing list of current and potential customers

O Create a Web page with a list of items currently for sale

O Create a Web page with a list of items wanted

O Create an HTML listing for eBay

O Evaluate the condition of a toy

O Track purchases and sales

O Process an order that sells one or more toys to a customer

O Process an order that purchases a toy from a customer

The functions will be used to maintain a database containing the following data

elements:
0 Toy name O Date ordered
O Manufacturer O Date received
O Description O Date shipped
O Year the toy was built O Credit card number
O Value O Expiration date
O Price paid 0 Customer name
O Asking price 0 Customer’s first name
O Condition O Customer’s last name
O Condition questions O Customer’s middle initial
O Type of toy O Customer’s address
O Order information O Customer’s city
O Shipping cost O Customer’s state
O Sales tax O Image of the collectible

Reviewing the results

After conducting the brainstorming session, you need to review the information
you collected and try to eliminate duplicate information and make sure that the
information you have is complete. Quite often while you conduct this review,
you’ll realize that other related information might be useful and should be added
to the list.

Chapter 3 O Designing a Relational Database

Examining the functions to be performed

Looking at the above results, you can see a few common threads. First, you need an
inventory system that tracks all of the toys in the collection. This is a fairly com-
mon application, along with maintaining a mailing list.

The inventory part of an application usually requires a unique identifier for an item
in inventory. This wasn’t included as part of the original brainstorming session. In a
traditional inventory system, the quantity of the item is also included. However,
due to the fact that different toys may have different characteristics based on their
condition, | choose to ignore the quantity issue and require that each item in the
inventory must have its own unique record.

Processing orders isn’t difficult. However, a few more items need to be added to
what was already identified above. For instance, in order to compute sales tax, you
need to know the sales tax rate. For the purposes of this book, I'm going to assume
that the sales tax rate is uniform across a state, even though this isn’t necessarily
true. You also need to capture the customer’s name on the credit card, since it may
be different than the name they entered into your database. There should also be
an option to ship to an alternate destination, rather than a regular mailing address.

The mailing list is pretty straightforward, except that you should give the customer
the option to not receive mail. This is important, because even in today’s market-
place, people will complain about unwanted mail. Also, you may want to include
some additional comments about the customer that would let the user record prob-
lems that they may have had during previous transactions.

The customer’s name is actually listed twice: once as simply name, and another
time as first, middle, and last names. Which way is best really depends on you.
Having a separate last name field makes it easy to search on someone’s last name.
However, using a single field lets you format a name more naturally, which is impor-
tant when you have people that have suffixes such as Ph.D., Junior, Senior or Ill. It
also allows someone to enter a title such as Mr., Ms., Dr., etc. with fewer problems.
In the long run, it really doesn’t matter which method you pick as long as you're
consistent throughout your database.

Evaluating the condition of a toy can be a fairly complex process. One method is to
assign the toy a point value, assuming that it’s in mint condition. Then you would
ask a series of questions about specific flaws that are possible in the toy. Depending
on the response, points will be deducted from the maximum score. The resulting
score can then be mapped onto condition value, which in turn allows you to deter-
mine the true value of the toy. Since the questions can vary by the type of toy, addi-
tional information is needed to determine the type of toy and the questions that will
be used to determine the toy’s overall condition.

35

36 Part | [Database Programming Fundamentals

Mapping the results to data types

The last step of the brainstorming session is to map the data elements onto a series
of data types. After reviewing the brainstorming information, | like to assemble a

list of the data elements that were derived from the session, along with Visual Basic
data type and a short description of the elements, such as those shown in Table 3-1.

Table 3-1
Data Elements
Data Element Data Type Description
CustomerName String The name of the customer.
Street String The street on which the customer lives.
City String The city where the customer lives.
State String The state where the customer lives.
Zip String The proper ZIP code for the customer’s address.
Phone String The customer’s telephone number.
EMailAddress String The customer’s e-mail address.
MailingList Boolean True if the customer wants to receive periodic
notices.
OrderNumber Long A number that uniquely identifies the order.
OrderStatus String The current status of the order.
DateOrdered Date The date the order was placed.
DateShipped Date The date the order was mailed.
ShippingCost Currency The cost to ship the order.
SalesTax Currency The amount of sales tax collected.
CreditCardNumber String The credit card number used to purchase a toy.
ExpirationDate String The expiration date on the credit card.
Inventoryld Int A unique identifier for an item in the collection.
ToyName String The name of the collectible toy.
Manufacturer String The toy’s manufacturer.
ToyType String The type of toy.

