Basic Concepts .

o 0O 0O 0O
I n this chapter, I'm going to introduce you to the concepts .
behind databases and why databases are important to In This Chapter
your application program. I'll also cover different database
architectures and follow that up with a brief overview of the Why use a
database systems to be covered in this book. database?

Database architecture

Why USG a Database7 Common databases

A database is simply a general-purpose tool that allows you to O O O O
store any information you want that can be read and updated

by one or more concurrent application programs in a secure

and reliable fashion. Note that while this definition describes

conventional database systems such as SQL Server and Oracle

8i, it can also be used to describe a collection of normal disk

files. | want to explore these concepts using conventional disk

files to help you better understand why your application needs

a database system.

Storing information

There are many ways to store information on a computer, but
eventually all of them boil down to placing information in a file
somewhere on a disk drive. There are two basic types of files,
which are characterized by how they are accessed. Sequential
access files are accessed as a single unit, while random access
files allow you to directly access the file in small pieces.

Using conventional file access

In order to process the data in a sequential access file, you
must read or write the entire file. This type of access is useful
for a word processor where you want to make all of the infor-
mation in the file available to the user at the same time.

4 Part | 0 Database Programming Fundamentals

- Cross-

Generally a program will load the entire file into memory, make whatever changes
are necessary, and then save the entire file when the user is ready to exit the
program.

When dealing with sequential access files, you need not load the entire file into
memory. Indeed, many programs merely load enough data from the file to perform
a given task and load more data when the task is complete. The main idea is that
your program reads the data from the beginning of the file to the end in a linear
fashion. Hence the term sequential.

In most application programs, you only want to access a subset of the data at a given
point in time, so rather than processing the entire file just to get a small piece of data,
a random access file allows you to divide the file into chunks called records. (See
“Organizing data in records,” below for details.) Each record has a unique record
number, which is determined by its relative position in the file. You can retrieve or
update any record in the file by specifying the appropriate record number.

The key to making random access files work is that each record in the file is always
the same size. This allows you to determine the location of the record by comput-
ing the starting byte of the record, just by knowing the size of the record and the
relative record number in the file.

Even though a random access file may be organized differently than a sequential
access file, you can also process a random access file sequentially by reading the
records in order of their record numbers. This implies that you don’t lose any func-
tionality of a sequential access file if you choose to create your file as random
access.

Organizing data in records

A record represents a chunk of data contained in a file and is organized into one
or more fields. Each field has a specific name and data type associated with it.
The name is used to uniquely identify the field in the record, and the data type
describes what kind of information the field can hold.

See “Columns and Data Types” in Chapter 2 for more information on this topic.

Reference ',
18

Because each record in the file always holds the same information, you can think of
a file full of records as a table or grid, where each record corresponds to a row and
each field corresponds to a column (see Figure 1-1). The table concept also conveys
the concept of how the information is actually stored in the file, since the relative
position of each field is fixed in relation to the other fields and the relative record
number uniquely identifies the record’s place in the table.

Chapter 1 0 Basic Concepts

Name Address City State | Zip Code
Christopher James 1234 Main Street College Park MD 20742
Samantha Ashley 2345 Central Avenue College Park MD 20742
Terry Katz 3456 Pennsylvania Ave College Park MD 20742
Robert Weiler 4567 Redwood Way College Park MD 20742
Wayne Freeze 5678 Baltimore Street College Park MD 20742
Bonnie Jean 6789 Oak Street College Park MD 20742
Jill Heyer 7890 Washington Drive College Park MD 20742
Raymond Bucky 8901 Souix Circle College Park MD 20742

Figure 1-1: A file with records looks like a grid or a table.

Concurrency

One of the most critical issues to consider when dealing with an application is
ensuring that two or more concurrently-running programs don’t interfere with
each other while processing data. If the proper steps aren’t taken, it would be easy
for one program to destroy information that another program changed in the file.
For instance, assume that you have a random access file that contains customers’
checking account balances. Then assume that you have one program that debits
the account for checks that the customer wrote, while another program credits
customer deposits. While this scenario is unlikely, it is possible that the two pro-
grams may attempt to update the same customer record at the same time.

Now, consider the following sequence of events. The debit program reads the
customer’s record. Before the debit program has a chance to update the informa-
tion, the credit program reads the customer’s record and adds the deposit to the
account’s total balance. After the credit program updates the customer’s infor-
mation, the debit program completes its process by writing its updated account
balance back to the file. In this scenario, the credit to the account was lost, since
the update done by the debit program used an out-of-date account balance.

The proper way to prevent the concurrency problem is by controlling access to the
data. Typically, this is done by locking the file to prevent other users from accessing
any of the data in the file you want to use. The sequence of events in the above sce-
nario would now look like this: The debit program would lock the file. Then it would
read the customer record. The credit program would attempt to lock the file. Since
the debit program already locked the file, the client program would be suspended.
The debit program would complete its update and then release the lock on the file.
The credit program would be resumed and the lock would be granted. It would then
perform its update and release the lock, thus ensuring that the correct balance
would be in the file.

6 Part | 0 Database Programming Fundamentals

Securing your data

In most computer systems, you can identify the users who are able to read or
update a particular file, and deny access to all others using normal operating sys-
tem security. However, it is often desirable to allow someone to see only part of a
record—in a case, for instance, where you want to keep an employee’s salary infor-
mation in the same record with the employee’s address and telephone number.

To prevent people from seeing salary information, you have to create another file
that contains information about each person who can access your file and which
fields they are permitted to access. Then your application programs must properly
use this information to prevent unwanted access to data.

Of course this method is only as reliable as your application programming staff.
One small mistake in a program could allow a user to read and/or change the value
that they shouldn’t have access to.

Performing backups and using transaction logs

No matter what you do to your data, you need to ensure that once a change has
been made to it, it won’t be lost. After all, it is possible that your hard disk could
crash and destroy your files or your computer could suffer a power failure while
the files were being updated.

There are a number of different ways to prevent your data from being lost. The
most common practice is to back up your data on a regular basis. Of course you
can’t permit any users to update data while you’re doing this, or your data files may
be in an inconsistent state because someone changed a value in one file before the
backup process copied the one file and after the backup process copied another
file. Alternate ways to prevent you from losing your data include using redundant
disk drives and/or database servers so that your data will still exist even if you lose
a disk drive or server. However, | strongly recommend that you back up your data
even if you use redundant equipment, just in case you lose both your primary copy
and your redundant copy.

Most applications back up their data once a day, which limits the amount of data
you might lose to a maximum of a single day. But losing even half a day’s worth of
information can be a big problem in most situations. For instance, in the case of a
mail-order processing application, you always have the original order documents
that you can reenter. However, in the case of a telephone order processing applica-
tion, you may not even know which customers placed an order if you lose your
files, and even if you did, do you really want to call all of your customers back to
find out what they ordered?

Chapter 1 O Basic Concepts

There are a couple of solutions to this problem. First you can print every change
you make to the files on a printer. This way, you will always have a paper record of
the changes, and can reenter the information if you need to.

A better way would be to write all of your changes to a special file known as a transac-
tion log. This file includes only the changes that were made to the file. Thus, if you
have to restore the file from the previous day’s backup, you could run a program that
would read the values from the transaction log and reapply them to the main file.

Both of these approaches aren’t 100% reliable, since the application programmer
must explicitly send the information to the printer or write the changes to the
transaction log. If the programmer forgets to include the appropriate calls in their
program, the information is pretty much useless.

A database is the answer

While you can use files to hold your organization’s data, you can see that there are
a number of problems associated with this practice. A database system solves
these problems and others that you may not have thought of.

Tables, rows, and columns

Recall that a database holds information in tables that correspond to random access
files. Each record in the file corresponds to a row in the table. Each field in the file
corresponds to a column in the table. Unlike a record, you can choose which columns
you wish to retrieve from a table. By retrieving only the columns you need, you help
to isolate your program from changes in the table. This means you can add and
delete columns from a table, and as long as your program doesn’t reference any of
these columns, your program will continue to work without change.