ToyDescription String A description of the toy.

Chapter 3 O Designing a Relational Database 37

Data Element Data Type Description
MintValue Currency The value of the toy if it was in mint condition.
Condition Long A numeric description of the toy’s condition.
Question String A question used to evaluate a toy’s condition.
TrueValue Currency The true value of the toy based on its condition.
DatePurchased Date The date the toy was purchased.
Image Picture A picture of the toy.

Note US first: When building an e-commerce application, one of the first things you

need to plan for is how to handle international issues. For the most part, the only
way these issues would affect your database design is that additional data ele-
ments, such as Country and CurrencyType, would need to be included, plus you
would need to allow additional space for other fields such as ZIP code. Just
because | don't include these fields in Toy Collector isn’'t a good reason for you not
to include them in your application.

Modeling Entities and Relationships

The next step in the process is translating the information from the brainstorming
session into a database design.

Entity/relationship modeling

Entity/Relationship modeling (also known as E/R modeling) is a way of describing
the relationship between entities. An entity is a thing that can be uniquely identi-
fied, such as a toy, a customer, or an order. Associated with the entity is a set of
attributes, which helps to describe the entity. Each customer has a name and an
address. Each toy has a name and a manufacturer. An order has an order number
and a date ordered. Relationships are formed between two entities, such as cus-
tomers and orders, where a customer places an order for a toy.

When drawing an E/R model, | use rectangles for entities, ellipses for attributes,
and diamonds for relationships. In Figure 3-1, you can see a simple E/R model that
has two entities (Customers and Orders), with each entity having two attributes
(Customers-Address and Name, Orders-Order Number and Date Ordered) and a
single relationship (Customer-Order).

38 Part | [Database Programming Fundamentals

Tip

Address Customers

Customer-Order

Order Number Orders Date Ordered

Figure 3-1: Designing a simple database using an E/R model.

|dentifying entities and attributes

The first step in this process is to review the list of data elements found in Table
3-1 and look for common groupings. As you scan through the list of data elements,
three main groupings jump out almost immediately: customer information, inven-
tory information, and order information. Each of these groupings represents a
major entity in the Toy Collector database.

At the same time, you need to look at the various entities and their attributes from
an implementation point of view. You may find that a few other attributes are easy
to include and will add value to the application from the user’s point of view.

Dirt cheap disk drives: If you designed a database years ago, you will remember
that disk space was very expensive, and you always tried to use the least amount

of space possible. In today’s marketplace, you can purchase a high-performance 9-
gigabyte SCSI disk drive for less than $500. If you allow 2,000 bytes for each cus-
tomer (which is very generous), you can store over 4 million customers on a single
disk drive. Since most applications won't store this much data, don't let the cost of
disk space drive your database decisions.

Customer information

Table 3-2 contains the list of data elements that are related to a customer, plus a few
more that popped up while assembling the list. Finding some additional data ele-
ments at this stage is quite normal, since we now have a better understanding of
the application’s needs. In this case, | added fields to identify when the customer

Chapter 3 O Designing a Relational Database

was originally added to the database (DateAdded) and the last time the information
was updated (DateUpdated). | also added a field called Comments that allows the
user to record any comments they may have about this particular customer.

Table 3-2
Customer Information

Column Name Data Type VB Type Description

Customerld Int Long A unique identifier for the customer.

Name Varchar(64) String The customer’s name.

Street Varchar(64) String The street address where the
customer lives.

City Varchar(64) String The name of the city where the
customer lives.

State Char(2) String The name of the state where the
customer lives.

Zip Int Long The ZIP code for the customer’s
address.

Phone Varchar(32) String The customer’s phone number.

EmailAddress Varchar(128) String The customer’s e-mail address.

DateAdded Datetime Date The date the customer was added to
the database.

DateUpdated Datetime Date The date the customer’s information
was last updated.

MailingList Bit Boolean When true means that the customer
wishes to receive periodic mailings.

Comments Varchar(256) String Comments about the customer.

Inventory information

The information about the inventory is a little more complicated than the customer
information. While it is easy to identify the attributes that are directly related to an
inventory item (see Table 3-3), there are a few cases where some of the information
isn’t directly related. For instance, the questions that you need to ask the user in
order to determine the condition of a toy are related to the type of toy, not the actual
toy itself. This implies that another entity called ToyTypes (see Table 3-4) will be
needed to hold information about a type of toy. Also, because there are multiple
questions for each toy type, you’ll need yet another entity (ConditionQuestions) to

hold the questions (see Table 3-5).

39

Part | 0 Database Programming Fundamentals

40

Table 3-3
Inventory Items

Column Name Data Type VB Type Description

Inventoryld Int Long A unique identifier for the item in the
collection.

ToyTypeld Int Long A unique identifier for the type of toy
in the collection.

Name Varchar(64) String The name of the toy.

Manufacturerld Int Long The name of the manufacturer who
made the toy.

Yearlssued Datetime Date The date the toy was first
manufactured.

Description Varchar(256) String A description of the toy.

MintValue Money Currency The value of the toy if it is in mint
condition.

Condition Int Long The condition of the toy using a
numeric scale.

ConditionMask Varchar(64) String Answers to the condition questions
for this type of toy.

TrueValue Money Currency The true value of the toy based on its
current condition.

DatePurchased Datetime Date The date the toy was added to the
inventory.

PurchasePrice Money Currency The amount of money paid for the
toy.

AskingPrice Money Currency The amount of money you are willing
to sell the toy for. A value of zero
means that you aren’t willing to sell
the toy at this time.

BuyingPrice Money Currency The amount of money you are willing
to pay for a similar toy.

Wanted Bit Boolean If true means that you want to buy
the toy.

ForSale Bit Boolean If true means that you want to sell

the toy.

Chapter 3 [

Designing a Relational Database

Column Name Data Type VB Type Description

Comments Varchar(256) Sting Any comments that would be
displayed along with the toy.

DateUpdated Datetime Date The most recent time this
information was updated.

Table 3-4
Toy Types

Column Name Data Type VB Type Description

ToyTypeld Int Long A unique identifier for the type of toy
in the collection.

Description Varchar(64) String A description of the type of toy.

Table 3-5
Condition Questions

Column Name Data Type VB Type Description

Typeld Int Long A unique identifier for the type of toy
in the collection.

Seq Int Long A sequence number that is used to
distinguish between multiple
questions for a specific type of toy.

Question Varchar(64) String A guestion used to evaluate the
condition of the toy.

Weight Int Long The relative importance of the
question when determining the toy’s
condition.

Responses Int Long The highest possible value of the

response.

Sometimes it is useful to codify a data value to ensure data consistency. A good
example of a field that can easily get bad data is the Manufacturer field. Consider
how many different ways someone can spell Mattel. One way to ensure that the mis-
spelling doesn’t happen is to encode each toy manufacturer as a numeric value and

41

42 Part | 0 Database Programming Fundamentals

store the numeric value in the database. Then you need to add a translation table
that can be used to translate the codified value into a text string. This is what the
Manufacturers table accomplishes (see Table 3-6).

Table 3-6
Manufacturers
Column Name Data Type VB Type Description
Manufacturerld Int Long A unique identifier for the name of

the manufacturer.

Name Varchar(64) String The name of the manufacturer.

Another area of concern is that we need to store images for the toys. While | believe
it is acceptable for you to store images in a database, | also believe that they should
be stored in a separate table. Since | need to use a separate table for the image, |
decided to add a sequence number column that will let me store multiple images
for a single toy (see Table 3-7).