The concept of a relative record number isn’t available to locate a row in a table. It
has been replaced with a more powerful concept known as the primary key. The pri-
mary key is a set of one or more fields whose values will uniquely identify a row in a
table. Where you may have used an employee number or part number as the rela-
tive record number in a random access file, you can now use an arbitrary set of val-
ues to locate the row. This gives you a lot more flexibility when designing a table.

Locking

Just as you use locking to prevent two programs from accessing the same data in a
file-oriented application, the database management system uses locking to prevent
the same thing from happening. The database system automatically determines how
to use locks to prevent two or more programs from accessing the same data at the
same time. Unlike file-oriented applications, where the entire file is locked, the
database system is smart enough to allow programs to update data in the same
table at the same time as long as all of the programs are all accessing different rows.

8 Part | 0 Database Programming Fundamentals

You can get a big performance boost in your application because a database per-
mits multiple programs to access data in the same table at the same time. With file-
based applications, one program had to complete the read, process, and update
sequence before the next program could start. This translates into longer and
longer delays as more and more users try to access the files at the same time. Since
the database system permits multiple, non-conflicting read, process, and update
sequences to be active at the same time, the wait time is no longer a factor.

Security

Database systems are designed from the ground up to be secure. You can specify
which users can access which data in which fashion. Since the security is moved
outside the application, it is much easier to verify that only properly authorized
users can access a piece of information.

Restoring lost data

Unlike a collection of random-access files, a database system has a comprehensive
mechanism to ensure that once data has been written to the database, it isn’t lost.
A database system includes tools that will back up the database in a way that will
prevent the problem where some of the changes are captured, while others aren’t.
This means that you can always restore your database to a consistent state.

Also, a database system includes an integrated transaction log that will automatically
capture all of the changes to the database. When you have to restore a database, the
restore process can automatically process the transaction log. All of the transactions
written to the log will be recovered, which means that the data will be correct as of
the moment before your disk crashed.

Database Architecture

Nearly all database systems available on the market today are implemented using a
client/server architecture. This architecture defines two types of programs and how
they interact with each other.

Servers and clients

A client is a program that generates requests that are sent to another program,
called a server, for execution. When the server has finished the request, the results
are returned to the client. In today’s computing environment, many applications are
implemented using client/server technology. For instance, your Web browser is a
client program that talks to a Web server. A file server contains files that are made
available to you over a network. Likewise, a print server allows a network manager
to share a single printer with many different users.

Note

Chapter 1 O Basic Concepts

Servers, clients, hardware, software, and confusion: The terms client and server
are often used to describe both the software applications and the hardware they
run on. This can lead to some confusion. It is quite possible that you may use a
Web browser (client) application to access a Web server on the same computer.
For example, | frequently test new Web pages on a test Web server running on the
same computer as the browser before uploading them to a production Web
server. In general, when | use the terms client and server I'm referring to the soft-
ware applications and not the physical machines they run on.

Database servers and database clients

A database server is a program that receives database requests from a database client
and processes the requests on the database client’s behalf (see Figure 1-2). A
database client is a program that generates database requests by interacting with a
user, processing a data file or in response to a particular event in your computer. A
database request is a specific operation that is to be performed by the database
server, such as returning data from a table, updating one or more rows in a table, or
performing some other database management task.

Database Request

Database Client Database Server
Response from the
Database Server

Figure 1-2: Database clients send database requests to a database server for
processing.

Database servers

A database server typically runs on its own computer system and receives
database requests across a network. If the request generates a response, then the
response is returned to the database client computer over the network. This
arrangement isolates the database server from each of the database clients, which
improves the performance and reliability of the database system.

A special software package known as the Database Management System (DBMS) is
run on the database server. It is this software that receives database requests, pro-
cesses them, and returns the resulting information back to the database client.

9

10 Part | [0 Database Programming Fundamentals

The database server is typically run on an operating system designed to support
servers, such as Windows 2000/NT Server or any of the various flavors of Unix.
Desktop operating systems such as Windows 98/95 don’t provide the reliability or
stability necessary to run a database server.

In small environments, you can run several different servers on your server com-
puter —such as a file server, Web server, mail server and transaction server—in
addition to your database server. However, as your workload increases, it will
become desirable to dedicate computers to each of these functions.

This type of arrangement would allow you to scale the size of each computer sys-
tem to accommodate your workload. You can add more memory, faster CPUs and
more disk space to keep pace with increases in your workload. Also, by dedicating
a computer to running the database server, you run less of a risk of a system crash
because of a software problem in another server such as the transaction server.

Database clients

The database client is simply an application running on the same network as the
database server that requests information from the database. The application pro-
gram generates database requests using an Applications Programming Interface
(API), which is nothing more than a set of subroutine calls or set of objects that
your program uses to send requests to the database and receive information from
the database.

The API allows the program to communicate with more than one database system
through the use of a special piece of code known as a database driver. A database
driver represents a special program that is installed on the database client com-
puter. It translates the standardized database requests made using the API into the
special language used by the specific database server.

By using database drivers, the same application program can communicate with
different database systems without changing the application itself. This level of
independence is important since it allows an organization to replace one database
system with another with only a minimal impact to the applications themselves.

Simple database systems

While most database systems fall into the client/server architecture | described
above, a few simple database systems work differently. These are typically low-
end database systems where performance and scalability issues are not a prob-
lem. These systems still communicate with your application via a standard API,
but instead of passing requests onto a database server on a different computer,
they pass the requests to code residing in the client computer.

Chapter 1 O Basic Concepts 11

This database code in the local client computer is designed to cooperate with other
copies of the database code running in other computers to access a common file or
set of files located somewhere on the network. The database files could be located
on the same computer as one of the database clients, or located on a central file
server. A low-end database system is also a good choice if you are designing a
stand-alone application for a single user.

Administration of these database systems is fairly easy. Backing up the database is
accomplished by backing up the file containing the database, and recovery processes
are limited to restoring a backed-up version of the database.

Of course this approach can have a big impact on performance, because locking
must now be done at the file level rather than based on the values selected from
the database. While this will obviously hurt an application with many users, the
overhead is low enough that for a handful of users, the performance may actually
be better than the client/server architecture.

Types of Databases

There are four basic types of database systems: hierarchical, networked, indexed
and relational. While each of the four types has many similar concepts, their differ-
ences result from how they store their data.

Hierarchical databases

The hierarchical database is the oldest form of database in existence. Data is
arranged in a series of tree structures, which often reflect the natural relationship
between data. IBM’s IMS database, which is still available today, is the classic exam-
ple of a hierarchical database.

A hierarchy models a data relationship known as 1 to many. A 1 to many relationship
means that one data value is related to one or more other data values. The classic
example for this type of relationship is students and classes. When students attend
school, they take many classes, a situation which can be described with a natural
hierarchy (see Figure 1-3).

Networked databases

The networked database was developed as an alternative to the hierarchical database.
While a lot of data can be organized using a hierarchical relationship, it is difficult to
model other data relationships. Consider the case of students and their teachers. A
student will take courses from many different teachers, whereas a teacher will teach
more than one student (see Figure 1-4). This relationship is called many to many.

12 Part | [0 Database Programming Fundamentals

Student Body

| Christopher James | Samantha Ashley Terry Katz

CMSC 101 CMSC 101 ENGL 101

MATH 101 ENGL 101 GOVT 101

PSYC 101 PSYC 101 PSYC 101

Figure 1-3: A hierarchical database reflects the natural relationship
betw een data.

| Student Body |
Christopher James | | Samantha Ashley | | Terry Katz
| Robert Weiler (MATH 101) | | Raymond Bucky (GOVT 101) |
| Wayne Freeze (CMSC 101) | | Jill Heyer (ENGL 101) |
| Bonnie Jean (PSYC 101) |

Figure 1-4: A networked database can handle situations that a hierarchical
database cannot.

- Cross- .
Reference
L

.

Chapter 1 [J Basic Concepts 13

A networked database stores information in datasets, which are similar to files and
tables. A record on one dataset that is related to a set of records in another dataset
will have a set of physical pointers, also known as a link. Thus the record in the first
dataset is linked to the records in the second dataset. The primary drawback to
networked databases is that it can be quite complicated to maintain all of the links.
A single broken link can lead to enormous problems in the database.