Table 3-7
Images
Column Name Data Type VB Type Description
Inventoryld Int Long A unique identifier for the item in the
collection.
Seq Int Long A sequence number that is used to

distinguish between multiple images
for a single toy.

Image Image Picture A large binary field that holds the
actual image of the toy.

Order information

The final major entity that | identified in this application is the Orders entity.
However, this entity needs to be subdivided so each order can have multiple items
in the order. Thus, Table 3-8 lists the attributes of the Orders entity, while Table 3-9
lists the attributes associated with a single item that is in the order. | called this
entity OrderDetails.

Chapter 3 O Designing a Relational Database

Storing Images in a Database

While many people recommend against storing an image in your database, | believe other-
wise. By storing images in the database, it is much easier to secure and access them. Storing
images outside the database means that you have to maintain a separate security system to
protect the images. This can become very complicated if you permit the images to be
accessed both by Web browser-based applications and traditional client/server applications.

While | believe in storing images in the database, | also believe that the images should be
stored in their own table, away from any related data. Database performance is based
mostly on how much information you can retrieve with a single disk 1/0. The more rows
you can retrieve, the better.

In a typical database table, you might be able to retrieve anywhere from 10 to 100 rows
with a single disk 1/0. However, if you include an image in the table, you may find that you
only get one row for each disk 1/0. By moving the image to a separate table, the perfor-
mance of the main table isn’t compromised.

Table 3-8
Orders
Column Name Data Type VB Type Description
Orderld Int Long A unique identifier for the order.
Customerld Int Long A unique identifier for a customer.
OrderType Int Long 1 = sale, 2 = purchase.
ShippingCost Money Currency The total cost of shipping.
SalesTax Money Currency The total cost of sales tax.
HowPaid Int Long 1 = credit card, 2 = check.
CreditCardNumber Varchar(32) String The customer’s credit card number.
ExpDate Varchar(16) String The customer’s credit card expiration
date.
OrderStatus Int Long 1=order placed, 2=order shipped,
3=order received.
DateOrdered Datetime Date The date and time the order was
placed.
DateShipped Datetime Date The date and time the order was
shipped.
DateReceived Datetime Date The date and time the order was

received.

43

44 Part | 0 Database Programming Fundamentals

Table 3-9
OrderDetails

Column Name Data Type VB Type Description

Orderld Int Long A unique identifier for the order.

Seq Int Long A sequence number that is used to
distinguish between multiple items
in a single order.

Inventoryld Int Long A unique identifier for the item in the
collection.

PurchasePrice Money Currency The amount paid for the toy.

The last entity | want to talk about is the States entity. This entity exists mostly to
translate the two-character state abbreviation into a sales tax rate, which is used to
compute the amount of sales tax that must be collected for an order. At the same
time, | decided to add the StateName field to translate State into a more meaningful

value.
Table 3-10
States
Column Name Data Type VB Type Description
State Char(2) String The two-character abbreviation for a
state.
StateName Varchar(64) String The proper state name.
SalesTaxRate Decimal Currency The sales tax rate for the state.

|dentifying Relationships

Once you have identified all of your entities and their attributes, identifying the
relationships in your design is a piece of cake. You begin by looking at how the enti-

ties are related to each other.

Tip

Chapter 3 O Designing a Relational Database

There are three basic types of relationships: one-to-one, one-to-many, and many-to-
many. These relationships refer to the number instances of data in one entity that
are related to instances of data in another entity. In a one-to-one relationship, there
is only one instance of data in one entity that is related to a single instance of data
in another entity. For instance, assume that you have two entities — stores and
managers. Each store has a single manager, while each manager has a single store.
Thus each store has a unique manager and each manager has a unique store.

In a one-to-many relationship, one instance of data in the first entity is related to
zero or more instances of data in the second entity. For example, assume that you
have an entity for customers and an entity for orders. Each customer may place
as many orders as they desire. They need not have placed any orders if they have
signed up to be on a mailing list. For each order, there is exactly one customer
who placed the order. Thus for each order there is only one customer and for
each customer there may be zero or more orders.