Indexed databases

While similar in concept to a networked database, an indexed database replaces
links with an inverted list. An inverted list is another file that contains a list of
unique values found in a particular field in a dataset, along with pointers to each
record in which the value appears. This value is known as a key value. If you know
the key value, you can quickly list all of the records in the dataset that contain that
value. In practice, an indexed database is the most efficient database system in the
marketplace today.

Relational databases

The concept of the relational database management system (RDBMS) goes back to
the early 1970’s, when IBM researchers were looking for a better way to manage
data. One of the problems with hierarchical, networked, and indexed databases is
that they all require pointers to connect data together. The researchers built a
mathematical model, which discarded the pointers and used common values to
link multiple records together. Thus, you weren’t limited to hierarchical structures
as in the hierarchical database model, and you didn’t have to set links as in the
networked database model. (The indexed model evolved after the original work
was done on the relational database model.)

The primary drawback to the relational database model is that a relational
database is very slow when compared to the other database models. Without
pointers to help you quickly locate a particular record, you may have to read
every record in a table to find one particular record. To help combat this problem,
the concept of an index was introduced. Even with indexes, relational databases
are generally less efficient than databases implemented using the other database
models. However, the relational database gained popularity as computing began to
shift from traditional mainframe computers to smaller mini-computers and per-
sonal computers. The initial applications of relational databases were far less
demanding than the database systems running on mainframes, so the performance
issues were not as much of a factor as they could have been. As time went on, the
speed of mini-computers and personal computers increased to the point where
they rivaled mainframe computers.

See Chapter 2 for a more in-depth discussion of relational databases.

14 Part | 0 Database Programming Fundamentals

Common Databases

In today’s marketplace there are a number of relational database systems you can
use. In this book, however, I'm going to focus on only three: Microsoft SQL Server
7.0, Microsoft Jet 3.5/4.0 and Oracle 8i. These three database systems make up the
majority of the database systems in the world today, at least from the Visual Basic
programmer’s perspective. Although there are other database systems that run in
the mainframe world, such as CA’'s IDMS and IBM’s IMS, they aren’t typically used
by Visual Basic programmers.

SQL Server 7.0

One of Microsoft’s major design goals with SQL Server 7.0 was to create a scalable
product that ran the same on a Windows 98 system with limited memory and disk
space, up to a large Windows 2000/NT Server system with multiple processors,
gigabytes of main memory, and lots of disk space. To accomplish this, Microsoft
created three versions of SQL Server. The Desktop Edition runs on Windows 98
and Windows 2000/NT Workstation. It's designed to handle smaller databases and
is ideal for helping developers test their programs away from the production
database server. The Standard Edition is the most common edition and provides
the features that you really need for most applications. The Enterprise Edition
expands the Standard Edition by adding features that help SQL Server handle
applications with a lot of data and a large number of transactions.

Besides focusing on scalability, Microsoft also worked hard to reduce the total cost
of ownership for a database system. Modern relational databases are often served
by a group of specialists known as database administrators. These people are expen-
sive to hire and difficult to keep, due to the increasing demand for their skills. SQL
Server 7.0 addresses this problem by including a number of wizards that make it
easy to perform routine tasks. Also the SQL Server Agent can be used to run vari-
ous activities when your machine is left unattended.

Note A good primer: See Microsoft SQL Server 7 for Dummies by Anthony T. Mann for
- more detailed information about how to administer an SQL Server 7 database
server.

Microsoft also addressed data warehousing applications by including two key fea-
tures in SQL Server 7. The first is the Data Transformation Services (DTS). This feature
makes it easy to move data from one place to another. This is particularly important,
since the data in a data warehouse is usually taken from tactical applications like
accounting and inventory systems, even if they exist on the corporate mainframe.

Chapter 1 O Basic Concepts 15

The second key feature is OLAP Services (OLAP stands for online analytical process-
ing). These services bridge the gap between the data warehouse and the analysis
tools running on the user’s workstation. The data warehouse data is preprocessed
in the OLAP server before the results are presented to the analysis tool. Microsoft
has made the application programming interface (API) to OLAP Services available,
so that other companies can design client tools to analyze OLAP data.

Microsoft Jet 3.5/4.0

Microsoft Access is a simple desktop database application development tool that is
targeted at small- to medium-sized organizations. At the heart of Access is a true
relational database engine known as Microsoft Jet. Like SQL Server, Jet is based on
the SQL standard. Unlike SQL Server, the database code runs in the application itself
rather than in a database server. Also, because Jet was developed independently of
SQL Server, it isn’t totally compatible with SQL Server.

Even though Jet is developed as part of Microsoft Access, Jet is included with
Visual Basic. You can develop applications using Jet and freely distribute the Jet
runtime code with your application. You can’t do this with SQL Server applications.

Jet 3.5 is the version of Jet that shipped with Access 97 and Visual Basic 6, while
Jet 4.0 is the version shipped with Access 2000. While Jet 4.0 offers some improve-
ments over Jet 3.5, you should probably stick with Jet 3.5 unless you need to share
your database with an Access 2000 application, since Access 2000 works only with
Jet 4.0.

Oracle 8i

Oracle 8i is a high performance database system that runs on many different oper-
ating systems. While SQL Server is available only for Windows-based systems,
Oracle 8i runs on everything from small Linux systems to large Sun Solaris-based
systems and IBM mainframes running MVS/ESA or 0S/390. Of course it also runs
on Windows 2000/NT. Since the same code base is used for all of the different plat-
forms, Oracle 8i applications need not worry about the computer that is hosting
the database server.

Like SQL Server, Oracle 8i is available in several editions. The Standard Edition rep-
resents the most common form of Oracle 8i, and is suitable for most database appli-
cations. Oracle 8i Enterprise Edition is designed to support high-volume online
transaction processing (OLTP) applications and query-intensive data warehouses.
Oracle 8i Personal Edition is targeted at single user development and deployment
applications.

16 Part | [0 Database Programming Fundamentals

Thoughts on Database Systems

Although the architecture of a database system may permit you to write an application pro-
gram that will work with several different database systems, reality is a lot different than
theory.

Most database systems offer assorted extensions that can improve the performance and
abilities of most applications. However, if you take advantage of these extensions, your
application becomes tied to a single database system. While this isn’t necessarily bad, it is
something to consider if you think you may change database systems in the future. The key
to addressing this problem is to design your database and your application so that they only
contain features that are common to all of the database systems you may use.

Isolating the database system from the application is even more important if you are devel-
oping applications for resale. Most likely your customers will already have an investment in
a database system and would prefer that your application use that database system rather
than having to invest in a totally new database system.

Isolating your application from your database system is more difficult than you might
believe. This is especially true if you use only one type of database system. You'll often find
yourself in situations that are easier to solve if you use a database system-specific feature
than if you solve it in a more general-purpose way. This isn’t necessarily bad, and often will
allow you to build a better application in the long run.

If you plan to use only one database system, selecting the proper one is very important.
Although many people pick a database by finding the one with the best set of features, you
really should look for a database that will be around in five or ten years. Over time, a fea-
ture that is found in only one database management system will be included in the other
systems in their next release. After a few releases, those features that you found very impor-
tant when you picked your database vendor aren’t all that important anymore.

Evaluate a database vendor in terms of their commitment to their database system. A ven-
dor that is constantly improving their database is much better than a database vendor that
doesn’t. A lack of enhancements over a long period of time means that people will tend to
select other databases to fit their needs. Eventually, if the enhancements stop, the vendor
will stop supporting the database system and you may find yourself in a situation where all
of your applications are so dependent on one database system that you can't move them
to another database system.

Chapter 1 O Basic Concepts 17

Summary

In this chapter you learned that:

O Database systems have many advantages over using conventional files to hold
your data, including better concurrency controls, better security, and better
backup and recovery mechanisms.

O Database systems are usually implemented using client/server architectures.

O The different types of databases include the hierarchical, networked, indexed,
and relational models.

O SQL Server 7.0, Oracle8i and Jet are three of the most common database sys-
tems that a Visual Basic programmer is likely to encounter.

U U u