In a many-to-many relationship, multiple instances of data in the first entity are
related to multiple instances of data in the second entity. This can be illustrated by
having an entity for parents and an entity for children. Each parent may have zero
or more children, while each child may have multiple parents. (Remember, an
orphan child has no parents, while a child with divorced parents, may have a
mother, a father, a stepmother and a stepfather.)

Drawing the E/R model

Drawing the E/R model is a fairly simple task (see Figure 3-2) with the information
found in Tables 3-2 to 3-10. While | didn’t list the attributes for each entity because it
would render the small drawing nearly unreadable, it is a fairly easy task. Of course,
comparing the above tables to the diagram is probably even more meaningful.

When drawing an E/R model, | suggest using a tool like Visio rather than creating
a drawing with a paper and pencil. Visio allows you to easily edit the drawing to

4 accommodate the inevitable changes that will occur as various people review and
comment on your document. Of course, there are some very expensive database
design tools that offer similar capabilities, but | find Visio works nearly as well for
most database designs.

45

46 Part | 0 Database Programming Fundamentals

State

Customer-
State

Customers

Customer-
Order

Questions

Toy Type
Question

Orders

Order Details

Images Toy Types Manufacturers
Inventory- Inventory- Customer-
Images Toy Types Order

Inventory

Figure 3-2: Viewing the final Entity/Relationship model for Toy Collector.

Building the Database

Translating an E/R model into a database is a pretty straightforward process. Each
of the entities becomes a table and their attributes become columns in the table.
You can see the final product in Figure 3-3 using the SQL Server database diagram

facility.

Chapter 3 O Designing a Relational Database

_I Cinlorarld _I et orpldd B Irvezritonyid
| harna 2 ToyTypedd ==
e L raree Insm
Tleey L | Harufacturanis
| s | e kned
o | cesarigan
| phore | rrtvsie
| e B concion
| vatatickdad I (R
| Dkt ipad e 2 Trumhshys
| Hesdreguist R | Crderis L | pabeburcrases
| commants B Cectorenid _ |rrcamrcn
| crdertypm | AskingPrice
| shippingCost | Bringirios
0 e | warkad
hora i | S
| e b | Cormvmrts
T epbiain I bt std
I DrderFatus
e [[E—
[T |ostwstumped
Ganlen TasPabe Dl nstereosived

Figure 3-3: Looking at a database diagram of the Toy Collector database.

Thoughts on Database Design

Just because you have a valid database design doesn’t mean that you will get the best per-
formance from it. There are a number of factors that will affect performance, such as the
number of tables in the database, the size of the columns, and the number of indexes you
are using. However, the biggest single factor that affects your database’s performance is the
hardware you're using.

Believe it or not, having a faster CPU will not necessarily make your database server run
faster. A database server is very I/0 intensive. Anything that allows the database to retrieve
data faster from disk will help the database server’s overall performance.

Adding memory to your server allows the database server to cache more data in memory.
After all, retrieving data from memory is much faster than retrieving it from disk. This is the
biggest change you can make to improve database performance.

After adding memory to your system, using SCSI disk drives in place of IDE drives is the next
place you should look for performance gains. Not only can you manage up to 15 disk drives on
a single SCSI card, SCSI also allows you to perform concurrent operations on each drive. Thus
you can have multiple disk drives performing seeks, while other drives are transferring data.
SCSI-lII can transfer data faster than SCSI-I or SCSI-I and should be used for best performance.

Using faster disk drives themselves will also improve performance. Disks that spin at 7,200
revolutions per minute (RPM) will transfer data faster than those that spin at 5,400 RPM,
although two 5,400 RPM disk drives will probably perform better than one 7,200 RPM drive,
assuming that you can split your workload evenly between the two drives. Of course, if you
can spring for two of the new 10,000 RPM disk drives, you'll be better off in the long run.

a7

48 Part | 0 Database Programming Fundamentals

Summary

In this chapter you learned:

O The five steps in an application design process.

O Why stating the program helps you clarify goals and objectives for the entire
design process.

00 How to use brainstorming to determine the data elements and functions
required in your application.

O How to use Entity/Relationship modeling to design your database.

U g g

